la

package
v1.1.2-0...-291262d Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 5, 2019 License: BSD-3-Clause Imports: 13 Imported by: 0

README

Gosl. la. Linear Algebra: vector, matrix, efficient sparse solvers, eigenvalues, decompositions, etc.

GoDoc

More information is available in the documentation of this package.

The la subpackage implements functions to perform linear algebra operations such as vector addition or matrix-vector multiplications. It also wraps some efficient sparse linear systems solvers such as Umfpack and MUMPS (not the parotitis disease!).

Both Umfpack and MUMPS solvers are very efficient!

The other subpackages la/oblas and la/mkl are sometimes called by la to improve performance.

Structures for sparse problems

In la, there are two types of structures to hold data for solving a sparse linear system: triplet and column-compressed matrix. Both have a complex version and are named as follows:

  1. Triplet and TripletC (complex)
  2. CCMatrix and CCMatrixC (complex)

The Triplet is more convenient for data input; e.g. during the assemblage step in a finite element code. The CCMatrix is better (faster) for computations and is the structure used by Umfpack.

Triplets are initialised by giving the size of the corresponding matrix and the number of non-zero entries (components). Thus, only space for the non-zero entries is allocated. Afterwards, each component can be set by calling the Put method after calling the Start method. The Start method can be called several times. Therefore, this structure helps with the efficient implementation of codes requiring multiple solutions of linear systems as in finite element analyses.

To convert the Triplet into a Column-Compressed Matrix, call the ToMatrix method of Triplet. And to convert the sparse matrix to a dense version (e.g. for reporting/printing), call the ToDense method of CCMatrix.

The Triplet has also a very convenient method to copy the contents of another Triplet (i.e. sparse matrix) into the positions starting with the maximum number of columns of this second matrix and the positions starting with the maximum number of rows of this second matrix. This is done with the method PutMatAndMatT. This operation is particularly common when solving mechanical problems with Lagrange multipliers and can be illustrated as follows:

[... ... ... a00 a10 ...] 0
[... ... ... a01 a11 ...] 1
[... ... ... a02 a12 ...] 2      [. at  .]
[a00 a01 a02 ... ... ...] 3  =>  [a  .  .]
[a10 a11 a12 ... ... ...] 4      [.  .  .]
[... ... ... ... ... ...] 5

The version in which the second matrix is a column-compressed matrix is named PutCCMatAndMatT.

Linear solvers for sparse problems

SparseSolver defines an interface for linear solvers in la. Two implementations satisfying this interface are:

  1. Umfpack wrapper to Umfpack; and
  2. Mumps wrapper to MUMPS

There are also high level functions to solve linear systems with Umfpack:

  1. SpSolve; and
  2. SpSolveC with complex numbers

Note however that the high level functions shouldn't be used for repeated executions because memory would be constantly allocated and deallocated.

Examples

Vectors and matrices

source file source file source file

BLAS1, 2 and 3 functions

source file source file source file

General dense solver and Cholesky decomposition

source file

Eigenvalues and eigenvectors of general matrix

source file

Eigenvalues of symmetric (3 x 3) matrix

source file

Sparse BLAS functions

source file

source file

Sparse Triplet and Matrix

source file

Sparse linear solver using MUMPS

source file

Sparse linear solver using UMFPACK

source file

Solutions using sparse solvers

source file

Documentation

Overview

Package la implements functions and structure for Linear Algebra computations. It defines a Vector and Matrix types for computations with dense data and also a Triplet and CCMatrix for sparse data.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func CheckEigenVecL

func CheckEigenVecL(tst *testing.T, A *Matrix, λ VectorC, u *MatrixC, tol float64)

CheckEigenVecL checks left eigenvector:

 H                  H
u [j] ⋅ A = λ[j] ⋅ u [j]    LEFT eigenvectors

func CheckEigenVecR

func CheckEigenVecR(tst *testing.T, A *Matrix, λ VectorC, v *MatrixC, tol float64)

CheckEigenVecR checks right eigenvector:

A ⋅ v[j] = λ[j] ⋅ v[j]      RIGHT eigenvectors

func Cholesky

func Cholesky(L, a *Matrix)

Cholesky returns the Cholesky decomposition of a symmetric positive-definite matrix

a = L * trans(L)

func DenSolve

func DenSolve(x Vector, A *Matrix, b Vector, preserveA bool)

DenSolve solves dense linear system using LAPACK (OpenBLAS)

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

func EigenVal

func EigenVal(w VectorC, A *Matrix, preserveA bool)

EigenVal computes eigenvalues of general matrix

A ⋅ v[j] = λ[j] ⋅ v[j]

INPUT:
  a -- general matrix

OUTPUT:
  w -- eigenvalues [pre-allocated]

func EigenVecL

func EigenVecL(u *MatrixC, w VectorC, A *Matrix, preserveA bool)

EigenVecL computes eigenvalues and LEFT eigenvectors of general matrix

 H                  H
u [j] ⋅ A = λ[j] ⋅ u [j]    LEFT eigenvectors

INPUT:
  a -- general matrix

OUTPUT:
  u -- matrix with the eigenvectors; each column contains one eigenvector [pre-allocated]
  w -- eigenvalues [pre-allocated]

func EigenVecLR

func EigenVecLR(u, v *MatrixC, w VectorC, A *Matrix, preserveA bool)

EigenVecLR computes eigenvalues and LEFT and RIGHT eigenvectors of general matrix

A ⋅ v[j] = λ[j] ⋅ v[j]      RIGHT eigenvectors

 H                  H
u [j] ⋅ A = λ[j] ⋅ u [j]    LEFT eigenvectors

INPUT:
  a -- general matrix

OUTPUT:
  u -- matrix with the LEFT eigenvectors; each column contains one eigenvector [pre-allocated]
  v -- matrix with the RIGHT eigenvectors; each column contains one eigenvector [pre-allocated]
  w -- λ eigenvalues [pre-allocated]

func EigenVecR

func EigenVecR(v *MatrixC, w VectorC, A *Matrix, preserveA bool)

EigenVecR computes eigenvalues and RIGHT eigenvectors of general matrix

A ⋅ v[j] = λ[j] ⋅ v[j]

INPUT:
  a -- general matrix

OUTPUT:
  v -- matrix with the eigenvectors; each column contains one eigenvector [pre-allocated]
  w -- eigenvalues [pre-allocated]

func Jacobi

func Jacobi(Q *Matrix, v Vector, A *Matrix)

Jacobi performs the Jacobi transformation of a symmetric matrix to find its eigenvectors and eigenvalues.

The Jacobi method consists of a sequence of orthogonal similarity transformations. Each transformation (a Jacobi rotation) is just a plane rotation designed to annihilate one of the off-diagonal matrix elements. Successive transformations undo previously set zeros, but the off-diagonal elements nevertheless get smaller and smaller. Accumulating the product of the transformations as you go gives the matrix of eigenvectors (Q), while the elements of the final diagonal matrix (A) are the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices.

      A = Q ⋅ L ⋅ Qᵀ

Input:
 A -- matrix to compute eigenvalues (SYMMETRIC and SQUARE)
Output:
 A -- modified
 Q -- matrix which columns are the eigenvectors
 v -- vector with the eigenvalues

NOTE: for matrices of order greater than about 10, say, the algorithm is slower,
      by a significant constant factor, than the QR method.

func MatAdd

func MatAdd(res *Matrix, α float64, a *Matrix, β float64, b *Matrix)

MatAdd adds the scaled components of two matrices

res := α⋅a + β⋅b   ⇒   result[i][j] := α⋅a[i][j] + β⋅b[i][j]

func MatCondNum

func MatCondNum(a *Matrix, normtype string) (res float64)

MatCondNum returns the condition number of a square matrix using the inverse of this matrix; thus it is not as efficient as it could be, e.g. by using the SV decomposition.

normtype -- Type of norm to use:
  "F" or "" => Frobenius
  "I"       => Infinite

func MatInv

func MatInv(ai, a *Matrix, calcDet bool) (det float64)

MatInv computes the inverse of a general matrix (square or not). It also computes the pseudo-inverse if the matrix is not square.

Input:
  a -- input matrix (M x N)
Output:
  ai -- inverse matrix (N x M)
  det -- determinant of matrix (ONLY if calcDet == true and the matrix is square)
NOTE: the dimension of the ai matrix must be N x M for the pseudo-inverse

func MatInvSmall

func MatInvSmall(ai, a *Matrix, tol float64) (det float64)

MatInvSmall computes the inverse of small matrices of size 1x1, 2x2, or 3x3. It also returns the determinant.

Input:
  a   -- the matrix
  tol -- tolerance to assume zero determinant
Output:
  ai  -- the inverse matrix
  det -- determinant of a

func MatMatMul

func MatMatMul(c *Matrix, α float64, a, b *Matrix)

MatMatMul returns the matrix multiplication (scaled)

c := α⋅a⋅b    ⇒    cij := α * aik * bkj

func MatMatMulAdd

func MatMatMulAdd(c *Matrix, α float64, a, b *Matrix)

MatMatMulAdd returns the matrix multiplication (scaled)

c += α⋅a⋅b    ⇒    cij += α * aik * bkj

func MatMatTrMul

func MatMatTrMul(c *Matrix, α float64, a, b *Matrix)

MatMatTrMul returns the matrix multiplication (scaled) with transposed(b)

c := α⋅a⋅bᵀ    ⇒    cij := α * aik * bjk

func MatMatTrMulAdd

func MatMatTrMulAdd(c *Matrix, α float64, a, b *Matrix)

MatMatTrMulAdd returns the matrix multiplication (scaled) with transposed(b)

c += α⋅a⋅bᵀ    ⇒    cij += α * aik * bjk

func MatSvd

func MatSvd(s []float64, u, vt, a *Matrix, copyA bool)

MatSvd performs the SVD decomposition

Input:
  a     -- matrix a
  copyA -- creates a copy of a; otherwise 'a' is modified
Output:
  s  -- diagonal terms [must be pre-allocated] len(s) = imin(a.M, a.N)
  u  -- left matrix [must be pre-allocated] u is (a.M x a.M)
  vt -- transposed right matrix [must be pre-allocated] vt is (a.N x a.N)

func MatTrMatMul

func MatTrMatMul(c *Matrix, α float64, a, b *Matrix)

MatTrMatMul returns the matrix multiplication (scaled) with transposed(a)

c := α⋅aᵀ⋅b    ⇒    cij := α * aki * bkj

func MatTrMatMulAdd

func MatTrMatMulAdd(c *Matrix, α float64, a, b *Matrix)

MatTrMatMulAdd returns the matrix multiplication (scaled) with transposed(a)

c += α⋅aᵀ⋅b    ⇒    cij += α * aki * bkj

func MatTrMatTrMul

func MatTrMatTrMul(c *Matrix, α float64, a, b *Matrix)

MatTrMatTrMul returns the matrix multiplication (scaled) with transposed(a) and transposed(b)

c := α⋅aᵀ⋅bᵀ    ⇒    cij := α * aki * bjk

func MatTrMatTrMulAdd

func MatTrMatTrMulAdd(c *Matrix, α float64, a, b *Matrix)

MatTrMatTrMulAdd returns the matrix multiplication (scaled) with transposed(a) and transposed(b)

c += α⋅aᵀ⋅bᵀ    ⇒    cij += α * aki * bjk

func MatTrVecMul

func MatTrVecMul(v Vector, α float64, a *Matrix, u Vector)

MatTrVecMul returns the transpose(matrix)-vector multiplication

v = α⋅aᵀ⋅u    ⇒    vi = α * aji * uj = α * uj * aji

func MatVecMul

func MatVecMul(v Vector, α float64, a *Matrix, u Vector)

MatVecMul returns the matrix-vector multiplication

v = α⋅a⋅u    ⇒    vi = α * aij * uj

func MatVecMulAdd

func MatVecMulAdd(v Vector, α float64, a *Matrix, u Vector)

MatVecMulAdd returns the matrix-vector multiplication with addition

v += α⋅a⋅u    ⇒    vi += α * aij * uj

func MatVecMulAddC

func MatVecMulAddC(v VectorC, α complex128, a *MatrixC, u VectorC)

MatVecMulAddC returns the matrix-vector multiplication with addition (complex version)

v += α⋅a⋅u    ⇒    vi += α * aij * uj

func MatVecMulC

func MatVecMulC(v VectorC, α complex128, a *MatrixC, u VectorC)

MatVecMulC returns the matrix-vector multiplication (complex version)

v = α⋅a⋅u    ⇒    vi = α * aij * uj

func SolveRealLinSysSPD

func SolveRealLinSysSPD(x Vector, a *Matrix, b Vector)

SolveRealLinSysSPD solves a linear system with real numbres and a Symmetric-Positive-Definite (SPD) matrix

     x := inv(a) * b

NOTE: this function uses Cholesky decomposition and should be used for small systems

func SolveTwoRealLinSysSPD

func SolveTwoRealLinSysSPD(x, X Vector, a *Matrix, b, B Vector)

SolveTwoRealLinSysSPD solves two linear systems with real numbres and Symmetric-Positive-Definite (SPD) matrices

     x := inv(a) * b    and    X := inv(a) * B

NOTE: this function uses Cholesky decomposition and should be used for small systems

func SpCheckDiag

func SpCheckDiag(a *CCMatrix) bool

SpCheckDiag checks if all elements on the diagonal of "a" are present.

OUTPUT:
 ok -- true if all diagonal elements are present;
       otherwise, ok == false if any diagonal element is missing.

func SpInitRc

func SpInitRc(R *CCMatrix, C *CCMatrixC, J *CCMatrix)

SpInitRc initialises two complex sparse matrices (residual correction) according to:

Real:       R :=  γ      *I - J
Complex:    C := (α + βi)*I - J
NOTE: "J" must include all diagonal elements

func SpInitSimilar

func SpInitSimilar(b *CCMatrix, a *CCMatrix)

SpInitSimilar initialises another matrix "b" with the same structure (Ap, Ai) of sparse matrix "a". The values Ax are not copied though.

func SpInitSimilarR2C

func SpInitSimilarR2C(b *CCMatrixC, a *CCMatrix)

SpInitSimilarR2C initialises another matrix "b" (complex) with the same structure (Ap, Ai) of sparse matrix "a" (real). The values Ax are not copied though (Bx and Bz are not set).

func SpMatAddI

func SpMatAddI(r *CCMatrix, α float64, a *CCMatrix, β float64)

SpMatAddI adds an identity matrix I to "a", scaled by α and β according to:

r := α*a + β*I

func SpMatAddMat

func SpMatAddMat(c *CCMatrix, α float64, a *CCMatrix, β float64, b *CCMatrix, a2c, b2c []int)

SpMatAddMat adds two sparse matrices. The 'c' matrix matrix and the 'a2c' and 'b2c' arrays must be pre-allocated by SpAllocMatAddMat. The result is:

c := α*a + β*b
NOTE: this routine does not check for the correct sizes, since this is expect to be
      done by SpAllocMatAddMat

func SpMatAddMatC

func SpMatAddMatC(C *CCMatrixC, R *CCMatrix, α, β, γ float64, a *CCMatrix, μ float64, b *CCMatrix, a2c, b2c []int)

SpMatAddMatC adds two real sparse matrices with two sets of coefficients in such a way that one real matrix (R) and another complex matrix (C) are obtained. The results are:

  R :=  γ    *a + μ*b
  C := (α+βi)*a + μ*b
NOTE: the structure of R and C are the same and can be allocated with SpAllocMatAddMat,
      followed by one call to SpInitSimilarR2C. For example:
          R, a2c, b2c := SpAllocMatAddMat(a, b)
          SpInitSimilarR2C(C, R)

func SpMatMatTrMul

func SpMatMatTrMul(b *Matrix, α float64, a *CCMatrix)

SpMatMatTrMul computes the multiplication of sparse matrix with itself transposed:

b := α * a * aᵀ   b_iq = α * a_ij * a_qj

/ Note: b is symmetric

func SpMatTrVecMul

func SpMatTrVecMul(v Vector, α float64, a *CCMatrix, u Vector)

SpMatTrVecMul returns the (sparse) matrix-vector multiplication with "a" transposed (scaled):

v := α * transp(a) * u  =>  vj = α * aij * ui
NOTE: dense vector v will be first initialised with zeros

func SpMatTrVecMulAdd

func SpMatTrVecMulAdd(v Vector, α float64, a *CCMatrix, u Vector)

SpMatTrVecMulAdd returns the (sparse) matrix-vector multiplication with addition and "a" transposed (scaled):

v += α * transp(a) * u  =>  vj += α * aij * ui

func SpMatTrVecMulAddC

func SpMatTrVecMulAddC(v VectorC, α complex128, a *CCMatrixC, u VectorC)

SpMatTrVecMulAddC returns the (sparse/complex) matrix-vector multiplication with addition and "a" transposed (scaled):

v += α * transp(a) * u  =>  vj += α * aij * ui

func SpMatTrVecMulC

func SpMatTrVecMulC(v VectorC, α complex128, a *CCMatrixC, u VectorC)

SpMatTrVecMulC returns the (sparse/complex) matrix-vector multiplication with "a" transposed (scaled):

v := α * transp(a) * u  =>  vj = α * aij * ui
NOTE: dense vector v will be first initialised with zeros

func SpMatVecMul

func SpMatVecMul(v Vector, α float64, a *CCMatrix, u Vector)

SpMatVecMul returns the (sparse) matrix-vector multiplication (scaled):

v := α * a * u  =>  vi = α * aij * uj
NOTE: dense vector v will be first initialised with zeros

func SpMatVecMulAdd

func SpMatVecMulAdd(v Vector, α float64, a *CCMatrix, u Vector)

SpMatVecMulAdd returns the (sparse) matrix-vector multiplication with addition (scaled):

v += α * a * u  =>  vi += α * aij * uj

func SpMatVecMulAddC

func SpMatVecMulAddC(v VectorC, α complex128, a *CCMatrixC, u VectorC)

SpMatVecMulAddC returns the (sparse/complex) matrix-vector multiplication with addition (scaled):

v += α * a * u  =>  vi += α * aij * uj

func SpMatVecMulAddX

func SpMatVecMulAddX(v Vector, a *CCMatrix, α float64, u Vector, β float64, w Vector)

SpMatVecMulAddX returns the (sparse) matrix-vector multiplication with addition (scaled/extended):

v += a * (α*u + β*w)  =>  vi += aij * (α*uj + β*wj)

func SpMatVecMulC

func SpMatVecMulC(v VectorC, α complex128, a *CCMatrixC, u VectorC)

SpMatVecMulC returns the (sparse/complex) matrix-vector multiplication (scaled):

v := α * a * u  =>  vi = α * aij * uj
NOTE: dense vector v will be first initialised with zeros

func SpSetRc

func SpSetRc(R *CCMatrix, C *CCMatrixC, α, β, γ float64, J *CCMatrix)

SpSetRc sets the values within two complex sparse matrices (residual correction) according to:

Real:       R :=  γ      *I - J
Complex:    C := (α + βi)*I - J
NOTE: "J" must include all diagonal elements

func SpTriAdd

func SpTriAdd(c *Triplet, α float64, a *Triplet, β float64, b *Triplet)

SpTriAdd adds two matrices in Triplet format:

c := α*a + β*b
NOTE: the output 'c' triplet must be able to hold all nonzeros of 'a' and 'b'
      actually the 'c' triplet is just expanded

func SpTriAddR2C

func SpTriAddR2C(c *TripletC, α, β float64, a *Triplet, μ float64, b *Triplet)

SpTriAddR2C adds two real matrices in Triplet format generating a complex triplet according to:

c := (α+βi)*a + μ*b
NOTE: the output 'c' triplet must be able to hold all nonzeros of 'a' and 'b'

func SpTriMatTrVecMul

func SpTriMatTrVecMul(y Vector, a *Triplet, x Vector)

SpTriMatTrVecMul returns the matrix-vector multiplication with transposed matrix a in triplet format and two dense vectors x and y

y := transpose(a) * x    or    y_I := a_JI * x_J    or     y_j := a_ij * x_i

func SpTriMatVecMul

func SpTriMatVecMul(y Vector, a *Triplet, x Vector)

SpTriMatVecMul returns the matrix-vector multiplication with matrix a in triplet format and two dense vectors x and y

y := a * x    or    y_i := a_ij * x_j

func SpTriReduce

func SpTriReduce(comm *mpi.Communicator, J *Triplet)

SpTriReduce joins (MPI) parallel triplets to root (Rank == 0) processor.

NOTE: J in root is also joined into Jroot

func SpTriSetDiag

func SpTriSetDiag(a *Triplet, n int, v float64)

SpTriSetDiag sets a (n x n) real triplet with diagonal values 'v'

func TestSolverResidual

func TestSolverResidual(tst *testing.T, a *Matrix, x, b Vector, tolNorm float64)

TestSolverResidual check the residual of a linear system solution

func TestSolverResidualC

func TestSolverResidualC(tst *testing.T, a *MatrixC, x, b VectorC, tolNorm float64)

TestSolverResidualC check the residual of a linear system solution (complex version)

func TestSpSolver

func TestSpSolver(tst *testing.T, solverKind string, symmetric bool, t *Triplet, b, xCorrect Vector,
	tolX, tolRes float64, verbose, bIsDistr bool, comm *mpi.Communicator)

TestSpSolver tests a sparse solver

func TestSpSolverC

func TestSpSolverC(tst *testing.T, solverKind string, symmetric bool, t *TripletC, b, xCorrect VectorC,
	tolX, tolRes float64, verbose, bIsDistr bool, comm *mpi.Communicator)

TestSpSolverC tests a sparse solver (complex version)

func VecAdd

func VecAdd(res Vector, α float64, u Vector, β float64, v Vector)

VecAdd adds the scaled components of two vectors

res := α⋅u + β⋅v   ⇒   result[i] := α⋅u[i] + β⋅v[i]

func VecDot

func VecDot(u, v Vector) (res float64)

VecDot returns the dot product between two vectors:

s := u・v

func VecMaxDiff

func VecMaxDiff(u, v Vector) (maxdiff float64)

VecMaxDiff returns the maximum absolute difference between two vectors

maxdiff = max(|u - v|)

func VecRmsError

func VecRmsError(u, v Vector, a, m float64, s Vector) (rms float64)

VecRmsError returns the scaled root-mean-square of the difference between two vectors with components normalised by a scaling factor

             __________________________
            /     ————              2
           /  1   \    /  error[i]  \
rms =  \  /  ———  /    | —————————— |
        \/    N   ———— \  scale[i]  /

error[i] = |u[i] - v[i]|

scale[i] = a + m*|s[i]|

func VecScaleAbs

func VecScaleAbs(scale Vector, a, m float64, x Vector)

VecScaleAbs creates a "scale" vector using the absolute value of another vector

scale := a + m ⋅ |x|     ⇒      scale[i] := a + m ⋅ |x[i]|

func VecVecTrMul

func VecVecTrMul(a *Matrix, α float64, u, v Vector)

VecVecTrMul returns the matrix = vector-transpose(vector) multiplication (e.g. dyadic product)

a = α⋅u⋅vᵀ    ⇒    aij = α * ui * vj

Types

type CCMatrix

type CCMatrix struct {
	// contains filtered or unexported fields
}

CCMatrix represents a sparse matrix using the so-called "column-compressed format".

func SpAllocMatAddMat

func SpAllocMatAddMat(a, b *CCMatrix) (c *CCMatrix, a2c, b2c []int)

SpAllocMatAddMat allocates a matrix 'c' to hold the result of the addition of 'a' and 'b'. It also allocates the mapping arrays a2c and b2c, where:

a2c maps 'k' in 'a' to 'k' in 'c': len(a2c) = a.nnz
b2c maps 'k' in 'b' to 'k' in 'c': len(b2c) = b.nnz

func (*CCMatrix) Set

func (o *CCMatrix) Set(m, n int, Ap, Ai []int, Ax []float64)

Set sets column-compressed matrix directly

func (*CCMatrix) ToDense

func (o *CCMatrix) ToDense() (res *Matrix)

ToDense converts a column-compressed matrix to dense form

func (*CCMatrix) WriteSmat

func (o *CCMatrix) WriteSmat(dirout, fnkey string, tol float64)

WriteSmat writes a ".smat" file that can be visualised with vismatrix

NOTE: CCMatrix must be used to generate the resulting values because
      duplicates must be added before saving file

dirout -- directory for output. will be created
fnkey  -- filename key (filename without extension). ".smat" will be added
tol    -- tolerance to skip zero values

type CCMatrixC

type CCMatrixC struct {
	// contains filtered or unexported fields
}

CCMatrixC represents a sparse matrix using the so-called "column-compressed format". (complex version)

func (*CCMatrixC) ToDense

func (o *CCMatrixC) ToDense() (res *MatrixC)

ToDense converts a column-compressed matrix (complex) to dense form

func (*CCMatrixC) WriteSmat

func (o *CCMatrixC) WriteSmat(dirout, fnkey string, tol float64)

WriteSmat writes a ".smat" file that can be visualised with vismatrix

NOTE: CCMatrix must be used to generate the resulting values because
      duplicates must be added before saving file

dirout -- directory for output. will be created
fnkey  -- filename key (filename without extension). ".smat" will be added
tol    -- tolerance to skip zero values

func (*CCMatrixC) WriteSmatAbs

func (o *CCMatrixC) WriteSmatAbs(dirout, fnkey string, tol float64)

WriteSmatAbs writes a ".smat" file that can be visualised with vismatrix (abs(complex) version)

NOTE: CCMatrix must be used to generate the resulting values because
      duplicates must be added before saving file

tol -- tolerance to skip zero values

type Equations

type Equations struct {

	// essential
	N    int   // total number of equations
	Nu   int   // number of unknowns (size of u-system)
	Nk   int   // number of known values (size of k-system)
	UtoF []int // reduced u-system to full-system
	FtoU []int // full-system to reduced u-system
	KtoF []int // reduced k-system to full system
	FtoK []int // full-system to reduced k-system

	// convenience
	Auu, Auk, Aku, Akk *Triplet // the partitioned system in sparse format
	Duu, Duk, Dku, Dkk *Matrix  // the partitioned system in dense format
	Bu, Bk, Xu, Xk     Vector   // partitioned rhs and unknowns vector
}

Equations organises the identification numbers (IDs) of equations in a linear system: [A] ⋅ {x} = {b}. Some of the components of the {x} vector may be known in advance—i.e. some {x} components are "prescribed"—therefore the system of equations must be reduced first before its solution. The equations corresponding to the known {x} values are called "known equations" whereas the equations corresponding to unknown {x} values are called "unknown equations".

The right-hand-side vector {b} will also be partitioned into two sets. However, the "unknown equations" part will have known values of {b}. If needed, the other {b} values can be computed from the "known equations".

The structure Equations will then hold the IDs of two sets of equations: "u" -- unknown {x} values with given {b} values "k" -- known {x} values (the corresponding {b} may be post-computed)

In summary:

 * We define the u-reduced system of equations with the unknown {x} (and known {b})
                 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄                       ┄┄┄┄┄┄┄
   i.e. the system that needs to be solved is:  [Auu]⋅{xu} = {bu} - [Auk]⋅{xk}

 * We define the k-reduced system of equations with the known {x} values.
                 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄                       ┄┄┄┄┄

 * We call the system [A] ⋅ {x} = {b} the "full" system, with all equations.

The "full" linear system is:

                   [A]⋅{x} = {b}   or   [ Auu Auk ]⋅{ xu ? } = { bu ✓ }
                                        [ Aku Akk ] { xk ✓ }   { bk ? }

NOTE: the {bu} part is known and the {bk} can be (post-)computed if needed.

The partitioned system is symbolised as follows:

                              Auu Auk  u─────> unknown
                              Aku Akk  k─────> known
                                u   k
                                │   └────────> known
                                └────────────> unknown

The Equations structure uses arrays to map the indices of equations from the "full"
system to the reduced systems and vice-versa. We call these arrays "maps" but they
are not Go maps; they are simple slices of integers and should give better
performance than maps.

Four "maps" (slices of integers) are built:
 * UtoF -- reduced u-system to full-system
 * FtoU -- full-system to reduced u-system
 * KtoF -- reduced k-system to full-system
 * FtoK -- full-system to reduced k-system

EXAMPLE:

 N  = 9          ⇒  total number of equations
 kx = [0  3  6]  ⇒  known x-components (i.e. "prescribed" equations)

   0  1  2  3  4  5  6  7  8                  0   1  2   3   4  5   6   7  8
 0 +--------+--------+------ 0  ◀ known ▶  0 [kk] ku ku [kk] ku ku [kk] ku ku 0
 1 |        |        |       1             1  uk  ○  ○   uk  ○  ○   uk  ○  ○  1
 2 |        |        |       2             2  uk  ○  ○   uk  ○  ○   uk  ○  ○  2
 3 +--------+--------+------ 3  ◀ known ▶  3 [kk] ku ku [kk] ku ku [kk] ku ku 3
 4 |        |        |       4             4  uk  ○  ○   uk  ○  ○   uk  ○  ○  4
 5 |        |        |       5             5  uk  ○  ○   uk  ○  ○   uk  ○  ○  5
 6 +--------+--------+------ 6  ◀ known ▶  6 [kk] ku ku [kk] ku ku [kk] ku ku 6
 7 |        |        |       7             7  uk  ○  ○   uk  ○  ○   uk  ○  ○  7
 8 |        |        |       8             8  uk  ○  ○   uk  ○  ○   uk  ○  ○  8
   0  1  2  3  4  5  6  7  8                  0   1  2   3   4  5   6   7  8
   ▲        ▲        ▲
 known    known    known                             ○ means uu equations

 Nu = 6 => number of "unknown equations"
 Nk = 3 => number of "known equations"
 Nu + Nk = N

 reduced:0  1  2  3  4  5              Example:
 UtoF = [1  2  4  5  7  8]           ⇒ UtoF[3] returns equation # 5 of full system

         0  1  2  3  4  5  6  7  8
 FtoU = [   0  1     2  3     4  5]  ⇒ FtoU[5] returns equation # 3 of reduced system
        -1       -1       -1         ⇒ -1 indicates 'value not set'

 reduced:0  1  2
 KtoF = [0  3  6]                    ⇒ KtoF[1] returns equation # 3 of full system

         0  1  2  3  4  5  6  7  8
 FtoK = [0        1        2      ]  ⇒ FtoK[3] returns equation # 1 of reduced system
           -1 -1    -1 -1    -1 -1   ⇒ -1 indicates 'value not set'

func NewEquations

func NewEquations(n int, kx []int) (o *Equations)

NewEquations creates a new Equations structure

n  -- total number of equations; i.e. len({x}) in [A]⋅{x}={b}
kx -- known x-components ⇒ "known equations" [may be unsorted]

func (*Equations) Alloc

func (o *Equations) Alloc(nnz []int, kparts, vectors bool)

Alloc allocates the A matrices in triplet format (sparse format)

INPUT:
  nnz -- total number of nonzeros in each part [nnz(Auu), nnz(Auk), nnz(Aku), nnz(Akk)]
         nnz may be nil, in this case, the following values are assumed:
                  nnz(Auu) = Nu ⋅ Nu
                  nnz(Auk) = Nu ⋅ Nk
                  nnz(Aku) = Nk ⋅ Nu
                  nnz(Akk) = Nk ⋅ Nk
         Thus, memory is wasted as the size of a fully dense system is considered.
 kparts -- also allocates Aku and Akk
 vectors -- also allocates the partitioned vectors Bu, Bk, Xu, Xk

OUTPUT:

The partitioned system (Auu, Auk, Aku, Akk) is stored as member of this object

func (*Equations) AllocDense

func (o *Equations) AllocDense(kparts bool)

AllocDense allocates the A matrices in dense format

INPUT:
 kparts -- also allocates Aku and Akk
OUTPUT:
 The partitioned system (Duu, Duk, Dku, Dkk) is stored as member of this object

func (*Equations) GetAmat

func (o *Equations) GetAmat() (A *Triplet)

GetAmat returns the full A matrix (sparse/triplet format) made by Auu, Auk, Aku and Akk (e.g. for debugging)

func (*Equations) Info

func (o *Equations) Info(full bool)

Info prints information about Equations

func (*Equations) JoinVector

func (o *Equations) JoinVector(b, bu, bk Vector)

JoinVector joins uknown with known parts of vector

INPUT:
 bu, bk -- partitioned vectors; e.g. o.Bu, and o.Bk or o.Xu, o.Xk
OUTPUT:
 b -- pre-allocated b vector such that b = join(bu,bk)

func (*Equations) Put

func (o *Equations) Put(I, J int, value float64)

Put puts component into the right place in partitioned Triplet (Auu, Auk, Aku, Akk)

NOTE: (1) I and J are the equation numbers in the FULL system
      (2) Aku and Akk are ignored if the "kparts" have not been allocated

func (*Equations) SetDense

func (o *Equations) SetDense(A *Matrix, kparts bool)

SetDense allocates and sets partitioned system in dense format

kparts -- also computes Aku and Akk

func (*Equations) Solve

func (o *Equations) Solve(solver SparseSolver, t float64, calcXk, calcBu func(I int, t float64) float64)

Solve solves linear system (represented by sparse matrices)

Solve:               {xu} = [Auu]⁻¹ ⋅ ( {bu} - [Auk]⋅{xk} )
and, if Aku != nil:  {bk} = [Aku]⋅{xu} + [Akk]⋅{xk}

Input:
 solver -- a pre-configured SparseSolver
 t      -- [optional] a scalar (e.g. time) to be used with calcXk and calcBu
 calcXk -- [optional] a function to calculate the known values of X
 calcBu -- [optional] a function to calculate the right-hand-side Bu

NOTE: (1) the following must be computed already:
             [Auu], [Auk] (optionally, [Aku] and [Akk] as well)
      (2) if calcXk is nil, the current values in Xk will be used
      (3) if calcBu is nil, the current values in Bu will be used
      (4) on exit, {bu} is the modified value {bu} - [Auk]⋅{xk} if [Auk] == !nil

Instead of providing the functions calcXk and calcBu, the vectors {xk} and {bu} can be
pre-computed. For example, in a FDM grid, the following loops can be used:

      // compute known X values (e.g. Dirichlet boundary conditions)
      for i, I := range KtoF { // i:known, I:full
          xk[i] = dirichlet(node(I), time)
      }

      // compute RHS
      for i, I := range UtoF { // i:unknown, I:full
          bu[i] = source(node(I), time)
      }

func (*Equations) SolveOnce

func (o *Equations) SolveOnce(calcXk, calcBu func(I int, t float64) float64)

SolveOnce solves linear system just once; thus allocating and discarding a linear solver (umfpack) internally. See method Solve() for more details

func (*Equations) SplitVector

func (o *Equations) SplitVector(bu, bk, b Vector)

SplitVector splits full vector b into known and unknown parts

INPUT:
 b -- full b vector. b = join(bu,bk)
OUTPUT:
 bu, bk -- partitioned vectors; e.g. o.Bu, and o.Bk or o.Xu, o.Xk

func (*Equations) Start

func (o *Equations) Start()

Start (re)starts index for inserting items using the Put command

type Matrix

type Matrix struct {
	M, N int       // dimensions
	Data []float64 // data array. column-major => Fortran
}

Matrix implements a column-major representation of a matrix by using a linear array that can be passed to Fortran code

NOTE: the functions related to Matrix do not check for the limits of indices and dimensions.
      Panic may occur then.

Example:
           _      _
          |  0  3  |
      A = |  1  4  |
          |_ 2  5 _|(m x n)

   data[i+j*m] = A[i][j]

func NewMatrix

func NewMatrix(m, n int) (o *Matrix)

NewMatrix allocates a new (empty) Matrix with given (m,n) (row/col sizes)

func NewMatrixDeep2

func NewMatrixDeep2(a [][]float64) (o *Matrix)

NewMatrixDeep2 allocates a new Matrix from given (Deep2) nested slice. NOTE: make sure to have at least 1x1 item

func NewMatrixRaw

func NewMatrixRaw(m, n int, rawdata []float64) (o *Matrix)

NewMatrixRaw creates a new Matrix using given raw data

Input:
  rawdata -- data organized as column-major; e.g. Fortran format
NOTE:
  (1) rawdata is not copied!
  (2) the external slice rawdata should not be changed or deleted

func (*Matrix) Add

func (o *Matrix) Add(i, j int, val float64)

Add adds value to (i,j) location

func (Matrix) Apply

func (o Matrix) Apply(α float64, another *Matrix)

Apply sets this matrix with the scaled components of another matrix

this := α * another   ⇒   this[i] := α * another[i]
NOTE: "another" may be "this"

func (*Matrix) ClearBry

func (o *Matrix) ClearBry(diag float64)

ClearBry clears boundaries

               _       _                          _       _
Example:      |  1 2 3  |                        |  1 0 0  |
          A = |  4 5 6  |  ⇒  clear(1.0)  ⇒  A = |  0 5 0  |
              |_ 7 8 9 _|                        |_ 0 0 1 _|

func (*Matrix) ClearRC

func (o *Matrix) ClearRC(rows, cols []int, diag float64)

ClearRC clear rows and columns and set diagonal components

               _         _                                     _         _
Example:      |  1 2 3 4  |                                   |  1 2 3 4  |
          A = |  5 6 7 8  |  ⇒  clear([1,2], [], 1.0)  ⇒  A = |  0 1 0 0  |
              |_ 4 3 2 1 _|                                   |_ 0 0 1 0 _|

func (*Matrix) Col

func (o *Matrix) Col(j int) Vector

Col access column j of this matrix. No copies are made since the internal data are in col-major format already. NOTE: this method can be used to modify the columns; e.g. with o.Col(0)[0] = 123

func (*Matrix) CopyInto

func (o *Matrix) CopyInto(result *Matrix, α float64)

CopyInto copies the scaled components of this matrix into another one (result)

result := α * this   ⇒   result[ij] := α * this[ij]

func (*Matrix) Det

func (o *Matrix) Det() (det float64)

Det computes the determinant of matrix using the LU factorization

NOTE: this method may fail due to overflow...

func (*Matrix) ExtractCols

func (o *Matrix) ExtractCols(start, endp1 int) (reduced *Matrix)

ExtractCols returns columns from j=start to j=endp1-1

start -- first column
endp1 -- "end-plus-one", the number of the last requested column + 1

func (*Matrix) Fill

func (o *Matrix) Fill(val float64)

Fill fills this matrix with a single number val

aij = val

func (*Matrix) Get

func (o *Matrix) Get(i, j int) float64

Get gets value

func (*Matrix) GetCol

func (o *Matrix) GetCol(j int) (col Vector)

GetCol returns column j of this matrix

func (*Matrix) GetComplex

func (o *Matrix) GetComplex() (b *MatrixC)

GetComplex returns a complex version of this matrix

func (*Matrix) GetCopy

func (o *Matrix) GetCopy() (clone *Matrix)

GetCopy returns a copy of this matrix

func (*Matrix) GetDeep2

func (o *Matrix) GetDeep2() (M [][]float64)

GetDeep2 returns nested slice representation

func (*Matrix) GetRow

func (o *Matrix) GetRow(i int) (row Vector)

GetRow returns row i of this matrix

func (*Matrix) GetTranspose

func (o *Matrix) GetTranspose() (tran *Matrix)

GetTranspose returns the tranpose matrix

func (*Matrix) Largest

func (o *Matrix) Largest(den float64) (largest float64)

Largest returns the largest component |a[ij]| of this matrix, normalised by den

largest := |a[ij]| / den

func (*Matrix) MaxDiff

func (o *Matrix) MaxDiff(another *Matrix) (maxdiff float64)

MaxDiff returns the maximum difference between the components of this and another matrix

func (*Matrix) NormFrob

func (o *Matrix) NormFrob() (nrm float64)

NormFrob returns the Frobenious norm of this matrix

nrm := ‖a‖_F = sqrt(Σ_i Σ_j a[ij]⋅a[ij]) = ‖a‖_2

func (*Matrix) NormInf

func (o *Matrix) NormInf() (nrm float64)

NormInf returns the infinite norm of this matrix

nrm := ‖a‖_∞ = max_i ( Σ_j a[ij] )

func (*Matrix) Print

func (o *Matrix) Print(nfmt string) (l string)

Print prints matrix (without commas or brackets)

func (*Matrix) PrintGo

func (o *Matrix) PrintGo(nfmt string) (l string)

PrintGo prints matrix in Go format

func (*Matrix) PrintPy

func (o *Matrix) PrintPy(nfmt string) (l string)

PrintPy prints matrix in Python format

func (*Matrix) Set

func (o *Matrix) Set(i, j int, val float64)

Set sets value

func (*Matrix) SetCol

func (o *Matrix) SetCol(j int, value float64)

SetCol sets the values of a column j with a single value

func (*Matrix) SetDiag

func (o *Matrix) SetDiag(val float64)

SetDiag sets diagonal matrix with diagonal components equal to val

func (*Matrix) SetFromDeep2

func (o *Matrix) SetFromDeep2(a [][]float64)

SetFromDeep2 sets matrix with data from a nested slice (Deep2) structure

type MatrixC

type MatrixC struct {
	M, N int          // dimensions
	Data []complex128 // data array. column-major => Fortran
}

MatrixC implements a column-major representation of a matrix of complex numbers by using a linear array that can be passed to Fortran code.

NOTE: the functions related to MatrixC do not check for the limits of indices and dimensions.
      Panic may occur then.

Example:
           _            _
          |  0+0i  3+3i  |
      A = |  1+1i  4+4i  |
          |_ 2+2i  5+5i _|(m x n)

   data[i+j*m] = A[i][j]

func NewMatrixC

func NewMatrixC(m, n int) (o *MatrixC)

NewMatrixC allocates a new (empty) MatrixC with given (m,n) (row/col sizes)

func NewMatrixDeep2c

func NewMatrixDeep2c(a [][]complex128) (o *MatrixC)

NewMatrixDeep2c allocates a new MatrixC from given (Deep2c) nested slice. NOTE: make sure to have at least 1x1 items

func (*MatrixC) Add

func (o *MatrixC) Add(i, j int, val complex128)

Add adds value to (i,j) location

func (MatrixC) Apply

func (o MatrixC) Apply(α complex128, another *MatrixC)

Apply sets this matrix with the scaled components of another matrix

this := α * another   ⇒   this[i] := α * another[i]
NOTE: "another" may be "this"

func (*MatrixC) Col

func (o *MatrixC) Col(j int) VectorC

Col access column j of this matrix. No copies are made since the internal data are in col-major format already. NOTE: this method can be used to modify the columns; e.g. with o.Col(0)[0] = 123

func (*MatrixC) Fill

func (o *MatrixC) Fill(val complex128)

Fill fills this matrix with a single number val

aij = val

func (*MatrixC) Get

func (o *MatrixC) Get(i, j int) complex128

Get gets value

func (*MatrixC) GetCol

func (o *MatrixC) GetCol(j int) (col VectorC)

GetCol returns column j of this matrix

func (*MatrixC) GetColReal

func (o *MatrixC) GetColReal(j int, checkZeroImag bool) (col Vector)

GetColReal returns column j of this matrix considering that the imaginary part is zero

func (*MatrixC) GetCopy

func (o *MatrixC) GetCopy() (clone *MatrixC)

GetCopy returns a copy of this matrix

func (*MatrixC) GetDeep2

func (o *MatrixC) GetDeep2() (M [][]complex128)

GetDeep2 returns nested slice representation

func (*MatrixC) GetRow

func (o *MatrixC) GetRow(i int) (row VectorC)

GetRow returns row i of this matrix

func (*MatrixC) GetTranspose

func (o *MatrixC) GetTranspose() (tran *MatrixC)

GetTranspose returns the tranpose matrix

func (*MatrixC) Print

func (o *MatrixC) Print(nfmtR, nfmtI string) (l string)

Print prints matrix (without commas or brackets). NOTE: if non-empty, nfmtI must have '+' e.g. %+g

func (*MatrixC) PrintGo

func (o *MatrixC) PrintGo(nfmtR, nfmtI string) (l string)

PrintGo prints matrix in Go format NOTE: if non-empty, nfmtI must have '+' e.g. %+g

func (*MatrixC) PrintPy

func (o *MatrixC) PrintPy(nfmtR, nfmtI string) (l string)

PrintPy prints matrix in Python format NOTE: if non-empty, nfmtI must have '+' e.g. %+g

func (*MatrixC) Set

func (o *MatrixC) Set(i, j int, val complex128)

Set sets value

func (*MatrixC) SetFromDeep2c

func (o *MatrixC) SetFromDeep2c(a [][]complex128)

SetFromDeep2c sets matrix with data from a nested slice (Deep2c) structure

type Mumps

type Mumps struct {
	// contains filtered or unexported fields
}

Mumps wraps the MUMPS solver

func (*Mumps) Fact

func (o *Mumps) Fact()

Fact performs the factorisation

func (*Mumps) Free

func (o *Mumps) Free()

Free clears extra memory allocated by MUMPS

func (*Mumps) Init

func (o *Mumps) Init(t *Triplet, args *SpArgs)

Init initialises mumps for sparse linear systems with real numbers

func (*Mumps) Solve

func (o *Mumps) Solve(x, b Vector, bIsDistr bool)

Solve solves sparse linear systems using MUMPS or MUMPS

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

bIsDistr -- this flag tells that the right-hand-side vector 'b' is distributed.

type MumpsC

type MumpsC struct {
	// contains filtered or unexported fields
}

MumpsC wraps the MUMPS solver (complex version)

func (*MumpsC) Fact

func (o *MumpsC) Fact()

Fact performs the factorisation

func (*MumpsC) Free

func (o *MumpsC) Free()

Free clears extra memory allocated by MUMPS

func (*MumpsC) Init

func (o *MumpsC) Init(t *TripletC, args *SpArgs)

Init initialises mumps for sparse linear systems with real numbers

func (*MumpsC) Solve

func (o *MumpsC) Solve(x, b VectorC, bIsDistr bool)

Solve solves sparse linear systems using MUMPS or MUMPS

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

bIsDistr -- this flag tells that the right-hand-side vector 'b' is distributed.

type SpArgs

type SpArgs struct {
	Symmetric    bool              // indicates symmetric system
	Verbose      bool              // run on Verbose mode
	Ordering     string            // set Ordering type (check MUMPS solver) [may be empty]
	Scaling      string            // set Scaling type (check MUMPS solver) [may be empty]
	Guess        Vector            // initial guess for iterative solvers [may be nil]
	Communicator *mpi.Communicator // MPI communicator for parallel solvers [may be nil]
}

The SpArgs structure holds arguments to configure Solvers

type SparseSolver

type SparseSolver interface {
	Init(t *Triplet, args *SpArgs)
	Free()
	Fact()
	Solve(x, b Vector, bIsDistr bool)
}

SparseSolver solves sparse linear systems using UMFPACK or MUMPS

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

func NewSparseSolver

func NewSparseSolver(kind string) SparseSolver

NewSparseSolver finds a SparseSolver in database or panic

kind -- "umfpack" or "mumps"
NOTE: remember to call Free() to release allocated resources

type SparseSolverC

type SparseSolverC interface {
	Init(t *TripletC, args *SpArgs)
	Free()
	Fact()
	Solve(x, b VectorC, bIsDistr bool)
}

SparseSolverC solves sparse linear systems using UMFPACK or MUMPS (complex version)

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

func NewSparseSolverC

func NewSparseSolverC(kind string) SparseSolverC

NewSparseSolverC finds a SparseSolver in database or panic

NOTE: remember to call Free() to release allocated resources

type Triplet

type Triplet struct {
	// contains filtered or unexported fields
}

Triplet is a simple representation of a sparse matrix, where the indices and values of this matrix are stored directly.

func NewTriplet

func NewTriplet(m, n, max int) (o *Triplet)

NewTriplet returns a new Triplet. This is a wrapper to new(Triplet) followed by Init()

func (*Triplet) Init

func (o *Triplet) Init(m, n, max int)

Init allocates all memory required to hold a sparse matrix in triplet form

func (*Triplet) Len

func (o *Triplet) Len() int

Len returns the number of items just inserted in the triplet

func (*Triplet) Max

func (o *Triplet) Max() int

Max returns the maximum number of items that can be inserted in the triplet

func (*Triplet) Put

func (o *Triplet) Put(i, j int, x float64)

Put inserts an element to a pre-allocated (with Init) triplet matrix

func (*Triplet) PutCCMatAndMatT

func (o *Triplet) PutCCMatAndMatT(a *CCMatrix)

PutCCMatAndMatT adds the content of a compressed-column matrix "a" and its transpose "at" to triplet "o" ex: 0 1 2 3 4 5

[... ... ... a00 a10 ...] 0
[... ... ... a01 a11 ...] 1
[... ... ... a02 a12 ...] 2      [. at  .]
[a00 a01 a02 ... ... ...] 3  =>  [a  .  .]
[a10 a11 a12 ... ... ...] 4      [.  .  .]
[... ... ... ... ... ...] 5

func (*Triplet) PutMatAndMatT

func (o *Triplet) PutMatAndMatT(a *Triplet)

PutMatAndMatT adds the content of a matrix "a" and its transpose "at" to triplet "o" ex: 0 1 2 3 4 5

[... ... ... a00 a10 ...] 0
[... ... ... a01 a11 ...] 1
[... ... ... a02 a12 ...] 2      [. at  .]
[a00 a01 a02 ... ... ...] 3  =>  [a  .  .]
[a10 a11 a12 ... ... ...] 4      [.  .  .]
[... ... ... ... ... ...] 5

func (*Triplet) ReadSmat

func (o *Triplet) ReadSmat(filename string)

ReadSmat reads ".smat" file

m n nnz
 i j x
  ...
 i j x

func (*Triplet) Start

func (o *Triplet) Start()

Start (re)starts index for inserting items using the Put command

func (*Triplet) ToDense

func (o *Triplet) ToDense() (a *Matrix)

ToDense returns the dense matrix corresponding to this Triplet

func (*Triplet) ToMatrix

func (t *Triplet) ToMatrix(a *CCMatrix) *CCMatrix

ToMatrix converts a sparse matrix in triplet form to column-compressed form using Umfpack's routines. "realloc_a" indicates whether the internal "a" matrix must be reallocated or not, for instance, in case the structure of the triplet has changed.

INPUT:
 a -- a previous CCMatrix to be filled in; otherwise, "nil" tells to allocate a new one
OUTPUT:
 the previous "a" matrix or a pointer to a new one

func (*Triplet) WriteSmat

func (o *Triplet) WriteSmat(dirout, fnkey string, tol float64) (cmat *CCMatrix)

WriteSmat writes a ".smat" file that can be visualised with vismatrix

NOTE: this method will create a CCMatrix first because
      duplicates must be added before saving the file

dirout -- directory for output. will be created
fnkey  -- filename key (filename without extension). ".smat" will be added
tol    -- tolerance to skip zero values

type TripletC

type TripletC struct {
	// contains filtered or unexported fields
}

TripletC is a simple representation of a sparse matrix, where the indices and values of this matrix are stored directly. (complex version)

func NewTripletC

func NewTripletC(m, n, max int) (o *TripletC)

NewTripletC returns a new TripletC. This is a wrapper to new(TripletC) followed by Init()

func (*TripletC) Init

func (o *TripletC) Init(m, n, max int)

Init allocates all memory required to hold a sparse matrix in triplet (complex) form

func (*TripletC) Len

func (o *TripletC) Len() int

Len returns the number of items just inserted in the complex triplet

func (*TripletC) Max

func (o *TripletC) Max() int

Max returns the maximum number of items that can be inserted in the complex triplet

func (*TripletC) Put

func (o *TripletC) Put(i, j int, x complex128)

Put inserts an element to a pre-allocated (with Init) triplet (complex) matrix

func (*TripletC) ReadSmat

func (o *TripletC) ReadSmat(filename string)

ReadSmat reads ".smat" file

m n nnz
 i j xReal xImag
      ...
 i j xReal xImag

func (*TripletC) Start

func (o *TripletC) Start()

Start (re)starts index for inserting items using the Put command

func (*TripletC) ToDense

func (o *TripletC) ToDense() (a *MatrixC)

ToDense returns the dense matrix corresponding to this Triplet

func (*TripletC) ToMatrix

func (t *TripletC) ToMatrix(a *CCMatrixC) *CCMatrixC

ToMatrix converts a sparse matrix in triplet form with complex numbers to column-compressed form. "realloc_a" indicates whether the internal "a" matrix must be reallocated or not, for instance, in case the structure of the triplet has changed.

INPUT:
 a -- a previous CCMatrixC to be filled in; otherwise, "nil" tells to allocate a new one
OUTPUT:
 the previous "a" matrix or a pointer to a new one

func (*TripletC) WriteSmat

func (o *TripletC) WriteSmat(dirout, fnkey string, tol float64) (cmat *CCMatrixC)

WriteSmat writes a ".smat" file that can be visualised with vismatrix

NOTE: this method will create a CCMatrixC first because
      duplicates must be added before saving the file

dirout -- directory for output. will be created
fnkey  -- filename key (filename without extension). ".smat" will be added
tol    -- tolerance to skip zero values

type Umfpack

type Umfpack struct {
	// contains filtered or unexported fields
}

Umfpack wraps the UMFPACK solver

func (*Umfpack) Fact

func (o *Umfpack) Fact()

Fact performs the factorisation

func (*Umfpack) Free

func (o *Umfpack) Free()

Free clears extra memory allocated by UMFPACK

func (*Umfpack) Init

func (o *Umfpack) Init(t *Triplet, args *SpArgs)

Init initialises umfpack for sparse linear systems with real numbers

func (*Umfpack) Solve

func (o *Umfpack) Solve(x, b Vector, dummy bool)

Solve solves sparse linear systems using UMFPACK or MUMPS

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

type UmfpackC

type UmfpackC struct {
	// contains filtered or unexported fields
}

UmfpackC wraps the UMFPACK solver (complex version)

func (*UmfpackC) Fact

func (o *UmfpackC) Fact()

Fact performs the factorisation

func (*UmfpackC) Free

func (o *UmfpackC) Free()

Free clears extra memory allocated by UMFPACK

func (*UmfpackC) Init

func (o *UmfpackC) Init(t *TripletC, args *SpArgs)

Init initialises umfpack for sparse linear systems with real numbers

func (*UmfpackC) Solve

func (o *UmfpackC) Solve(x, b VectorC, dummy bool)

Solve solves sparse linear systems using UMFPACK or MUMPS

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

type Vector

type Vector []float64

Vector defines the vector type for real numbers simply as a slice of float64

func NewVector

func NewVector(m int) Vector

NewVector returns a new vector with size m

func NewVectorMapped

func NewVectorMapped(m int, f func(i int) float64) (o Vector)

NewVectorMapped returns a new vector after applying a function over all of its components

new: vi = f(i)

func NewVectorSlice

func NewVectorSlice(v []float64) Vector

NewVectorSlice returns a new vector from given Slice NOTE: This is equivalent to cast a slice to Vector as in:

v := la.Vector([]float64{1,2,3})

func SpSolve

func SpSolve(A *Triplet, b Vector) (x Vector)

SpSolve solves a sparse linear system (using UMFPACK)

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

func (Vector) Accum

func (o Vector) Accum() (sum float64)

Accum sum/accumulates all components in a vector

sum := Σ_i v[i]

func (Vector) Apply

func (o Vector) Apply(α float64, another Vector)

Apply sets this vector with the scaled components of another vector

this := α * another   ⇒   this[i] := α * another[i]
NOTE: "another" may be "this"

func (Vector) ApplyFunc

func (o Vector) ApplyFunc(f func(i int, x float64) float64)

ApplyFunc runs a function over all components of a vector

vi = f(i,vi)

func (Vector) Fill

func (o Vector) Fill(val float64)

Fill fills this vector with a single number val

vi = val

func (Vector) GetCopy

func (o Vector) GetCopy() (clone Vector)

GetCopy returns a copy of this vector

b := a

func (Vector) GetUnit

func (o Vector) GetUnit() (unit Vector)

GetUnit returns the unit vector parallel to this vector

b := a / norm(a)

func (Vector) Largest

func (o Vector) Largest(den float64) (largest float64)

Largest returns the largest component |u[i]| of this vector, normalised by den

largest := |u[i]| / den

func (Vector) Max

func (o Vector) Max() (max float64)

Max returns the maximum component of a vector

func (Vector) Min

func (o Vector) Min() (min float64)

Min returns the minimum component of a vector

func (Vector) MinMax

func (o Vector) MinMax() (min, max float64)

MinMax returns the min and max components of a vector

func (Vector) Norm

func (o Vector) Norm() (nrm float64)

Norm returns the Euclidean norm of a vector:

nrm := ‖v‖

func (Vector) NormDiff

func (o Vector) NormDiff(v Vector) (nrm float64)

NormDiff returns the Euclidean norm of the difference:

nrm := ||u - v||

func (Vector) Rms

func (o Vector) Rms() (rms float64)

Rms returns the root-mean-square of this vector

             ________________________
            /     ————            2
           /  1   \    /         \
rms =  \  /  ———  /    | this[i] |
        \/    N   ———— \         /

type VectorC

type VectorC []complex128

VectorC defines the vector type for complex numbers simply as a slice of complex128

func NewVectorC

func NewVectorC(m int) VectorC

NewVectorC returns a new vector with size m

func NewVectorMappedC

func NewVectorMappedC(m int, f func(i int) complex128) (o VectorC)

NewVectorMappedC returns a new vector after applying a function over all of its components

new: vi = f(i)

func SpSolveC

func SpSolveC(A *TripletC, b VectorC) (x VectorC)

SpSolveC solves a sparse linear system (using UMFPACK) (complex version)

Given:  A ⋅ x = b    find x   such that   x = A⁻¹ ⋅ b

func (VectorC) Apply

func (o VectorC) Apply(α complex128, another VectorC)

Apply sets this vector with the scaled components of another vector

this := α * another   ⇒   this[i] := α * another[i]
NOTE: "another" may be "this"

func (VectorC) ApplyFunc

func (o VectorC) ApplyFunc(f func(i int, x complex128) complex128)

ApplyFunc runs a function over all components of a vector

vi = f(i,vi)

func (VectorC) Fill

func (o VectorC) Fill(s complex128)

Fill fills a vector with a single number s:

v := s*ones(len(v))  =>  vi = s

func (VectorC) GetCopy

func (o VectorC) GetCopy() (clone VectorC)

GetCopy returns a copy of this vector

b := a

func (VectorC) JoinRealImag

func (o VectorC) JoinRealImag(xR, xI Vector)

JoinRealImag sets this vector with two vectors having the real and imaginary parts

this := complex(xR, xI)
NOTE: len(xR) == len(xI) == len(this)

func (VectorC) MaxDiff

func (o VectorC) MaxDiff(b VectorC) float64

MaxDiff returns the maximum difference between the components of two vectors

func (VectorC) Norm

func (o VectorC) Norm() (nrm complex128)

Norm returns the Euclidean norm of a vector:

nrm := ‖v‖

func (VectorC) SplitRealImag

func (o VectorC) SplitRealImag(xR, xI Vector)

SplitRealImag splits this vector into two vectors with the real and imaginary parts

xR := real(this)
xI := imag(this)
NOTE: xR and xI must be pre-allocated with length = len(this)

Directories

Path Synopsis
Package data wraps test_mat from https://people.sc.fsu.edu/~jburkardt/f_src/test_mat/test_mat.html This package should be used in tests only
Package data wraps test_mat from https://people.sc.fsu.edu/~jburkardt/f_src/test_mat/test_mat.html This package should be used in tests only
Package mkl implements lower-level linear algebra routines using MKL for maximum efficiency.
Package mkl implements lower-level linear algebra routines using MKL for maximum efficiency.
Package oblas implements lower-level linear algebra routines using OpenBLAS for maximum efficiency.
Package oblas implements lower-level linear algebra routines using OpenBLAS for maximum efficiency.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL