Documentation ¶
Overview ¶
Package ode implements solvers for ordinary differential equations, including explicit and implicit Runge-Kutta methods; e.g. the fantastic Radau5 method by Hairer, Norsett & Wanner [1, 2].
References: [1] Hairer E, Nørsett SP, Wanner G (1993). Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, Vol. 8, Berlin, Germany, 523 p. [2] Hairer E, Wanner G (1996). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, Vol. 14, Berlin, Germany, 614 p.
Index ¶
- func Dopri5simple(fcn Func, y la.Vector, xf, tol float64)
- func Dopri8simple(fcn Func, y la.Vector, xf, tol float64)
- func Radau5simple(fcn Func, jac JacF, y la.Vector, xf, tol float64)
- func Solve(method string, fcn Func, jac JacF, y la.Vector, xf, dx, atol, rtol float64, ...) (stat *Stat, out *Output)
- type BwEuler
- func (o *BwEuler) Accept(y0 la.Vector, x0 float64) (dxnew float64)
- func (o *BwEuler) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)
- func (o *BwEuler) Free()
- func (o *BwEuler) Info() (fixedOnly, implicit bool, nstages int)
- func (o *BwEuler) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, ...)
- func (o *BwEuler) Reject() (dxnew float64)
- func (o *BwEuler) Step(x0 float64, y0 la.Vector)
- type Config
- func (o *Config) GetSpArgs() *la.SpArgs
- func (o *Config) SetDenseOut(save bool, dxOut, xf float64, out DenseOutF)
- func (o *Config) SetFixedH(dxApprox, xf float64)
- func (o *Config) SetStepOut(save bool, out StepOutF)
- func (o *Config) SetTol(atolAndRtol float64)
- func (o *Config) SetTols(atol, rtol float64)
- type DenseOutF
- type ExplicitRK
- func (o *ExplicitRK) Accept(y0 la.Vector, x0 float64) (dxnew float64)
- func (o *ExplicitRK) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)
- func (o *ExplicitRK) Free()
- func (o *ExplicitRK) Info() (fixedOnly, implicit bool, nstages int)
- func (o *ExplicitRK) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, ...)
- func (o *ExplicitRK) Reject() (dxnew float64)
- func (o *ExplicitRK) Step(xa float64, ya la.Vector)
- type Func
- type FwEuler
- func (o *FwEuler) Accept(y0 la.Vector, x0 float64) (dxnew float64)
- func (o *FwEuler) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)
- func (o *FwEuler) Free()
- func (o *FwEuler) Info() (fixedOnly, implicit bool, nstages int)
- func (o *FwEuler) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, ...)
- func (o *FwEuler) Reject() (dxnew float64)
- func (o *FwEuler) Step(x0 float64, y0 la.Vector)
- type JacF
- type Output
- func (o *Output) GetDenseS() (S []int)
- func (o *Output) GetDenseX() (X []float64)
- func (o *Output) GetDenseY(i int) (Y []float64)
- func (o *Output) GetDenseYtable() (Y [][]float64)
- func (o *Output) GetDenseYtableT() (Y [][]float64)
- func (o *Output) GetStepH() (X []float64)
- func (o *Output) GetStepRs() (X []float64)
- func (o *Output) GetStepX() (X []float64)
- func (o *Output) GetStepY(i int) (Y []float64)
- func (o *Output) GetStepYtable() (Y [][]float64)
- func (o *Output) GetStepYtableT() (Y [][]float64)
- type Problem
- func ProbArenstorf() (o *Problem)
- func ProbHwAmplifier() (o *Problem)
- func ProbHwEq11() (o *Problem)
- func ProbRobertson() (o *Problem)
- func ProbSimpleNdim2() (o *Problem)
- func ProbSimpleNdim4a() (o *Problem)
- func ProbSimpleNdim4b() (o *Problem)
- func ProbVanDerPol(eps float64, stationary bool) (o *Problem)
- func (o *Problem) CalcYana(idxY int, x float64) float64
- func (o *Problem) ConvergenceTest(tst *testing.T, dxmin, dxmax float64, ndx int, yExact la.Vector, ...)
- func (o *Problem) Plot(label string, idxY int, out *Output, npts int, withAna bool, ...)
- func (o *Problem) Solve(method string, fixedStp, numJac bool) (y la.Vector, stat *Stat, out *Output)
- type Radau5
- func (o *Radau5) Accept(y0 la.Vector, x0 float64) (dxnew float64)
- func (o *Radau5) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)
- func (o *Radau5) Free()
- func (o *Radau5) Info() (fixedOnly, implicit bool, nstages int)
- func (o *Radau5) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, ...)
- func (o *Radau5) Reject() (dxnew float64)
- func (o *Radau5) Step(x0 float64, y0 la.Vector)
- type Solver
- type Stat
- type StepOutF
- type YanaF
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Dopri5simple ¶
Dopri5simple solves ODE using DoPri5 method without options for saving results and others
func Dopri8simple ¶
Dopri8simple solves ODE using DoPri8 method without options for saving results and others
func Radau5simple ¶
Radau5simple solves ODE using Radau5 method without options for saving results and others
func Solve ¶
func Solve(method string, fcn Func, jac JacF, y la.Vector, xf, dx, atol, rtol float64, numJac, fixedStep, saveStep, saveDense bool) (stat *Stat, out *Output)
Solve solves ODE problem using standard parameters
INPUT: method -- the method fcn -- function d{y}/dx := {f}(h=dx, x, {y}) jac -- Jacobian function d{f}/d{y} := [J](h=dx, x, {y}) [may be nil] y -- current {y} @ x=0 xf -- final x dx -- stepsize. [may be used for dense output] atol -- absolute tolerance; use 0 for default [default = 1e-4] (for fixedStp=false) rtol -- relative tolerance; use 0 for default [default = 1e-4] (for fixedStp=false) numJac -- use numerical Jacobian if if jac is non nil fixedStep -- fixed steps saveStep -- save steps saveDense -- save many steps (dense output) [using dx] OUTPUT: y -- modified y vector with final {y} stat -- statistics out -- output with all steps results with save==true
Types ¶
type BwEuler ¶
type BwEuler struct {
// contains filtered or unexported fields
}
BwEuler implements the (implicit) Backward Euler method
type Config ¶
type Config struct { // parameters Hmin float64 // minimum H allowed IniH float64 // initial H NmaxIt int // max num iterations (allowed) NmaxSS int // max num substeps Mmin float64 // min step multiplier Mmax float64 // max step multiplier Mfac float64 // step multiplier factor MfirstRej float64 // coefficient to multiply stepsize if first step is rejected [0 ⇒ use dxnew] PredCtrl bool // use Gustafsson's predictive controller Eps float64 // smallest number satisfying 1.0 + ϵ > 1.0 ThetaMax float64 // max theta to decide whether the Jacobian should be recomputed or not C1h float64 // c1 of HW-VII p124 => min ratio to retain previous h C2h float64 // c2 of HW-VII p124 => max ratio to retain previous h LerrStrat int // strategy to select local error computation method GoChan bool // allow use of go channels (threaded); e.g. to solve R and C systems concurrently CteTg bool // use constant tangent (Jacobian) in BwEuler UseRmsNorm bool // use RMS norm instead of Euclidean in BwEuler Verbose bool // show messages, e.g. during iterations ZeroTrial bool // always start iterations with zero trial values (instead of collocation interpolation) StabBeta float64 // Lund stabilisation coefficient β // stiffness detection StiffNstp int // number of steps to check stiff situation. 0 ⇒ no check. [default = 1] StiffRsMax float64 // maximum value of ρs [default = 0.5] StiffNyes int // number of "yes" stiff steps allowed [default = 15] StiffNnot int // number of "not" stiff steps to disregard stiffness [default = 6] // linear solver Symmetric bool // assume symmetric matrix LsVerbose bool // show linear solver messages Ordering string // ordering for linear solver Scaling string // scaling for linear solver // contains filtered or unexported fields }
Config holds configuration parameters for the ODE solver
func NewConfig ¶
func NewConfig(method string, lsKind string, comm *mpi.Communicator) (o *Config)
NewConfig returns a new [default] set of configuration parameters
method -- the ODE method: e.g. fweuler, bweuler, radau5, moeuler, dopri5 comm -- communicator for the linear solver [may be nil] lsKind -- kind of linear solver: "umfpack" or "mumps" [may be empty] NOTE: (1) if comm == nil, the linear solver will be "umfpack" by default (2) if comm != nil and comm.Size() == 1, you can use either "umfpack" or "mumps" (3) if comm != nil and comm.Size() > 1, the linear solver will be set to "mumps" automatically
func (*Config) SetDenseOut ¶
SetDenseOut activates dense output
save -- save all values out -- function to be during dense output [may be nil]
func (*Config) SetFixedH ¶
SetFixedH calculates the number of steps, the exact stepsize h, and set to use fixed stepsize
func (*Config) SetStepOut ¶
SetStepOut activates output of (variable) steps
save -- save all values out -- function to be during step output [may be nil]
type DenseOutF ¶
DenseOutF defines a function to produce a dense output (i.e. many equally spaced points, regardless of the actual stepsize)
INPUT: istep -- index of step (0 is the very first output whereas 1 is the first accepted step) h -- best (current) h x -- current (just updated) x y -- current (just updated) y xout -- selected x to produce an output yout -- y values computed @ xout OUTPUT: stop -- stop simulation (nicely)
type ExplicitRK ¶
type ExplicitRK struct { // constants FSAL bool // can use previous ks to compute k0; i.e. k0 := ks{previous]. first same as last [1, page 167] Embedded bool // has embedded error estimator A [][]float64 // A coefficients B []float64 // B coefficients Be []float64 // B coefficients [may be nil, e.g. if FSAL = false] C []float64 // C coefficients E []float64 // error coefficients. difference between B and Be: e = b - be (if be is not nil) Nstg int // number of stages = len(A) = len(B) = len(C) P int // order of y1 (corresponding to b) Q int // order of error estimator (embedded only); e.g. DoPri5(4) ⇒ q = 4 (=min(order(y1),order(y1bar)) Ad [][]float64 // A coefficients for dense output Cd []float64 // C coefficients for dense output D [][]float64 // dense output coefficients. [may be nil] // contains filtered or unexported fields }
ExplicitRK implements explicit Runge-Kutta methods
The methods available are: moeuler -- 2(1) Modified-Euler 2(1) ⇒ q = 1 rk2 -- 2 Runge, order 2 (mid-point). page 135 of [1] rk3 -- 3 Runge, order 3. page 135 of [1] heun3 -- 3 Heun, order 3. page 135 of [1] rk4 -- 4 "The" Runge-Kutta method. page 138 of [1] rk4-3/8 -- 4 Runge-Kutta method: 3/8-Rule. page 138 of [1] merson4 -- 4 Merson 4("5") method. "5" means that the order 5 is for linear equations with constant coefficients; otherwise the method is of order3. page 167 of [1] zonneveld4 -- 4 Zonneveld 4(3). page 167 of [1] fehlberg4 -- 4(5) Fehlberg 4(5) ⇒ q = 4 dopri5 -- 5(4) Dormand-Prince 5(4) ⇒ q = 4 verner6 -- 6(5) Verner 6(5) ⇒ q = 5 fehlberg7 -- 7(8) Fehlberg 7(8) ⇒ q = 7 dopri8 -- 8(5,3) Dormand-Prince 8 order with 5,3 estimator where p(q) means method of p-order with embedded estimator of q-order References: [1] E. Hairer, S. P. Nørsett, G. Wanner (2008) Solving Ordinary Differential Equations I. Nonstiff Problems. Second Revised Edition. Corrected 3rd printing 2008. Springer Series in Computational Mathematics ISSN 0179-3632, 528p NOTE: (1) Fehlberg's methods give identically zero error estimates for quadrature problems y'=f(x); see page 180 of [1]
func (*ExplicitRK) Accept ¶
func (o *ExplicitRK) Accept(y0 la.Vector, x0 float64) (dxnew float64)
Accept accepts update and computes next stepsize
func (*ExplicitRK) Info ¶
func (o *ExplicitRK) Info() (fixedOnly, implicit bool, nstages int)
Info returns information about this method
func (*ExplicitRK) Init ¶
func (o *ExplicitRK) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, M *la.Triplet)
Init initialises structure
func (*ExplicitRK) Reject ¶
func (o *ExplicitRK) Reject() (dxnew float64)
Reject processes step rejection and computes next stepsize
type Func ¶
Func defines the main function d{y}/dx = {f}(x, {y})
Here, the "main" function receives the stepsize h as well, i.e. d{y}/dx := {f}(h=dx, x, {y}) INPUT: h -- current stepsize = dx x -- current x y -- current {y} OUTPUT: f -- {f}(h, x, {y})
type FwEuler ¶
type FwEuler struct {
// contains filtered or unexported fields
}
FwEuler implements the (explicit) Forward Euler method
type JacF ¶
JacF defines the Jacobian matrix of Func
Here, the Jacobian function receives the stepsize h as well, i.e. d{f}/d{y} := [J](h=dx, x, {y}) INPUT: h -- current stepsize = dx x -- current x y -- current {y} OUTPUT: dfdy -- Jacobian matrix d{f}/d{y} := [J](h=dx, x, {y})
type Output ¶
type Output struct { // discrete output at accepted steps StepIdx int // current index in Xvalues and Yvalues == last output StepRS []float64 // ρ{stiffness} ratio [IdxSave] StepH []float64 // h values [IdxSave] StepX []float64 // X values [IdxSave] StepY []la.Vector // Y values [IdxSave][ndim] // dense output DenseIdx int // current index in DenseS, DenseX, and DenseY arrays DenseS []int // index of step DenseX []float64 // X values during dense output [DenseIdx] DenseY []la.Vector // Y values during dense output [DenseIdx][ndim] // contains filtered or unexported fields }
Output holds output data (prepared by Solver)
func (*Output) GetDenseY ¶
GetDenseY extracts the y[i] values for all output times from the dense output data
i -- index of y component use to plot time series; e.g.: plt.Plot(o.GetDenseX(), o.GetDenseY(0), &plt.A{L:"y0"})
func (*Output) GetDenseYtable ¶
GetDenseYtable returns a table with all y values such that Y[idxOut][dim] from the dense output data
func (*Output) GetDenseYtableT ¶
GetDenseYtableT returns a (transposed) table with all y values such that Y[dim][idxOut] from the dense output data
func (*Output) GetStepRs ¶
GetStepRs returns all ρs (stiffness ratio) values from the (accepted) steps output
func (*Output) GetStepY ¶
GetStepY extracts the y[i] values for all output times from the (accepted) steps output
i -- index of y component use to plot time series; e.g.: plt.Plot(o.GetStepX(), o.GetStepY(0), &plt.A{L:"y0"})
func (*Output) GetStepYtable ¶
GetStepYtable returns a table with all y values such that Y[idxOut][dim] from the (accepted) steps output
func (*Output) GetStepYtableT ¶
GetStepYtableT returns a (transposed) table with all y values such that Y[dim][idxOut] from the (accepted) steps output
type Problem ¶
type Problem struct { Yana YanaF // analytical solution Fcn Func // the function f(x,y) = dy/df Jac JacF // df/dy function Dx float64 // timestep for fixedStep tests Xf float64 // final x Y la.Vector // initial (current) y vector Ndim int // dimension == len(Y) M *la.Triplet // "mass" matrix Ytmp la.Vector // to use with Yana }
Problem defines the data for an ODE problems (e.g. for testing)
func ProbArenstorf ¶
func ProbArenstorf() (o *Problem)
ProbArenstorf returns the Arenstorf orbit problem
func ProbHwAmplifier ¶
func ProbHwAmplifier() (o *Problem)
ProbHwAmplifier returns the Hairer-Wanner VII-p376 Transistor Amplifier NOTE: from E. Hairer's website, not the equation in the book
func ProbHwEq11 ¶
func ProbHwEq11() (o *Problem)
ProbHwEq11 returns the Hairer-Wanner problem from VII-p2 Eq.(1.1)
func ProbRobertson ¶
func ProbRobertson() (o *Problem)
ProbRobertson returns the Robertson's Equation as given in Hairer-Wanner VII-p3 Eq.(1.4)
func ProbSimpleNdim2 ¶
func ProbSimpleNdim2() (o *Problem)
ProbSimpleNdim2 returns a simple 2-dim problem
func ProbSimpleNdim4a ¶
func ProbSimpleNdim4a() (o *Problem)
ProbSimpleNdim4a returns a simple 4-dim problem (a)
func ProbSimpleNdim4b ¶
func ProbSimpleNdim4b() (o *Problem)
ProbSimpleNdim4b returns a simple 4-dim problem (b)
func ProbVanDerPol ¶
ProbVanDerPol returns the Van der Pol' Equation as given in Hairer-Wanner VII-p5 Eq.(1.5)
eps -- ε coefficient; use 0 for default value [=1e-6] stationary -- use eps=1 and compute period and amplitude such that y = [A, 0] is a stationary point
func (*Problem) CalcYana ¶
CalcYana computes component idxY of analytical solution @ x, if available
func (*Problem) ConvergenceTest ¶
func (o *Problem) ConvergenceTest(tst *testing.T, dxmin, dxmax float64, ndx int, yExact la.Vector, methods []string, orders, tols []float64, doPlot bool)
ConvergenceTest runs convergence test
yExact -- is the exact (reference) y @ xf
type Radau5 ¶
type Radau5 struct { // constants C []float64 // c coefficients T [][]float64 // T matrix Ti [][]float64 // inv(T) matrix Alp float64 // alpha-hat Bet float64 // beta-hat Gam float64 // gamma-hat Gam0 float64 // gamma0 coefficient E0 float64 // e0 coefficient E1 float64 // e1 coefficient E2 float64 // e2 coefficient Mu1 float64 // collocation: C1 = (4.D0-SQ6)/10.D0 Mu2 float64 // collocation: C2 = (4.D0+SQ6)/10.D0 Mu3 float64 // collocation: C1M1 = C1-1.D0 Mu4 float64 // collocation: C2M1 = C2-1.D0 Mu5 float64 // collocation: C1MC2 = C1-C2 // contains filtered or unexported fields }
Radau5 implements the Radau5 implicit Runge-Kutta method
func (*Radau5) Init ¶
func (o *Radau5) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, M *la.Triplet)
Init initialises structure
type Solver ¶
type Solver struct { Out *Output // output handler Stat *Stat // statistics FixedOnly bool // method can only be used with fixed steps Implicit bool // method is implicit // contains filtered or unexported fields }
Solver implements an ODE solver
func NewSolver ¶
NewSolver returns a new ODE structure with default values and allocated slices
INPUT: ndim -- problem dimension conf -- configuration parameters out -- output handler [may be nil] fcn -- f(x,y) = dy/dx function jac -- Jacobian: df/dy function [may be nil ⇒ use numerical Jacobian, if necessary] M -- "mass" matrix, such that M ⋅ dy/dx = f(x,y) [may be nil] NOTE: remember to call Free() to release allocated resources (e.g. from the linear solvers)
type Stat ¶
type Stat struct { Nfeval int // number of calls to fcn Njeval int // number of Jacobian matrix evaluations Nsteps int // total number of substeps Naccepted int // number of accepted substeps Nrejected int // number of rejected substeps Ndecomp int // number of matrix decompositions Nlinsol int // number of calls to linsolver Nitmax int // number max of iterations Hopt float64 // optimal step size at the end LsKind string // kind of linear solver used Implicit bool // method is implicit }
Stat holds statistics and output data