ode

package
v1.1.2-0...-291262d Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 5, 2019 License: BSD-3-Clause Imports: 11 Imported by: 0

README

Gosl. ode. Ordinary differential equations

GoDoc

More information is available in the documentation of this package.

Package ode implements solution techniques to ordinary differential equations, such as the Runge-Kutta method. Methods that can handle stiff problems are also available.

Examples

Robertson's Equation

From Hairer-Wanner VII-p3 Eq.(1.4) [2].

Solution of Robertson's equation

Output of Tests

Convergence of explicit Runge-Kutta methods

Source code: t_erk_test.go

References

[1] Hairer E, Norset SP, Wanner G. Solving O. Solving Ordinary Differential Equations I. Nonstiff Problems, Springer. 1987

[2] Hairer E, Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Second Revision Edition. Springer. 1996

Documentation

Overview

Package ode implements solvers for ordinary differential equations, including explicit and implicit Runge-Kutta methods; e.g. the fantastic Radau5 method by Hairer, Norsett & Wanner [1, 2].

References:
  [1] Hairer E, Nørsett SP, Wanner G (1993). Solving Ordinary Differential Equations I:
      Nonstiff Problems. Springer Series in Computational Mathematics, Vol. 8, Berlin,
      Germany, 523 p.
  [2] Hairer E, Wanner G (1996). Solving Ordinary Differential Equations II: Stiff and
      Differential-Algebraic Problems. Springer Series in Computational Mathematics,
      Vol. 14, Berlin, Germany, 614 p.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func Dopri5simple

func Dopri5simple(fcn Func, y la.Vector, xf, tol float64)

Dopri5simple solves ODE using DoPri5 method without options for saving results and others

func Dopri8simple

func Dopri8simple(fcn Func, y la.Vector, xf, tol float64)

Dopri8simple solves ODE using DoPri8 method without options for saving results and others

func Radau5simple

func Radau5simple(fcn Func, jac JacF, y la.Vector, xf, tol float64)

Radau5simple solves ODE using Radau5 method without options for saving results and others

func Solve

func Solve(method string, fcn Func, jac JacF, y la.Vector, xf, dx, atol, rtol float64,
	numJac, fixedStep, saveStep, saveDense bool) (stat *Stat, out *Output)

Solve solves ODE problem using standard parameters

INPUT:
 method    -- the method
 fcn       -- function d{y}/dx := {f}(h=dx, x, {y})
 jac       -- Jacobian function d{f}/d{y} := [J](h=dx, x, {y}) [may be nil]
 y         -- current {y} @ x=0
 xf        -- final x
 dx        -- stepsize. [may be used for dense output]
 atol      -- absolute tolerance; use 0 for default [default = 1e-4] (for fixedStp=false)
 rtol      -- relative tolerance; use 0 for default [default = 1e-4] (for fixedStp=false)
 numJac    -- use numerical Jacobian if if jac is non nil
 fixedStep -- fixed steps
 saveStep  -- save steps
 saveDense -- save many steps (dense output) [using dx]

OUTPUT:
 y    -- modified y vector with final {y}
 stat -- statistics
 out  -- output with all steps results with save==true

Types

type BwEuler

type BwEuler struct {
	// contains filtered or unexported fields
}

BwEuler implements the (implicit) Backward Euler method

func (*BwEuler) Accept

func (o *BwEuler) Accept(y0 la.Vector, x0 float64) (dxnew float64)

Accept accepts update

func (*BwEuler) DenseOut

func (o *BwEuler) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)

DenseOut produces dense output (after Accept)

func (*BwEuler) Free

func (o *BwEuler) Free()

Free releases memory

func (*BwEuler) Info

func (o *BwEuler) Info() (fixedOnly, implicit bool, nstages int)

Info returns information about this method

func (*BwEuler) Init

func (o *BwEuler) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, M *la.Triplet)

Init initialises structure

func (*BwEuler) Reject

func (o *BwEuler) Reject() (dxnew float64)

Reject processes step rejection

func (*BwEuler) Step

func (o *BwEuler) Step(x0 float64, y0 la.Vector)

Step steps update

type Config

type Config struct {

	// parameters
	Hmin       float64 // minimum H allowed
	IniH       float64 // initial H
	NmaxIt     int     // max num iterations (allowed)
	NmaxSS     int     // max num substeps
	Mmin       float64 // min step multiplier
	Mmax       float64 // max step multiplier
	Mfac       float64 // step multiplier factor
	MfirstRej  float64 // coefficient to multiply stepsize if first step is rejected [0 ⇒ use dxnew]
	PredCtrl   bool    // use Gustafsson's predictive controller
	Eps        float64 // smallest number satisfying 1.0 + ϵ > 1.0
	ThetaMax   float64 // max theta to decide whether the Jacobian should be recomputed or not
	C1h        float64 // c1 of HW-VII p124 => min ratio to retain previous h
	C2h        float64 // c2 of HW-VII p124 => max ratio to retain previous h
	LerrStrat  int     // strategy to select local error computation method
	GoChan     bool    // allow use of go channels (threaded); e.g. to solve R and C systems concurrently
	CteTg      bool    // use constant tangent (Jacobian) in BwEuler
	UseRmsNorm bool    // use RMS norm instead of Euclidean in BwEuler
	Verbose    bool    // show messages, e.g. during iterations
	ZeroTrial  bool    // always start iterations with zero trial values (instead of collocation interpolation)
	StabBeta   float64 // Lund stabilisation coefficient β

	// stiffness detection
	StiffNstp  int     // number of steps to check stiff situation. 0 ⇒ no check. [default = 1]
	StiffRsMax float64 // maximum value of ρs [default = 0.5]
	StiffNyes  int     // number of "yes" stiff steps allowed [default = 15]
	StiffNnot  int     // number of "not" stiff steps to disregard stiffness [default = 6]

	// linear solver
	Symmetric bool   // assume symmetric matrix
	LsVerbose bool   // show linear solver messages
	Ordering  string // ordering for linear solver
	Scaling   string // scaling for linear solver
	// contains filtered or unexported fields
}

Config holds configuration parameters for the ODE solver

func NewConfig

func NewConfig(method string, lsKind string, comm *mpi.Communicator) (o *Config)

NewConfig returns a new [default] set of configuration parameters

method -- the ODE method: e.g. fweuler, bweuler, radau5, moeuler, dopri5
comm   -- communicator for the linear solver [may be nil]
lsKind -- kind of linear solver: "umfpack" or "mumps" [may be empty]
NOTE: (1) if comm == nil, the linear solver will be "umfpack" by default
      (2) if comm != nil and comm.Size() == 1, you can use either "umfpack" or "mumps"
      (3) if comm != nil and comm.Size() > 1, the linear solver will be set to "mumps" automatically

func (*Config) GetSpArgs

func (o *Config) GetSpArgs() *la.SpArgs

GetSpArgs returns arguments for sparse solvers

func (*Config) SetDenseOut

func (o *Config) SetDenseOut(save bool, dxOut, xf float64, out DenseOutF)

SetDenseOut activates dense output

save -- save all values
out  -- function to be during dense output [may be nil]

func (*Config) SetFixedH

func (o *Config) SetFixedH(dxApprox, xf float64)

SetFixedH calculates the number of steps, the exact stepsize h, and set to use fixed stepsize

func (*Config) SetStepOut

func (o *Config) SetStepOut(save bool, out StepOutF)

SetStepOut activates output of (variable) steps

save -- save all values
out  -- function to be during step output [may be nil]

func (*Config) SetTol

func (o *Config) SetTol(atolAndRtol float64)

SetTol sets both tolerances: Atol and Rtol

func (*Config) SetTols

func (o *Config) SetTols(atol, rtol float64)

SetTols sets tolerances according to Hairer and Wanner' suggestions

atol   -- absolute tolerance; use 0 for default [default = 1e-4]
rtol   -- relative tolerance; use 0 for default [default = 1e-4]

type DenseOutF

type DenseOutF func(istep int, h, x float64, y la.Vector, xout float64, yout la.Vector) (stop bool)

DenseOutF defines a function to produce a dense output (i.e. many equally spaced points, regardless of the actual stepsize)

INPUT:
  istep -- index of step (0 is the very first output whereas 1 is the first accepted step)
  h     -- best (current) h
  x     -- current (just updated) x
  y     -- current (just updated) y
  xout  -- selected x to produce an output
  yout  -- y values computed @ xout

OUTPUT:
  stop -- stop simulation (nicely)

type ExplicitRK

type ExplicitRK struct {

	// constants
	FSAL     bool        // can use previous ks to compute k0; i.e. k0 := ks{previous]. first same as last [1, page 167]
	Embedded bool        // has embedded error estimator
	A        [][]float64 // A coefficients
	B        []float64   // B coefficients
	Be       []float64   // B coefficients [may be nil, e.g. if FSAL = false]
	C        []float64   // C coefficients
	E        []float64   // error coefficients. difference between B and Be: e = b - be (if be is not nil)
	Nstg     int         // number of stages = len(A) = len(B) = len(C)
	P        int         // order of y1 (corresponding to b)
	Q        int         // order of error estimator (embedded only); e.g. DoPri5(4) ⇒ q = 4 (=min(order(y1),order(y1bar))
	Ad       [][]float64 // A coefficients for dense output
	Cd       []float64   // C coefficients for dense output
	D        [][]float64 // dense output coefficients. [may be nil]
	// contains filtered or unexported fields
}

ExplicitRK implements explicit Runge-Kutta methods

 The methods available are:
   moeuler    -- 2(1) Modified-Euler 2(1) ⇒ q = 1
   rk2        -- 2 Runge, order 2 (mid-point). page 135 of [1]
   rk3        -- 3 Runge, order 3. page 135 of [1]
   heun3      -- 3 Heun, order 3. page 135 of [1]
   rk4        -- 4 "The" Runge-Kutta method. page 138 of [1]
   rk4-3/8    -- 4 Runge-Kutta method: 3/8-Rule. page 138 of [1]
   merson4    -- 4 Merson 4("5") method. "5" means that the order 5 is for linear equations with constant coefficients; otherwise the method is of order3. page 167 of [1]
   zonneveld4 -- 4 Zonneveld 4(3). page 167 of [1]
   fehlberg4  -- 4(5) Fehlberg 4(5) ⇒ q = 4
   dopri5     -- 5(4) Dormand-Prince 5(4) ⇒ q = 4
   verner6    -- 6(5) Verner 6(5) ⇒ q = 5
   fehlberg7  -- 7(8) Fehlberg 7(8) ⇒ q = 7
   dopri8     -- 8(5,3) Dormand-Prince 8 order with 5,3 estimator
where p(q) means method of p-order with embedded estimator of q-order

References:
  [1] E. Hairer, S. P. Nørsett, G. Wanner (2008) Solving Ordinary Differential Equations I.
      Nonstiff Problems. Second Revised Edition. Corrected 3rd printing 2008. Springer Series
      in Computational Mathematics ISSN 0179-3632, 528p

NOTE: (1) Fehlberg's methods give identically zero error estimates for quadrature problems
          y'=f(x); see page 180 of [1]

func (*ExplicitRK) Accept

func (o *ExplicitRK) Accept(y0 la.Vector, x0 float64) (dxnew float64)

Accept accepts update and computes next stepsize

func (*ExplicitRK) DenseOut

func (o *ExplicitRK) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)

DenseOut produces dense output (after Accept)

func (*ExplicitRK) Free

func (o *ExplicitRK) Free()

Free releases memory

func (*ExplicitRK) Info

func (o *ExplicitRK) Info() (fixedOnly, implicit bool, nstages int)

Info returns information about this method

func (*ExplicitRK) Init

func (o *ExplicitRK) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, M *la.Triplet)

Init initialises structure

func (*ExplicitRK) Reject

func (o *ExplicitRK) Reject() (dxnew float64)

Reject processes step rejection and computes next stepsize

func (*ExplicitRK) Step

func (o *ExplicitRK) Step(xa float64, ya la.Vector)

Step steps update

type Func

type Func func(f la.Vector, h, x float64, y la.Vector)

Func defines the main function d{y}/dx = {f}(x, {y})

Here, the "main" function receives the stepsize h as well, i.e.

  d{y}/dx := {f}(h=dx, x, {y})

INPUT:
  h -- current stepsize = dx
  x -- current x
  y -- current {y}

OUTPUT:
  f -- {f}(h, x, {y})

type FwEuler

type FwEuler struct {
	// contains filtered or unexported fields
}

FwEuler implements the (explicit) Forward Euler method

func (*FwEuler) Accept

func (o *FwEuler) Accept(y0 la.Vector, x0 float64) (dxnew float64)

Accept accepts update

func (*FwEuler) DenseOut

func (o *FwEuler) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)

DenseOut produces dense output (after Accept)

func (*FwEuler) Free

func (o *FwEuler) Free()

Free releases memory

func (*FwEuler) Info

func (o *FwEuler) Info() (fixedOnly, implicit bool, nstages int)

Info returns information about this method

func (*FwEuler) Init

func (o *FwEuler) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, M *la.Triplet)

Init initialises structure

func (*FwEuler) Reject

func (o *FwEuler) Reject() (dxnew float64)

Reject processes step rejection

func (*FwEuler) Step

func (o *FwEuler) Step(x0 float64, y0 la.Vector)

Step steps update

type JacF

type JacF func(dfdy *la.Triplet, h, x float64, y la.Vector)

JacF defines the Jacobian matrix of Func

Here, the Jacobian function receives the stepsize h as well, i.e.

d{f}/d{y} := [J](h=dx, x, {y})

INPUT:
  h -- current stepsize = dx
  x -- current x
  y -- current {y}

OUTPUT:
  dfdy -- Jacobian matrix d{f}/d{y} := [J](h=dx, x, {y})

type Output

type Output struct {

	// discrete output at accepted steps
	StepIdx int         // current index in Xvalues and Yvalues == last output
	StepRS  []float64   // ρ{stiffness} ratio [IdxSave]
	StepH   []float64   // h values [IdxSave]
	StepX   []float64   // X values [IdxSave]
	StepY   []la.Vector // Y values [IdxSave][ndim]

	// dense output
	DenseIdx int         // current index in DenseS, DenseX, and DenseY arrays
	DenseS   []int       // index of step
	DenseX   []float64   // X values during dense output [DenseIdx]
	DenseY   []la.Vector // Y values during dense output [DenseIdx][ndim]
	// contains filtered or unexported fields
}

Output holds output data (prepared by Solver)

func (*Output) GetDenseS

func (o *Output) GetDenseS() (S []int)

GetDenseS returns all s (step-index) values from the dense output data

func (*Output) GetDenseX

func (o *Output) GetDenseX() (X []float64)

GetDenseX returns all x values from the dense output data

func (*Output) GetDenseY

func (o *Output) GetDenseY(i int) (Y []float64)

GetDenseY extracts the y[i] values for all output times from the dense output data

i -- index of y component
use to plot time series; e.g.:
   plt.Plot(o.GetDenseX(), o.GetDenseY(0), &plt.A{L:"y0"})

func (*Output) GetDenseYtable

func (o *Output) GetDenseYtable() (Y [][]float64)

GetDenseYtable returns a table with all y values such that Y[idxOut][dim] from the dense output data

func (*Output) GetDenseYtableT

func (o *Output) GetDenseYtableT() (Y [][]float64)

GetDenseYtableT returns a (transposed) table with all y values such that Y[dim][idxOut] from the dense output data

func (*Output) GetStepH

func (o *Output) GetStepH() (X []float64)

GetStepH returns all h values from the (accepted) steps output

func (*Output) GetStepRs

func (o *Output) GetStepRs() (X []float64)

GetStepRs returns all ρs (stiffness ratio) values from the (accepted) steps output

func (*Output) GetStepX

func (o *Output) GetStepX() (X []float64)

GetStepX returns all x values from the (accepted) steps output

func (*Output) GetStepY

func (o *Output) GetStepY(i int) (Y []float64)

GetStepY extracts the y[i] values for all output times from the (accepted) steps output

i -- index of y component
use to plot time series; e.g.:
   plt.Plot(o.GetStepX(), o.GetStepY(0), &plt.A{L:"y0"})

func (*Output) GetStepYtable

func (o *Output) GetStepYtable() (Y [][]float64)

GetStepYtable returns a table with all y values such that Y[idxOut][dim] from the (accepted) steps output

func (*Output) GetStepYtableT

func (o *Output) GetStepYtableT() (Y [][]float64)

GetStepYtableT returns a (transposed) table with all y values such that Y[dim][idxOut] from the (accepted) steps output

type Problem

type Problem struct {
	Yana YanaF       // analytical solution
	Fcn  Func        // the function f(x,y) = dy/df
	Jac  JacF        // df/dy function
	Dx   float64     // timestep for fixedStep tests
	Xf   float64     // final x
	Y    la.Vector   // initial (current) y vector
	Ndim int         // dimension == len(Y)
	M    *la.Triplet // "mass" matrix
	Ytmp la.Vector   // to use with Yana
}

Problem defines the data for an ODE problems (e.g. for testing)

func ProbArenstorf

func ProbArenstorf() (o *Problem)

ProbArenstorf returns the Arenstorf orbit problem

func ProbHwAmplifier

func ProbHwAmplifier() (o *Problem)

ProbHwAmplifier returns the Hairer-Wanner VII-p376 Transistor Amplifier NOTE: from E. Hairer's website, not the equation in the book

func ProbHwEq11

func ProbHwEq11() (o *Problem)

ProbHwEq11 returns the Hairer-Wanner problem from VII-p2 Eq.(1.1)

func ProbRobertson

func ProbRobertson() (o *Problem)

ProbRobertson returns the Robertson's Equation as given in Hairer-Wanner VII-p3 Eq.(1.4)

func ProbSimpleNdim2

func ProbSimpleNdim2() (o *Problem)

ProbSimpleNdim2 returns a simple 2-dim problem

func ProbSimpleNdim4a

func ProbSimpleNdim4a() (o *Problem)

ProbSimpleNdim4a returns a simple 4-dim problem (a)

func ProbSimpleNdim4b

func ProbSimpleNdim4b() (o *Problem)

ProbSimpleNdim4b returns a simple 4-dim problem (b)

func ProbVanDerPol

func ProbVanDerPol(eps float64, stationary bool) (o *Problem)

ProbVanDerPol returns the Van der Pol' Equation as given in Hairer-Wanner VII-p5 Eq.(1.5)

eps  -- ε coefficient; use 0 for default value [=1e-6]
stationary -- use eps=1 and compute period and amplitude such that
              y = [A, 0] is a stationary point

func (*Problem) CalcYana

func (o *Problem) CalcYana(idxY int, x float64) float64

CalcYana computes component idxY of analytical solution @ x, if available

func (*Problem) ConvergenceTest

func (o *Problem) ConvergenceTest(tst *testing.T, dxmin, dxmax float64, ndx int, yExact la.Vector,
	methods []string, orders, tols []float64, doPlot bool)

ConvergenceTest runs convergence test

yExact -- is the exact (reference) y @ xf

func (*Problem) Plot

func (o *Problem) Plot(label string, idxY int, out *Output, npts int, withAna bool, argsAna, argsNum *plt.A)

Plot plots Y[i] versus x series

func (*Problem) Solve

func (o *Problem) Solve(method string, fixedStp, numJac bool) (y la.Vector, stat *Stat, out *Output)

Solve solves ODE problem using standard parameters NOTE: this solver doesn't change o.Y

type Radau5

type Radau5 struct {

	// constants
	C    []float64   // c coefficients
	T    [][]float64 // T matrix
	Ti   [][]float64 // inv(T) matrix
	Alp  float64     // alpha-hat
	Bet  float64     // beta-hat
	Gam  float64     // gamma-hat
	Gam0 float64     // gamma0 coefficient
	E0   float64     // e0 coefficient
	E1   float64     // e1 coefficient
	E2   float64     // e2 coefficient
	Mu1  float64     // collocation: C1    = (4.D0-SQ6)/10.D0
	Mu2  float64     // collocation: C2    = (4.D0+SQ6)/10.D0
	Mu3  float64     // collocation: C1M1  = C1-1.D0
	Mu4  float64     // collocation: C2M1  = C2-1.D0
	Mu5  float64     // collocation: C1MC2 = C1-C2
	// contains filtered or unexported fields
}

Radau5 implements the Radau5 implicit Runge-Kutta method

func (*Radau5) Accept

func (o *Radau5) Accept(y0 la.Vector, x0 float64) (dxnew float64)

Accept accepts update and computes next stepsize

func (*Radau5) DenseOut

func (o *Radau5) DenseOut(yout la.Vector, h, x float64, y la.Vector, xout float64)

DenseOut produces dense output (after Accept)

func (*Radau5) Free

func (o *Radau5) Free()

Free releases memory

func (*Radau5) Info

func (o *Radau5) Info() (fixedOnly, implicit bool, nstages int)

Info returns information about this method

func (*Radau5) Init

func (o *Radau5) Init(ndim int, conf *Config, work *rkwork, stat *Stat, fcn Func, jac JacF, M *la.Triplet)

Init initialises structure

func (*Radau5) Reject

func (o *Radau5) Reject() (dxnew float64)

Reject processes step rejection and computes next stepsize

func (*Radau5) Step

func (o *Radau5) Step(x0 float64, y0 la.Vector)

Step steps update

type Solver

type Solver struct {
	Out  *Output // output handler
	Stat *Stat   // statistics

	FixedOnly bool // method can only be used with fixed steps
	Implicit  bool // method is implicit
	// contains filtered or unexported fields
}

Solver implements an ODE solver

func NewSolver

func NewSolver(ndim int, conf *Config, fcn Func, jac JacF, M *la.Triplet) (o *Solver)

NewSolver returns a new ODE structure with default values and allocated slices

INPUT:
  ndim -- problem dimension
  conf -- configuration parameters
  out  -- output handler [may be nil]
  fcn  -- f(x,y) = dy/dx function
  jac  -- Jacobian: df/dy function [may be nil ⇒ use numerical Jacobian, if necessary]
  M    -- "mass" matrix, such that M ⋅ dy/dx = f(x,y) [may be nil]

NOTE: remember to call Free() to release allocated resources (e.g. from the linear solvers)

func (*Solver) Free

func (o *Solver) Free()

Free releases allocated memory (e.g. by the linear solvers)

func (*Solver) Solve

func (o *Solver) Solve(y la.Vector, x, xf float64)

Solve solves dy/dx = f(x,y) from x to xf with initial y given in y

type Stat

type Stat struct {
	Nfeval    int     // number of calls to fcn
	Njeval    int     // number of Jacobian matrix evaluations
	Nsteps    int     // total number of substeps
	Naccepted int     // number of accepted substeps
	Nrejected int     // number of rejected substeps
	Ndecomp   int     // number of matrix decompositions
	Nlinsol   int     // number of calls to linsolver
	Nitmax    int     // number max of iterations
	Hopt      float64 // optimal step size at the end
	LsKind    string  // kind of linear solver used
	Implicit  bool    // method is implicit
}

Stat holds statistics and output data

func NewStat

func NewStat(lskind string, implicit bool) (o *Stat)

NewStat returns a new structure

func (*Stat) Print

func (o *Stat) Print(extra bool)

Print prints information about the solution process

func (*Stat) Reset

func (o *Stat) Reset()

Reset initialises Stat

type StepOutF

type StepOutF func(istep int, h, x float64, y la.Vector) (stop bool)

StepOutF defines a callback function to be called when a step is accepted

INPUT:
  istep -- index of step (0 is the very first output whereas 1 is the first accepted step)
  h     -- stepsize = dx
  x     -- scalar variable
  y     -- vector variable

OUTPUT:
  stop -- stop simulation (nicely)

type YanaF

type YanaF func(res []float64, x float64)

YanaF defines a function to be used when computing analytical solutions

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL