Documentation ¶
Overview ¶
Package protobuf implements Protocol Buffers reflectively using Go types to define message formats. This approach provides convenience similar to Gob encoding, but with a widely-used and language-neutral wire format. For general information on Protocol buffers see http://protobuf.googlecode.com.
In contrast with goprotobuf, this package does not require users to write or compile .proto files; you just define the message formats you want as Go struct types. Consider for example this example message format definition from the Protocol Buffers overview:
message Person { required string name = 1; required int32 id = 2; optional string email = 3; enum PhoneType { MOBILE = 0; HOME = 1; WORK = 2; } message PhoneNumber { required string number = 1; optional PhoneType type = 2; } repeated PhoneNumber phone = 4; }
The following Go type and const definitions express exactly the same format, for purposes of encoding and decoding with this protobuf package:
type Person struct { Name string Id int32 Email *string Phone []PhoneNumber } type PhoneType uint32 const ( MOBILE PhoneType = iota HOME WORK ) type PhoneNumber struct { Number string Type *PhoneType }
To encode a message, you simply call the Encode() function with a pointer to the struct you wish to encode, and Encode() returns a []byte slice containing the protobuf-encoded struct:
person := Person{...} buf := Encode(&person) output.Write(buf)
To decode an encoded message, simply call Decode() on the byte-slice:
err := Decode(buf,&person,nil) if err != nil { panic("Decode failed: "+err.Error()) }
If you want to interoperate with code in other languages using the same message formats, you may of course still end up writing .proto files for the code in those other languages. However, defining message formats with native Go types enables these types to be tailored to the code using them without affecting wire compatibility, such as by attaching useful methods to these struct types. The translation between a Go struct definition and a basic Protocol Buffers message format definition is straightforward; the rules are as follows.
A message definition in a .proto file translates to a Go struct, whose fields are implicitly assigned consecutive numbers starting from 1. If you need to leave gaps in the field number sequence (e.g., to delete an obsolete field without breaking wire compatibility), then you can skip that field number using a blank Go field, like this:
type Padded struct { Field1 string // = 1 _ struct{} // = 2 (unused field number) Field2 int32 // = 3 }
A 'required' protobuf field translates to a plain field of a corresponding type in the Go struct. The following table summarizes the correspondence between .proto definition types and Go field types:
Protobuf Go -------- -- bool bool enum Enum int32 uint32 int64 uint64 uint32 uint32 uint64 uint64 sint32 int32 sint64 int64 fixed32 Ufixed32 fixed64 Ufixed64 sfixed32 Sfixed32 sfixed64 Sfixed64 float float32 double float64 string string bytes []byte message struct
An 'optional' protobuf field is expressed as a pointer field in Go. Encode() will transmit the field only if the pointer is non-nil. Decode() will instantiate the pointed-to type and fill in the pointer if the field is present in the message being decoded, leaving the pointer unmodified (usually nil) if the field is not present.
A 'repeated' protobuf field translates to a slice field in Go. Slices of primitive bool, integer, and float types are encoded and decoded in packed format, as if the [packed=true] option was declared for the field in the .proto file.
For flexibility and convenience, struct fields may have interface types, which this package interprets as having dynamic types to be bound at runtime. Encode() follows the interface's implicit pointer and uses reflection to determine the referred-to object's actual type for encoding Decode() takes an optional map of interface types to constructor functions, which it uses to instantiate concrete types for interfaces while decoding. Furthermore, if the instantiated types support the Encoding interface, Encode() and Decode() will invoke the methods of that interface, allowing objects to implement their own custom encoding/decoding methods.
This package does not try to support all possible protobuf formats. It currently does not support nonzero default value declarations for enums, the legacy unpacked formats for repeated numeric fields, messages with extremely sparse field numbering, or other more exotic features like extensions or oneof. If you need to interoperate with existing protobuf code using these features, then you should probably use goprotobuf, at least for those particular message formats.
Another downside of this reflective approach to protobuf implementation is that reflective code is generally less efficient than statically generated code, as gogoprotobuf produces for example. If we decide we want the convenience of format definitions in Go with the runtime performance of static code generation, we could in principle achieve that by adding a "Go-format" message format compiler frontend to goprotobuf or gogoprotobuf - but we leave this as an exercise for the reader.
Example (Protobuf) ¶
This example defines, encodes, and decodes a Person message format equivalent to the example used in the Protocol Buffers overview.
package main import ( "encoding/hex" "fmt" ) // Go-based protobuf definition for the example Person message format type Person struct { Name string // = 1, required Id int32 // = 2, required Email *string // = 3, optional Phone []PhoneNumber // = 4, repeated } type PhoneType uint32 // protobuf enums are uint32 const ( MOBILE PhoneType = iota // = 0 HOME // = 1 WORK // = 2 ) type PhoneNumber struct { Number string // = 1, required Type *PhoneType // = 2, optional } // This example defines, encodes, and decodes a Person message format // equivalent to the example used in the Protocol Buffers overview. func main() { // Create a Person record email := "alice@somewhere" ptype := WORK person := Person{"Alice", 123, &email, []PhoneNumber{PhoneNumber{"111-222-3333", nil}, PhoneNumber{"444-555-6666", &ptype}}} // Encode it buf, err := Encode(&person) if err != nil { panic("Encode failed: " + err.Error()) } fmt.Print(hex.Dump(buf)) // Decode it person2 := Person{} if err := Decode(buf, &person2); err != nil { panic("Decode failed") } }
Output: 00000000 0a 05 41 6c 69 63 65 10 f6 01 1a 0f 61 6c 69 63 |..Alice.....alic| 00000010 65 40 73 6f 6d 65 77 68 65 72 65 22 0e 0a 0c 31 |e@somewhere"...1| 00000020 31 31 2d 32 32 32 2d 33 33 33 33 22 10 0a 0c 34 |11-222-3333"...4| 00000030 34 34 2d 35 35 35 2d 36 36 36 36 10 02 |44-555-6666..|
Index ¶
- func Decode(buf []byte, structPtr interface{}) error
- func DecodeWithConstructors(buf []byte, structPtr interface{}, cons Constructors) (err error)
- func Encode(structPtr interface{}) (bytes []byte, err error)
- func GenerateProtobufDefinition(w io.Writer, types []interface{}, enumMap EnumMap, renamer GeneratorNamer) (err error)
- type Constructors
- type DefaultGeneratorNamer
- type Enum
- type EnumMap
- type GeneratorNamer
- type ProtoField
- type Sfixed32
- type Sfixed64
- type TagPrefix
- type Ufixed32
- type Ufixed64
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Decode ¶
Decode a protocol buffer into a Go struct. The caller must pass a pointer to the struct to decode into.
Decode() currently does not explicitly check that all 'required' fields are actually present in the input buffer being decoded. If required fields are missing, then the corresponding fields will be left unmodified, meaning they will take on their default Go zero values if Decode() is passed a fresh struct.
func DecodeWithConstructors ¶
func DecodeWithConstructors(buf []byte, structPtr interface{}, cons Constructors) (err error)
DecodeWithConstructors is like Decode, but you can pass a map of constructors with which to instantiate interface types.
func Encode ¶
Encode a Go struct into protocol buffer format. The caller must pass a pointer to the struct to encode.
Example (Test1) ¶
This example encodes the simple message defined at the start of the Protocol Buffers encoding specification: https://developers.google.com/protocol-buffers/docs/encoding
package main import ( "encoding/hex" "fmt" ) type Test1 struct { A uint32 } // This example encodes the simple message defined at the start of // the Protocol Buffers encoding specification: // https://developers.google.com/protocol-buffers/docs/encoding func main() { t := Test1{150} buf, _ := Encode(&t) fmt.Print(hex.Dump(buf)) }
Output: 00000000 08 96 01 |...|
Example (Test2) ¶
This example encodes the Test2 message illustrating strings in the Protocol Buffers encoding specification.
package main import ( "encoding/hex" "fmt" ) type Test2 struct { _ interface{} // = 1 B string // = 2 } // This example encodes the Test2 message illustrating strings // in the Protocol Buffers encoding specification. func main() { t := Test2{B: "testing"} buf, _ := Encode(&t) fmt.Print(hex.Dump(buf)) }
Output: 00000000 12 07 74 65 73 74 69 6e 67 |..testing|
Example (Test3) ¶
This example encodes the Test3 message illustrating embedded messages in the Protocol Buffers encoding specification.
package main import ( "encoding/hex" "fmt" ) type Test3 struct { _ interface{} // = 1 _ interface{} // = 2 C Test1 // = 3 } // This example encodes the Test3 message illustrating embedded messages // in the Protocol Buffers encoding specification. func main() { t := Test3{C: Test1{150}} buf, _ := Encode(&t) fmt.Print(hex.Dump(buf)) }
Output: 00000000 1a 03 08 96 01 |.....|
func GenerateProtobufDefinition ¶
func GenerateProtobufDefinition(w io.Writer, types []interface{}, enumMap EnumMap, renamer GeneratorNamer) (err error)
GenerateProtobufDefinition generates a .proto file from a list of structs via reflection. fieldNamer is a function that maps ProtoField types to generated protobuf field names.
Types ¶
type Constructors ¶
Constructors represents a map defining how to instantiate any interface types that Decode() might encounter while reading and decoding structured data. The keys are reflect.Type values denoting interface types. The corresponding values are functions expected to instantiate, and initialize as necessary, an appropriate concrete object type supporting that interface. A caller could use this capability to support dynamic instantiation of objects of the concrete type appropriate for a given abstract type.
func (*Constructors) String ¶
func (c *Constructors) String() string
String returns an easy way to visualize what you have in your constructors.
type DefaultGeneratorNamer ¶
type DefaultGeneratorNamer struct{}
DefaultGeneratorNamer renames symbols when mapping from Go to .proto files.
The rules are: - Field names are mapped from SomeFieldName to some_field_name. - Type names are not modified. - Constants are mapped form SomeConstantName to SOME_CONSTANT_NAME.
func (*DefaultGeneratorNamer) ConstName ¶
func (d *DefaultGeneratorNamer) ConstName(name string) string
func (*DefaultGeneratorNamer) FieldName ¶
func (d *DefaultGeneratorNamer) FieldName(f ProtoField) string
func (*DefaultGeneratorNamer) TypeName ¶
func (d *DefaultGeneratorNamer) TypeName(name string) string
type Enum ¶
type Enum uint32
Protobufs enums are transmitted as unsigned varints; using this type alias is optional but recommended to ensure they get the correct type.
type GeneratorNamer ¶
type ProtoField ¶
type ProtoField struct { ID int64 Prefix TagPrefix Name string // If non-empty, tag-defined field name. Index []int Field reflect.StructField }
ProtoField contains cached reflected metadata for struct fields.
func ProtoFields ¶
func ProtoFields(t reflect.Type) []*ProtoField
func (*ProtoField) Required ¶
func (p *ProtoField) Required() bool
type Sfixed32 ¶
type Sfixed32 int32
Message fields declared to have exactly this type will be transmitted as fixed-size 32-bit signed integers.
type Sfixed64 ¶
type Sfixed64 int64
Message fields declared to have exactly this type will be transmitted as fixed-size 64-bit signed integers.