vault_exporter

command module
v0.0.0-...-a0f4a55 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 27, 2019 License: Apache-2.0 Imports: 26 Imported by: 0

README

vault exporter

Go Report Card Build Status Docker Pulls

statsd_exporter receives StatsD-style metrics and exports them as Prometheus metrics.

Overview

With StatsD

To pipe metrics from an existing StatsD environment into Prometheus, configure StatsD's repeater backend to repeat all received metrics to a statsd_exporter process. This exporter translates StatsD metrics to Prometheus metrics via configured mapping rules.

+----------+                         +-------------------+                        +--------------+
|  StatsD  |---(UDP/TCP repeater)--->|  statsd_exporter  |<---(scrape /metrics)---|  Prometheus  |
+----------+                         +-------------------+                        +--------------+
Without StatsD

Since the StatsD exporter uses the same line protocol as StatsD itself, you can also configure your applications to send StatsD metrics directly to the exporter. In that case, you don't need to run a StatsD server anymore.

We recommend this only as an intermediate solution and recommend switching to native Prometheus instrumentation in the long term.

DogStatsD extensions

The exporter will convert DogStatsD-style tags to prometheus labels. See Tags in the DogStatsD documentation for the concept description and Datagram Format for specifics. It boils down to appending |#tag:value,another_tag:another_value to the normal StatsD format. Tags without values (#some_tag) are not supported.

Building and Running

NOTE: Version 0.7.0 switched to the kingpin flags library. With this change, flag behaviour is POSIX-ish:

  • long flags start with two dashes (--version)

  • multiple short flags can be combined (but there currently is only one)

  • flag processing stops at the first --

    $ go build
    $ ./statsd_exporter --help
    usage: statsd_exporter [<flags>]
    
    Flags:
      -h, --help               Show context-sensitive help (also try --help-long and --help-man).
          --web.listen-address=":9102"
                               The address on which to expose the web interface and generated Prometheus metrics.
          --web.telemetry-path="/metrics"
                               Path under which to expose metrics.
          --statsd.listen-udp=":9125"
                               The UDP address on which to receive statsd metric lines. "" disables it.
          --statsd.listen-tcp=":9125"
                               The TCP address on which to receive statsd metric lines. "" disables it.
          --statsd.listen-unixgram=""
                               The Unixgram socket path to receive statsd metric lines in datagram. "" disables it.
          --statsd.unixsocket-mode="755"
                               The permission mode of the unix socket.
          --statsd.mapping-config=STATSD.MAPPING-CONFIG
                               Metric mapping configuration file name.
          --statsd.read-buffer=STATSD.READ-BUFFER
                               Size (in bytes) of the operating system's transmit read buffer associated with the UDP or Unixgram connection. Please make sure the kernel parameters net.core.rmem_max is set to a value greater than the value specified.
          --debug.dump-fsm=""  The path to dump internal FSM generated for glob matching as Dot file.
          --log.level="info"   Only log messages with the given severity or above. Valid levels: [debug, info, warn, error, fatal]
          --log.format="logger:stderr"
                               Set the log target and format. Example: "logger:syslog?appname=bob&local=7" or "logger:stdout?json=true"
          --version            Show application version.
    

Tests

$ go test

Metric Mapping and Configuration

The statsd_exporter can be configured to translate specific dot-separated StatsD metrics into labeled Prometheus metrics via a simple mapping language. The config file is watched for changes and automatically reloaded.

A mapping definition starts with a line matching the StatsD metric in question, with *s acting as wildcards for each dot-separated metric component. The lines following the matching expression must contain one label="value" pair each, and at least define the metric name (label name name). The Prometheus metric is then constructed from these labels. $n-style references in the label value are replaced by the n-th wildcard match in the matching line, starting at 1. Multiple matching definitions are separated by one or more empty lines. The first mapping rule that matches a StatsD metric wins.

Metrics that don't match any mapping in the configuration file are translated into Prometheus metrics without any labels and with any non-alphanumeric characters, including periods, translated into underscores.

In general, the different metric types are translated as follows:

StatsD gauge   -> Prometheus gauge

StatsD counter -> Prometheus counter

StatsD timer   -> Prometheus summary                    <-- indicates timer quantiles
               -> Prometheus counter (suffix `_total`)  <-- indicates total time spent
               -> Prometheus counter (suffix `_count`)  <-- indicates total number of timer events

An example mapping configuration:

mappings:
- match: test.dispatcher.*.*.*
  name: "dispatcher_events_total"
  labels:
    processor: "$1"
    action: "$2"
    outcome: "$3"
    job: "test_dispatcher"
- match: *.signup.*.*
  name: "signup_events_total"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"

This would transform these example StatsD metrics into Prometheus metrics as follows:

test.dispatcher.FooProcessor.send.success
 => dispatcher_events_total{processor="FooProcessor", action="send", outcome="success", job="test_dispatcher"}

foo_product.signup.facebook.failure
 => signup_events_total{provider="facebook", outcome="failure", job="foo_product_server"}

test.web-server.foo.bar
 => test_web_server_foo_bar{}

Each mapping in the configuration file must define a name for the metric. The metric's name can contain $n-style references to be replaced by the n-th wildcard match in the matching line. That allows for dynamic rewrites, such as:

mappings:
- match: test.*.*.counter
  name: "${2}_total"
  labels:
    provider: "$1"

The metric name can also contain references to regex matches. The mapping above could be written as:

mappings:
- match: test\.(\w+)\.(\w+)\.counter
  match_type: regex
  name: "${2}_total"
  labels:
    provider: "$1"

Please note that metrics with the same name must also have the same set of label names.

If the default metric help text is insufficient for your needs you may use the YAML configuration to specify a custom help text for each mapping:

mappings:
- match: http.request.*
  help: "Total number of http requests"
  name: "http_requests_total"
  labels:
    code: "$1"
StatsD timers

By default, statsd timers are represented as a Prometheus summary with quantiles. You may optionally configure the quantiles and acceptable error:

mappings:
- match: test.timing.*.*.*
  timer_type: summary
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"
  quantiles:
    - quantile: 0.99
      error: 0.001
    - quantile: 0.95
      error: 0.01
    - quantile: 0.9
      error: 0.05
    - quantile: 0.5
      error: 0.005

The default quantiles are 0.99, 0.9, and 0.5.

In the configuration, one may also set the timer type to "histogram". The default is "summary" as in the plain text configuration format. For example, to set the timer type for a single metric:

mappings:
- match: test.timing.*.*.*
  timer_type: histogram
  buckets: [ 0.01, 0.025, 0.05, 0.1 ]
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"

Note that timers will be accepted with the ms, h, and d statsd types. The first two are timers and histograms and the d type is for DataDog's "distribution" type. The distribution type is treated identically to timers and histograms.

Regular expression matching

Another capability when using YAML configuration is the ability to define matches using raw regular expressions as opposed to the default globbing style of match. This may allow for pulling structured data from otherwise poorly named statsd metrics AND allow for more precise targetting of match rules. When no match_type paramter is specified the default value of glob will be assumed:

mappings:
- match: (.*)\.(.*)--(.*)\.status\.(.*)\.count
  match_type: regex
  name: "request_total"
  labels:
    hostname: "$1"
    exec: "$2"
    protocol: "$3"
    code: "$4"

Note, that one may also set the histogram buckets. If not set, then the default Prometheus client values are used: [.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10]. +Inf is added automatically.

timer_type is only used when the statsd metric type is a timer. buckets is only used when the statsd metric type is a timerand the timer_type is set to "histogram."

Global defaults

One may also set defaults for the timer type, buckets or quantiles, and match_type. These will be used by all mappings that do not define these.

An option that can only be configured in defaults is glob_disable_ordering, which is false if omitted. By setting this to true, glob match type will not honor the occurance of rules in the mapping rules file and always treat * as lower priority than a general string.

defaults:
  timer_type: histogram
  buckets: [.005, .01, .025, .05, .1, .25, .5, 1, 2.5 ]
  match_type: glob
  glob_disable_ordering: false
  ttl: 0 # metrics do not expire
mappings:
# This will be a histogram using the buckets set in `defaults`.
- match: test.timing.*.*.*
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"
# This will be a summary timer.
- match: other.timing.*.*.*
  timer_type: summary
  name: "other_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server_other"
Choosing between glob or regex match type

Despite from the missing flexibility of using regular expression in mapping and formatting labels, glob matching is optimized to have better performance than regex in certain use cases. In short, glob will have best performance if the rules amount is not so less and captures (using of *) is not to much in a single rule. Whether disabling ordering in glob or not won't have a noticable effect on performance in general use cases. In edge cases like the below however, disabling ordering will be beneficial:

a.*.*.*.*
a.b.*.*.*
a.b.c.*.*
a.b.c.d.*

The reason is that the list assignment of captures (using of *) is the most expensive operation in glob. Honoring ordering will result in up to 10 list assignments, while without ordering it will need only 4 at most.

For details, see pkg/mapper/fsm/README.md. Running go test -bench . in pkg/mapper directory will produce a detailed comparison between the two match type.

drop action

You may also drop metrics by specifying a "drop" action on a match. For example:

mappings:
# This metric would match as normal.
- match: test.timing.*.*.*
  name: "my_timer"
  labels:
    provider: "$2"
    outcome: "$3"
    job: "${1}_server"
# Any metric not matched will be dropped because "." matches all metrics.
- match: .
  match_type: regex
  action: drop
  name: "dropped"

You can drop any metric using the normal match syntax. The default action is "map" which does the normal metrics mapping.

Explicit metric type mapping

StatsD allows emitting of different metric types under the same metric name, but the Prometheus client library can't merge those. For this use-case the mapping definition allows you to specify which metric type to match:

mappings:
- match: test.foo.*
  name: "test_foo"
  match_metric_type: counter
  labels:
    provider: "$1"

Possible values for match_metric_type are gauge, counter and timer.

Mapping cache size and cache replacement polixy

There is a cache used to improve the performance of the metric mapping, that can greatly improvement performance. The cache has a default maximum of 1000 unique statsd metric names -> prometheus metrics mappings that it can store. This maximum can be adjust using the statsd.cache-size flag.

If the maximum is reached, entries are rotated using the least recently used replacement policy.

If you are using this exporter to reduce the cardinality of your data, a high maximum cache size can be a costly use of memory.

Time series expiration

The ttl parameter can be used to define the expiration time for stale metrics. The value is a time duration with valid time units: "ns", "us" (or "µs"), "ms", "s", "m", "h". For example, ttl: 1m20s. 0 value is used to indicate metrics that do not expire.

TTL configuration is stored for each mapped metric name/labels combination whenever new samples are received. This means that you cannot immediately expire a metric only by changing the mapping configuration. At least one sample must be received for updated mappings to take effect.

Using Docker

You can deploy this exporter using the prom/statsd-exporter Docker image.

For example:

docker pull prom/statsd-exporter

docker run -d -p 9102:9102 -p 9125:9125 -p 9125:9125/udp \
        -v $PWD/statsd_mapping.yml:/tmp/statsd_mapping.yml \
        prom/statsd-exporter --statsd.mapping-config=/tmp/statsd_mapping.yml

Documentation

The Go Gopher

There is no documentation for this package.

Directories

Path Synopsis
pkg

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL