apis

package
v0.0.0-...-d1695c4 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 29, 2021 License: Apache-2.0 Imports: 11 Imported by: 0

Documentation

Overview

Package apis is a generated protocol buffer package.

It is generated from these files:

tensorflow_serving/apis/classification.proto
tensorflow_serving/apis/get_model_metadata.proto
tensorflow_serving/apis/inference.proto
tensorflow_serving/apis/input.proto
tensorflow_serving/apis/model.proto
tensorflow_serving/apis/predict.proto
tensorflow_serving/apis/prediction_service.proto
tensorflow_serving/apis/regression.proto

It has these top-level messages:

Class
Classifications
ClassificationResult
ClassificationRequest
ClassificationResponse
SignatureDefMap
GetModelMetadataRequest
GetModelMetadataResponse
InferenceTask
InferenceResult
MultiInferenceRequest
MultiInferenceResponse
ExampleList
ExampleListWithContext
Input
ModelSpec
PredictRequest
PredictResponse
Regression
RegressionResult
RegressionRequest
RegressionResponse

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func RegisterPredictionServiceServer

func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)

Types

type Class

type Class struct {
	// Label or name of the class.
	Label string `protobuf:"bytes,1,opt,name=label" json:"label,omitempty"`
	// Score for this class (e.g., the probability the item belongs to this
	// class).
	Score float32 `protobuf:"fixed32,2,opt,name=score" json:"score,omitempty"`
}

A single class.

func (*Class) Descriptor

func (*Class) Descriptor() ([]byte, []int)

func (*Class) GetLabel

func (m *Class) GetLabel() string

func (*Class) GetScore

func (m *Class) GetScore() float32

func (*Class) ProtoMessage

func (*Class) ProtoMessage()

func (*Class) Reset

func (m *Class) Reset()

func (*Class) String

func (m *Class) String() string

type ClassificationRequest

type ClassificationRequest struct {
	// Model Specification.
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Input data.
	Input *Input `protobuf:"bytes,2,opt,name=input" json:"input,omitempty"`
}

func (*ClassificationRequest) Descriptor

func (*ClassificationRequest) Descriptor() ([]byte, []int)

func (*ClassificationRequest) GetInput

func (m *ClassificationRequest) GetInput() *Input

func (*ClassificationRequest) GetModelSpec

func (m *ClassificationRequest) GetModelSpec() *ModelSpec

func (*ClassificationRequest) ProtoMessage

func (*ClassificationRequest) ProtoMessage()

func (*ClassificationRequest) Reset

func (m *ClassificationRequest) Reset()

func (*ClassificationRequest) String

func (m *ClassificationRequest) String() string

type ClassificationResponse

type ClassificationResponse struct {
	// Result of the classification.
	Result *ClassificationResult `protobuf:"bytes,1,opt,name=result" json:"result,omitempty"`
}

func (*ClassificationResponse) Descriptor

func (*ClassificationResponse) Descriptor() ([]byte, []int)

func (*ClassificationResponse) GetResult

func (*ClassificationResponse) ProtoMessage

func (*ClassificationResponse) ProtoMessage()

func (*ClassificationResponse) Reset

func (m *ClassificationResponse) Reset()

func (*ClassificationResponse) String

func (m *ClassificationResponse) String() string

type ClassificationResult

type ClassificationResult struct {
	Classifications []*Classifications `protobuf:"bytes,1,rep,name=classifications" json:"classifications,omitempty"`
}

Contains one result per input example, in the same order as the input in ClassificationRequest.

func (*ClassificationResult) Descriptor

func (*ClassificationResult) Descriptor() ([]byte, []int)

func (*ClassificationResult) GetClassifications

func (m *ClassificationResult) GetClassifications() []*Classifications

func (*ClassificationResult) ProtoMessage

func (*ClassificationResult) ProtoMessage()

func (*ClassificationResult) Reset

func (m *ClassificationResult) Reset()

func (*ClassificationResult) String

func (m *ClassificationResult) String() string

type Classifications

type Classifications struct {
	Classes []*Class `protobuf:"bytes,1,rep,name=classes" json:"classes,omitempty"`
}

List of classes for a single item (tensorflow.Example).

func (*Classifications) Descriptor

func (*Classifications) Descriptor() ([]byte, []int)

func (*Classifications) GetClasses

func (m *Classifications) GetClasses() []*Class

func (*Classifications) ProtoMessage

func (*Classifications) ProtoMessage()

func (*Classifications) Reset

func (m *Classifications) Reset()

func (*Classifications) String

func (m *Classifications) String() string

type ExampleList

type ExampleList struct {
	Examples []*tensorflow1.Example `protobuf:"bytes,1,rep,name=examples" json:"examples,omitempty"`
}

Specifies one or more fully independent input Examples. See examples at:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/example.proto

func (*ExampleList) Descriptor

func (*ExampleList) Descriptor() ([]byte, []int)

func (*ExampleList) GetExamples

func (m *ExampleList) GetExamples() []*tensorflow1.Example

func (*ExampleList) ProtoMessage

func (*ExampleList) ProtoMessage()

func (*ExampleList) Reset

func (m *ExampleList) Reset()

func (*ExampleList) String

func (m *ExampleList) String() string

type ExampleListWithContext

type ExampleListWithContext struct {
	Examples []*tensorflow1.Example `protobuf:"bytes,1,rep,name=examples" json:"examples,omitempty"`
	Context  *tensorflow1.Example   `protobuf:"bytes,2,opt,name=context" json:"context,omitempty"`
}

Specifies one or more independent input Examples, with a common context Example.

The common use case for context is to cleanly and optimally specify some features that are common across multiple examples.

See example below with a search query as the context and multiple restaurants to perform some inference on.

context: {
  feature: {
    key  : "query"
    value: {
      bytes_list: {
        value: [ "pizza" ]
      }
    }
  }
}
examples: {
  feature: {
    key  : "cuisine"
    value: {
      bytes_list: {
        value: [ "Pizzeria" ]
      }
    }
  }
}
examples: {
  feature: {
    key  : "cuisine"
    value: {
      bytes_list: {
        value: [ "Taqueria" ]
      }
    }
  }
}

Implementations of ExampleListWithContext merge the context Example into each of the Examples. Note that feature keys must not be duplicated between the Examples and context Example, or the behavior is undefined.

See also:

tensorflow/core/example/example.proto
https://developers.google.com/protocol-buffers/docs/proto3#maps

func (*ExampleListWithContext) Descriptor

func (*ExampleListWithContext) Descriptor() ([]byte, []int)

func (*ExampleListWithContext) GetContext

func (m *ExampleListWithContext) GetContext() *tensorflow1.Example

func (*ExampleListWithContext) GetExamples

func (m *ExampleListWithContext) GetExamples() []*tensorflow1.Example

func (*ExampleListWithContext) ProtoMessage

func (*ExampleListWithContext) ProtoMessage()

func (*ExampleListWithContext) Reset

func (m *ExampleListWithContext) Reset()

func (*ExampleListWithContext) String

func (m *ExampleListWithContext) String() string

type GetModelMetadataRequest

type GetModelMetadataRequest struct {
	// Model Specification indicating which model we are querying for metadata.
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Metadata fields to get. Currently supported: "signature_def".
	MetadataField []string `protobuf:"bytes,2,rep,name=metadata_field,json=metadataField" json:"metadata_field,omitempty"`
}

func (*GetModelMetadataRequest) Descriptor

func (*GetModelMetadataRequest) Descriptor() ([]byte, []int)

func (*GetModelMetadataRequest) GetMetadataField

func (m *GetModelMetadataRequest) GetMetadataField() []string

func (*GetModelMetadataRequest) GetModelSpec

func (m *GetModelMetadataRequest) GetModelSpec() *ModelSpec

func (*GetModelMetadataRequest) ProtoMessage

func (*GetModelMetadataRequest) ProtoMessage()

func (*GetModelMetadataRequest) Reset

func (m *GetModelMetadataRequest) Reset()

func (*GetModelMetadataRequest) String

func (m *GetModelMetadataRequest) String() string

type GetModelMetadataResponse

type GetModelMetadataResponse struct {
	// Model Specification indicating which model this metadata belongs to.
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Map of metadata field name to metadata field. The options for metadata
	// field name are listed in GetModelMetadataRequest. Currently supported:
	// "signature_def".
	Metadata map[string]*google_protobuf1.Any `` /* 136-byte string literal not displayed */
}

func (*GetModelMetadataResponse) Descriptor

func (*GetModelMetadataResponse) Descriptor() ([]byte, []int)

func (*GetModelMetadataResponse) GetMetadata

func (m *GetModelMetadataResponse) GetMetadata() map[string]*google_protobuf1.Any

func (*GetModelMetadataResponse) GetModelSpec

func (m *GetModelMetadataResponse) GetModelSpec() *ModelSpec

func (*GetModelMetadataResponse) ProtoMessage

func (*GetModelMetadataResponse) ProtoMessage()

func (*GetModelMetadataResponse) Reset

func (m *GetModelMetadataResponse) Reset()

func (*GetModelMetadataResponse) String

func (m *GetModelMetadataResponse) String() string

type InferenceResult

type InferenceResult struct {
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Types that are valid to be assigned to Result:
	//	*InferenceResult_ClassificationResult
	//	*InferenceResult_RegressionResult
	Result isInferenceResult_Result `protobuf_oneof:"result"`
}

Inference result, matches the type of request or is an error.

func (*InferenceResult) Descriptor

func (*InferenceResult) Descriptor() ([]byte, []int)

func (*InferenceResult) GetClassificationResult

func (m *InferenceResult) GetClassificationResult() *ClassificationResult

func (*InferenceResult) GetModelSpec

func (m *InferenceResult) GetModelSpec() *ModelSpec

func (*InferenceResult) GetRegressionResult

func (m *InferenceResult) GetRegressionResult() *RegressionResult

func (*InferenceResult) GetResult

func (m *InferenceResult) GetResult() isInferenceResult_Result

func (*InferenceResult) ProtoMessage

func (*InferenceResult) ProtoMessage()

func (*InferenceResult) Reset

func (m *InferenceResult) Reset()

func (*InferenceResult) String

func (m *InferenceResult) String() string

func (*InferenceResult) XXX_OneofFuncs

func (*InferenceResult) XXX_OneofFuncs() (func(msg proto.Message, b *proto.Buffer) error, func(msg proto.Message, tag, wire int, b *proto.Buffer) (bool, error), func(msg proto.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type InferenceResult_ClassificationResult

type InferenceResult_ClassificationResult struct {
	ClassificationResult *ClassificationResult `protobuf:"bytes,2,opt,name=classification_result,json=classificationResult,oneof"`
}

type InferenceResult_RegressionResult

type InferenceResult_RegressionResult struct {
	RegressionResult *RegressionResult `protobuf:"bytes,3,opt,name=regression_result,json=regressionResult,oneof"`
}

type InferenceTask

type InferenceTask struct {
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Signature's method_name. Should be one of the method names defined in
	// third_party/tensorflow/python/saved_model/signature_constants.py.
	// e.g. "tensorflow/serving/classify".
	MethodName string `protobuf:"bytes,2,opt,name=method_name,json=methodName" json:"method_name,omitempty"`
}

Inference request such as classification, regression, etc...

func (*InferenceTask) Descriptor

func (*InferenceTask) Descriptor() ([]byte, []int)

func (*InferenceTask) GetMethodName

func (m *InferenceTask) GetMethodName() string

func (*InferenceTask) GetModelSpec

func (m *InferenceTask) GetModelSpec() *ModelSpec

func (*InferenceTask) ProtoMessage

func (*InferenceTask) ProtoMessage()

func (*InferenceTask) Reset

func (m *InferenceTask) Reset()

func (*InferenceTask) String

func (m *InferenceTask) String() string

type Input

type Input struct {
	// Types that are valid to be assigned to Kind:
	//	*Input_ExampleList
	//	*Input_ExampleListWithContext
	Kind isInput_Kind `protobuf_oneof:"kind"`
}

func (*Input) Descriptor

func (*Input) Descriptor() ([]byte, []int)

func (*Input) GetExampleList

func (m *Input) GetExampleList() *ExampleList

func (*Input) GetExampleListWithContext

func (m *Input) GetExampleListWithContext() *ExampleListWithContext

func (*Input) GetKind

func (m *Input) GetKind() isInput_Kind

func (*Input) ProtoMessage

func (*Input) ProtoMessage()

func (*Input) Reset

func (m *Input) Reset()

func (*Input) String

func (m *Input) String() string

func (*Input) XXX_OneofFuncs

func (*Input) XXX_OneofFuncs() (func(msg proto.Message, b *proto.Buffer) error, func(msg proto.Message, tag, wire int, b *proto.Buffer) (bool, error), func(msg proto.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type Input_ExampleList

type Input_ExampleList struct {
	ExampleList *ExampleList `protobuf:"bytes,1,opt,name=example_list,json=exampleList,oneof"`
}

type Input_ExampleListWithContext

type Input_ExampleListWithContext struct {
	ExampleListWithContext *ExampleListWithContext `protobuf:"bytes,2,opt,name=example_list_with_context,json=exampleListWithContext,oneof"`
}

type ModelSpec

type ModelSpec struct {
	// Required servable name.
	Name string `protobuf:"bytes,1,opt,name=name" json:"name,omitempty"`
	// Optional version. If unspecified, will use the latest (numerical) version.
	// Typically not needed unless coordinating across multiple models that were
	// co-trained and/or have inter-dependencies on the versions used at inference
	// time.
	Version *google_protobuf.Int64Value `protobuf:"bytes,2,opt,name=version" json:"version,omitempty"`
	// A named signature to evaluate. If unspecified, the default signature will
	// be used.
	SignatureName string `protobuf:"bytes,3,opt,name=signature_name,json=signatureName" json:"signature_name,omitempty"`
}

Metadata for an inference request such as the model name and version.

func (*ModelSpec) Descriptor

func (*ModelSpec) Descriptor() ([]byte, []int)

func (*ModelSpec) GetName

func (m *ModelSpec) GetName() string

func (*ModelSpec) GetSignatureName

func (m *ModelSpec) GetSignatureName() string

func (*ModelSpec) GetVersion

func (m *ModelSpec) GetVersion() *google_protobuf.Int64Value

func (*ModelSpec) ProtoMessage

func (*ModelSpec) ProtoMessage()

func (*ModelSpec) Reset

func (m *ModelSpec) Reset()

func (*ModelSpec) String

func (m *ModelSpec) String() string

type MultiInferenceRequest

type MultiInferenceRequest struct {
	// Inference tasks.
	Tasks []*InferenceTask `protobuf:"bytes,1,rep,name=tasks" json:"tasks,omitempty"`
	// Input data.
	Input *Input `protobuf:"bytes,2,opt,name=input" json:"input,omitempty"`
}

Inference request containing one or more requests.

func (*MultiInferenceRequest) Descriptor

func (*MultiInferenceRequest) Descriptor() ([]byte, []int)

func (*MultiInferenceRequest) GetInput

func (m *MultiInferenceRequest) GetInput() *Input

func (*MultiInferenceRequest) GetTasks

func (m *MultiInferenceRequest) GetTasks() []*InferenceTask

func (*MultiInferenceRequest) ProtoMessage

func (*MultiInferenceRequest) ProtoMessage()

func (*MultiInferenceRequest) Reset

func (m *MultiInferenceRequest) Reset()

func (*MultiInferenceRequest) String

func (m *MultiInferenceRequest) String() string

type MultiInferenceResponse

type MultiInferenceResponse struct {
	// List of results; one for each InferenceTask in the request, returned in the
	// same order as the request.
	Results []*InferenceResult `protobuf:"bytes,1,rep,name=results" json:"results,omitempty"`
}

Inference request containing one or more responses.

func (*MultiInferenceResponse) Descriptor

func (*MultiInferenceResponse) Descriptor() ([]byte, []int)

func (*MultiInferenceResponse) GetResults

func (m *MultiInferenceResponse) GetResults() []*InferenceResult

func (*MultiInferenceResponse) ProtoMessage

func (*MultiInferenceResponse) ProtoMessage()

func (*MultiInferenceResponse) Reset

func (m *MultiInferenceResponse) Reset()

func (*MultiInferenceResponse) String

func (m *MultiInferenceResponse) String() string

type PredictRequest

type PredictRequest struct {
	// Model Specification.
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Input tensors.
	// Names of input tensor are alias names. The mapping from aliases to real
	// input tensor names is expected to be stored as named generic signature
	// under the key "inputs" in the model export.
	// Each alias listed in a generic signature named "inputs" should be provided
	// exactly once in order to run the prediction.
	Inputs map[string]*tensorflow5.TensorProto `` /* 132-byte string literal not displayed */
	// Output filter.
	// Names specified are alias names. The mapping from aliases to real output
	// tensor names is expected to be stored as named generic signature under
	// the key "outputs" in the model export.
	// Only tensors specified here will be run/fetched and returned, with the
	// exception that when none is specified, all tensors specified in the
	// named signature will be run/fetched and returned.
	OutputFilter []string `protobuf:"bytes,3,rep,name=output_filter,json=outputFilter" json:"output_filter,omitempty"`
}

PredictRequest specifies which TensorFlow model to run, as well as how inputs are mapped to tensors and how outputs are filtered before returning to user.

func (*PredictRequest) Descriptor

func (*PredictRequest) Descriptor() ([]byte, []int)

func (*PredictRequest) GetInputs

func (m *PredictRequest) GetInputs() map[string]*tensorflow5.TensorProto

func (*PredictRequest) GetModelSpec

func (m *PredictRequest) GetModelSpec() *ModelSpec

func (*PredictRequest) GetOutputFilter

func (m *PredictRequest) GetOutputFilter() []string

func (*PredictRequest) ProtoMessage

func (*PredictRequest) ProtoMessage()

func (*PredictRequest) Reset

func (m *PredictRequest) Reset()

func (*PredictRequest) String

func (m *PredictRequest) String() string

type PredictResponse

type PredictResponse struct {
	// Output tensors.
	Outputs map[string]*tensorflow5.TensorProto `` /* 134-byte string literal not displayed */
}

Response for PredictRequest on successful run.

func (*PredictResponse) Descriptor

func (*PredictResponse) Descriptor() ([]byte, []int)

func (*PredictResponse) GetOutputs

func (m *PredictResponse) GetOutputs() map[string]*tensorflow5.TensorProto

func (*PredictResponse) ProtoMessage

func (*PredictResponse) ProtoMessage()

func (*PredictResponse) Reset

func (m *PredictResponse) Reset()

func (*PredictResponse) String

func (m *PredictResponse) String() string

type PredictionServiceClient

type PredictionServiceClient interface {
	// Classify.
	Classify(ctx context.Context, in *ClassificationRequest, opts ...grpc.CallOption) (*ClassificationResponse, error)
	// Regress.
	Regress(ctx context.Context, in *RegressionRequest, opts ...grpc.CallOption) (*RegressionResponse, error)
	// Predict -- provides access to loaded TensorFlow model.
	Predict(ctx context.Context, in *PredictRequest, opts ...grpc.CallOption) (*PredictResponse, error)
	// PredictJSON -- provides access to loaded TensorFlow model.
	PredictJSON(ctx context.Context, in *ml_serving.PredictJSONData, opts ...grpc.CallOption) (*ml_serving.PredictJSONData, error)
	// MultiInference API for multi-headed models.
	MultiInference(ctx context.Context, in *MultiInferenceRequest, opts ...grpc.CallOption) (*MultiInferenceResponse, error)
	// GetModelMetadata - provides access to metadata for loaded models.
	GetModelMetadata(ctx context.Context, in *GetModelMetadataRequest, opts ...grpc.CallOption) (*GetModelMetadataResponse, error)
}

func NewPredictionServiceClient

func NewPredictionServiceClient(cc *grpc.ClientConn) PredictionServiceClient

type PredictionServiceServer

type PredictionServiceServer interface {
	// Classify.
	Classify(context.Context, *ClassificationRequest) (*ClassificationResponse, error)
	// Regress.
	Regress(context.Context, *RegressionRequest) (*RegressionResponse, error)
	// Predict -- provides access to loaded TensorFlow model.
	Predict(context.Context, *PredictRequest) (*PredictResponse, error)
	// PredictJSON -- provides access to loaded TensorFlow model.
	PredictJSON(context.Context, *ml_serving.PredictJSONData) (*ml_serving.PredictJSONData, error)
	// MultiInference API for multi-headed models.
	MultiInference(context.Context, *MultiInferenceRequest) (*MultiInferenceResponse, error)
	// GetModelMetadata - provides access to metadata for loaded models.
	GetModelMetadata(context.Context, *GetModelMetadataRequest) (*GetModelMetadataResponse, error)
}

type Regression

type Regression struct {
	Value float32 `protobuf:"fixed32,1,opt,name=value" json:"value,omitempty"`
}

Regression result for a single item (tensorflow.Example).

func (*Regression) Descriptor

func (*Regression) Descriptor() ([]byte, []int)

func (*Regression) GetValue

func (m *Regression) GetValue() float32

func (*Regression) ProtoMessage

func (*Regression) ProtoMessage()

func (*Regression) Reset

func (m *Regression) Reset()

func (*Regression) String

func (m *Regression) String() string

type RegressionRequest

type RegressionRequest struct {
	// Model Specification.
	ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"`
	// Input data.
	Input *Input `protobuf:"bytes,2,opt,name=input" json:"input,omitempty"`
}

func (*RegressionRequest) Descriptor

func (*RegressionRequest) Descriptor() ([]byte, []int)

func (*RegressionRequest) GetInput

func (m *RegressionRequest) GetInput() *Input

func (*RegressionRequest) GetModelSpec

func (m *RegressionRequest) GetModelSpec() *ModelSpec

func (*RegressionRequest) ProtoMessage

func (*RegressionRequest) ProtoMessage()

func (*RegressionRequest) Reset

func (m *RegressionRequest) Reset()

func (*RegressionRequest) String

func (m *RegressionRequest) String() string

type RegressionResponse

type RegressionResponse struct {
	Result *RegressionResult `protobuf:"bytes,1,opt,name=result" json:"result,omitempty"`
}

func (*RegressionResponse) Descriptor

func (*RegressionResponse) Descriptor() ([]byte, []int)

func (*RegressionResponse) GetResult

func (m *RegressionResponse) GetResult() *RegressionResult

func (*RegressionResponse) ProtoMessage

func (*RegressionResponse) ProtoMessage()

func (*RegressionResponse) Reset

func (m *RegressionResponse) Reset()

func (*RegressionResponse) String

func (m *RegressionResponse) String() string

type RegressionResult

type RegressionResult struct {
	Regressions []*Regression `protobuf:"bytes,1,rep,name=regressions" json:"regressions,omitempty"`
}

Contains one result per input example, in the same order as the input in RegressionRequest.

func (*RegressionResult) Descriptor

func (*RegressionResult) Descriptor() ([]byte, []int)

func (*RegressionResult) GetRegressions

func (m *RegressionResult) GetRegressions() []*Regression

func (*RegressionResult) ProtoMessage

func (*RegressionResult) ProtoMessage()

func (*RegressionResult) Reset

func (m *RegressionResult) Reset()

func (*RegressionResult) String

func (m *RegressionResult) String() string

type SignatureDefMap

type SignatureDefMap struct {
	SignatureDef map[string]*tensorflow13.SignatureDef `` /* 164-byte string literal not displayed */
}

Message returned for "signature_def" field.

func (*SignatureDefMap) Descriptor

func (*SignatureDefMap) Descriptor() ([]byte, []int)

func (*SignatureDefMap) GetSignatureDef

func (m *SignatureDefMap) GetSignatureDef() map[string]*tensorflow13.SignatureDef

func (*SignatureDefMap) ProtoMessage

func (*SignatureDefMap) ProtoMessage()

func (*SignatureDefMap) Reset

func (m *SignatureDefMap) Reset()

func (*SignatureDefMap) String

func (m *SignatureDefMap) String() string

Directories

Path Synopsis
Package internal is a generated protocol buffer package.
Package internal is a generated protocol buffer package.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL