Documentation ¶
Overview ¶
Package apis is a generated protocol buffer package.
It is generated from these files:
tensorflow_serving/apis/classification.proto tensorflow_serving/apis/get_model_metadata.proto tensorflow_serving/apis/inference.proto tensorflow_serving/apis/input.proto tensorflow_serving/apis/model.proto tensorflow_serving/apis/predict.proto tensorflow_serving/apis/prediction_service.proto tensorflow_serving/apis/regression.proto
It has these top-level messages:
Class Classifications ClassificationResult ClassificationRequest ClassificationResponse SignatureDefMap GetModelMetadataRequest GetModelMetadataResponse InferenceTask InferenceResult MultiInferenceRequest MultiInferenceResponse ExampleList ExampleListWithContext Input ModelSpec PredictRequest PredictResponse Regression RegressionResult RegressionRequest RegressionResponse
Index ¶
- func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
- type Class
- type ClassificationRequest
- type ClassificationResponse
- type ClassificationResult
- type Classifications
- type ExampleList
- type ExampleListWithContext
- func (*ExampleListWithContext) Descriptor() ([]byte, []int)
- func (m *ExampleListWithContext) GetContext() *tensorflow1.Example
- func (m *ExampleListWithContext) GetExamples() []*tensorflow1.Example
- func (*ExampleListWithContext) ProtoMessage()
- func (m *ExampleListWithContext) Reset()
- func (m *ExampleListWithContext) String() string
- type GetModelMetadataRequest
- func (*GetModelMetadataRequest) Descriptor() ([]byte, []int)
- func (m *GetModelMetadataRequest) GetMetadataField() []string
- func (m *GetModelMetadataRequest) GetModelSpec() *ModelSpec
- func (*GetModelMetadataRequest) ProtoMessage()
- func (m *GetModelMetadataRequest) Reset()
- func (m *GetModelMetadataRequest) String() string
- type GetModelMetadataResponse
- func (*GetModelMetadataResponse) Descriptor() ([]byte, []int)
- func (m *GetModelMetadataResponse) GetMetadata() map[string]*google_protobuf1.Any
- func (m *GetModelMetadataResponse) GetModelSpec() *ModelSpec
- func (*GetModelMetadataResponse) ProtoMessage()
- func (m *GetModelMetadataResponse) Reset()
- func (m *GetModelMetadataResponse) String() string
- type InferenceResult
- func (*InferenceResult) Descriptor() ([]byte, []int)
- func (m *InferenceResult) GetClassificationResult() *ClassificationResult
- func (m *InferenceResult) GetModelSpec() *ModelSpec
- func (m *InferenceResult) GetRegressionResult() *RegressionResult
- func (m *InferenceResult) GetResult() isInferenceResult_Result
- func (*InferenceResult) ProtoMessage()
- func (m *InferenceResult) Reset()
- func (m *InferenceResult) String() string
- func (*InferenceResult) XXX_OneofFuncs() (func(msg proto.Message, b *proto.Buffer) error, ...)
- type InferenceResult_ClassificationResult
- type InferenceResult_RegressionResult
- type InferenceTask
- type Input
- func (*Input) Descriptor() ([]byte, []int)
- func (m *Input) GetExampleList() *ExampleList
- func (m *Input) GetExampleListWithContext() *ExampleListWithContext
- func (m *Input) GetKind() isInput_Kind
- func (*Input) ProtoMessage()
- func (m *Input) Reset()
- func (m *Input) String() string
- func (*Input) XXX_OneofFuncs() (func(msg proto.Message, b *proto.Buffer) error, ...)
- type Input_ExampleList
- type Input_ExampleListWithContext
- type ModelSpec
- type MultiInferenceRequest
- func (*MultiInferenceRequest) Descriptor() ([]byte, []int)
- func (m *MultiInferenceRequest) GetInput() *Input
- func (m *MultiInferenceRequest) GetTasks() []*InferenceTask
- func (*MultiInferenceRequest) ProtoMessage()
- func (m *MultiInferenceRequest) Reset()
- func (m *MultiInferenceRequest) String() string
- type MultiInferenceResponse
- type PredictRequest
- func (*PredictRequest) Descriptor() ([]byte, []int)
- func (m *PredictRequest) GetInputs() map[string]*tensorflow5.TensorProto
- func (m *PredictRequest) GetModelSpec() *ModelSpec
- func (m *PredictRequest) GetOutputFilter() []string
- func (*PredictRequest) ProtoMessage()
- func (m *PredictRequest) Reset()
- func (m *PredictRequest) String() string
- type PredictResponse
- type PredictionServiceClient
- type PredictionServiceServer
- type Regression
- type RegressionRequest
- type RegressionResponse
- type RegressionResult
- type SignatureDefMap
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func RegisterPredictionServiceServer ¶
func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
Types ¶
type Class ¶
type Class struct { // Label or name of the class. Label string `protobuf:"bytes,1,opt,name=label" json:"label,omitempty"` // Score for this class (e.g., the probability the item belongs to this // class). Score float32 `protobuf:"fixed32,2,opt,name=score" json:"score,omitempty"` }
A single class.
func (*Class) Descriptor ¶
func (*Class) ProtoMessage ¶
func (*Class) ProtoMessage()
type ClassificationRequest ¶
type ClassificationRequest struct { // Model Specification. ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Input data. Input *Input `protobuf:"bytes,2,opt,name=input" json:"input,omitempty"` }
func (*ClassificationRequest) Descriptor ¶
func (*ClassificationRequest) Descriptor() ([]byte, []int)
func (*ClassificationRequest) GetInput ¶
func (m *ClassificationRequest) GetInput() *Input
func (*ClassificationRequest) GetModelSpec ¶
func (m *ClassificationRequest) GetModelSpec() *ModelSpec
func (*ClassificationRequest) ProtoMessage ¶
func (*ClassificationRequest) ProtoMessage()
func (*ClassificationRequest) Reset ¶
func (m *ClassificationRequest) Reset()
func (*ClassificationRequest) String ¶
func (m *ClassificationRequest) String() string
type ClassificationResponse ¶
type ClassificationResponse struct { // Result of the classification. Result *ClassificationResult `protobuf:"bytes,1,opt,name=result" json:"result,omitempty"` }
func (*ClassificationResponse) Descriptor ¶
func (*ClassificationResponse) Descriptor() ([]byte, []int)
func (*ClassificationResponse) GetResult ¶
func (m *ClassificationResponse) GetResult() *ClassificationResult
func (*ClassificationResponse) ProtoMessage ¶
func (*ClassificationResponse) ProtoMessage()
func (*ClassificationResponse) Reset ¶
func (m *ClassificationResponse) Reset()
func (*ClassificationResponse) String ¶
func (m *ClassificationResponse) String() string
type ClassificationResult ¶
type ClassificationResult struct {
Classifications []*Classifications `protobuf:"bytes,1,rep,name=classifications" json:"classifications,omitempty"`
}
Contains one result per input example, in the same order as the input in ClassificationRequest.
func (*ClassificationResult) Descriptor ¶
func (*ClassificationResult) Descriptor() ([]byte, []int)
func (*ClassificationResult) GetClassifications ¶
func (m *ClassificationResult) GetClassifications() []*Classifications
func (*ClassificationResult) ProtoMessage ¶
func (*ClassificationResult) ProtoMessage()
func (*ClassificationResult) Reset ¶
func (m *ClassificationResult) Reset()
func (*ClassificationResult) String ¶
func (m *ClassificationResult) String() string
type Classifications ¶
type Classifications struct {
Classes []*Class `protobuf:"bytes,1,rep,name=classes" json:"classes,omitempty"`
}
List of classes for a single item (tensorflow.Example).
func (*Classifications) Descriptor ¶
func (*Classifications) Descriptor() ([]byte, []int)
func (*Classifications) GetClasses ¶
func (m *Classifications) GetClasses() []*Class
func (*Classifications) ProtoMessage ¶
func (*Classifications) ProtoMessage()
func (*Classifications) Reset ¶
func (m *Classifications) Reset()
func (*Classifications) String ¶
func (m *Classifications) String() string
type ExampleList ¶
type ExampleList struct {
Examples []*tensorflow1.Example `protobuf:"bytes,1,rep,name=examples" json:"examples,omitempty"`
}
Specifies one or more fully independent input Examples. See examples at:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/example.proto
func (*ExampleList) Descriptor ¶
func (*ExampleList) Descriptor() ([]byte, []int)
func (*ExampleList) GetExamples ¶
func (m *ExampleList) GetExamples() []*tensorflow1.Example
func (*ExampleList) ProtoMessage ¶
func (*ExampleList) ProtoMessage()
func (*ExampleList) Reset ¶
func (m *ExampleList) Reset()
func (*ExampleList) String ¶
func (m *ExampleList) String() string
type ExampleListWithContext ¶
type ExampleListWithContext struct { Examples []*tensorflow1.Example `protobuf:"bytes,1,rep,name=examples" json:"examples,omitempty"` Context *tensorflow1.Example `protobuf:"bytes,2,opt,name=context" json:"context,omitempty"` }
Specifies one or more independent input Examples, with a common context Example.
The common use case for context is to cleanly and optimally specify some features that are common across multiple examples.
See example below with a search query as the context and multiple restaurants to perform some inference on.
context: { feature: { key : "query" value: { bytes_list: { value: [ "pizza" ] } } } }
examples: { feature: { key : "cuisine" value: { bytes_list: { value: [ "Pizzeria" ] } } } }
examples: { feature: { key : "cuisine" value: { bytes_list: { value: [ "Taqueria" ] } } } }
Implementations of ExampleListWithContext merge the context Example into each of the Examples. Note that feature keys must not be duplicated between the Examples and context Example, or the behavior is undefined.
See also:
tensorflow/core/example/example.proto https://developers.google.com/protocol-buffers/docs/proto3#maps
func (*ExampleListWithContext) Descriptor ¶
func (*ExampleListWithContext) Descriptor() ([]byte, []int)
func (*ExampleListWithContext) GetContext ¶
func (m *ExampleListWithContext) GetContext() *tensorflow1.Example
func (*ExampleListWithContext) GetExamples ¶
func (m *ExampleListWithContext) GetExamples() []*tensorflow1.Example
func (*ExampleListWithContext) ProtoMessage ¶
func (*ExampleListWithContext) ProtoMessage()
func (*ExampleListWithContext) Reset ¶
func (m *ExampleListWithContext) Reset()
func (*ExampleListWithContext) String ¶
func (m *ExampleListWithContext) String() string
type GetModelMetadataRequest ¶
type GetModelMetadataRequest struct { // Model Specification indicating which model we are querying for metadata. ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Metadata fields to get. Currently supported: "signature_def". MetadataField []string `protobuf:"bytes,2,rep,name=metadata_field,json=metadataField" json:"metadata_field,omitempty"` }
func (*GetModelMetadataRequest) Descriptor ¶
func (*GetModelMetadataRequest) Descriptor() ([]byte, []int)
func (*GetModelMetadataRequest) GetMetadataField ¶
func (m *GetModelMetadataRequest) GetMetadataField() []string
func (*GetModelMetadataRequest) GetModelSpec ¶
func (m *GetModelMetadataRequest) GetModelSpec() *ModelSpec
func (*GetModelMetadataRequest) ProtoMessage ¶
func (*GetModelMetadataRequest) ProtoMessage()
func (*GetModelMetadataRequest) Reset ¶
func (m *GetModelMetadataRequest) Reset()
func (*GetModelMetadataRequest) String ¶
func (m *GetModelMetadataRequest) String() string
type GetModelMetadataResponse ¶
type GetModelMetadataResponse struct { // Model Specification indicating which model this metadata belongs to. ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Map of metadata field name to metadata field. The options for metadata // field name are listed in GetModelMetadataRequest. Currently supported: // "signature_def". Metadata map[string]*google_protobuf1.Any `` /* 136-byte string literal not displayed */ }
func (*GetModelMetadataResponse) Descriptor ¶
func (*GetModelMetadataResponse) Descriptor() ([]byte, []int)
func (*GetModelMetadataResponse) GetMetadata ¶
func (m *GetModelMetadataResponse) GetMetadata() map[string]*google_protobuf1.Any
func (*GetModelMetadataResponse) GetModelSpec ¶
func (m *GetModelMetadataResponse) GetModelSpec() *ModelSpec
func (*GetModelMetadataResponse) ProtoMessage ¶
func (*GetModelMetadataResponse) ProtoMessage()
func (*GetModelMetadataResponse) Reset ¶
func (m *GetModelMetadataResponse) Reset()
func (*GetModelMetadataResponse) String ¶
func (m *GetModelMetadataResponse) String() string
type InferenceResult ¶
type InferenceResult struct { ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Types that are valid to be assigned to Result: // *InferenceResult_ClassificationResult // *InferenceResult_RegressionResult Result isInferenceResult_Result `protobuf_oneof:"result"` }
Inference result, matches the type of request or is an error.
func (*InferenceResult) Descriptor ¶
func (*InferenceResult) Descriptor() ([]byte, []int)
func (*InferenceResult) GetClassificationResult ¶
func (m *InferenceResult) GetClassificationResult() *ClassificationResult
func (*InferenceResult) GetModelSpec ¶
func (m *InferenceResult) GetModelSpec() *ModelSpec
func (*InferenceResult) GetRegressionResult ¶
func (m *InferenceResult) GetRegressionResult() *RegressionResult
func (*InferenceResult) GetResult ¶
func (m *InferenceResult) GetResult() isInferenceResult_Result
func (*InferenceResult) ProtoMessage ¶
func (*InferenceResult) ProtoMessage()
func (*InferenceResult) Reset ¶
func (m *InferenceResult) Reset()
func (*InferenceResult) String ¶
func (m *InferenceResult) String() string
func (*InferenceResult) XXX_OneofFuncs ¶
func (*InferenceResult) XXX_OneofFuncs() (func(msg proto.Message, b *proto.Buffer) error, func(msg proto.Message, tag, wire int, b *proto.Buffer) (bool, error), func(msg proto.Message) (n int), []interface{})
XXX_OneofFuncs is for the internal use of the proto package.
type InferenceResult_ClassificationResult ¶
type InferenceResult_ClassificationResult struct {
ClassificationResult *ClassificationResult `protobuf:"bytes,2,opt,name=classification_result,json=classificationResult,oneof"`
}
type InferenceResult_RegressionResult ¶
type InferenceResult_RegressionResult struct {
RegressionResult *RegressionResult `protobuf:"bytes,3,opt,name=regression_result,json=regressionResult,oneof"`
}
type InferenceTask ¶
type InferenceTask struct { ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Signature's method_name. Should be one of the method names defined in // third_party/tensorflow/python/saved_model/signature_constants.py. // e.g. "tensorflow/serving/classify". MethodName string `protobuf:"bytes,2,opt,name=method_name,json=methodName" json:"method_name,omitempty"` }
Inference request such as classification, regression, etc...
func (*InferenceTask) Descriptor ¶
func (*InferenceTask) Descriptor() ([]byte, []int)
func (*InferenceTask) GetMethodName ¶
func (m *InferenceTask) GetMethodName() string
func (*InferenceTask) GetModelSpec ¶
func (m *InferenceTask) GetModelSpec() *ModelSpec
func (*InferenceTask) ProtoMessage ¶
func (*InferenceTask) ProtoMessage()
func (*InferenceTask) Reset ¶
func (m *InferenceTask) Reset()
func (*InferenceTask) String ¶
func (m *InferenceTask) String() string
type Input ¶
type Input struct { // Types that are valid to be assigned to Kind: // *Input_ExampleList // *Input_ExampleListWithContext Kind isInput_Kind `protobuf_oneof:"kind"` }
func (*Input) Descriptor ¶
func (*Input) GetExampleList ¶
func (m *Input) GetExampleList() *ExampleList
func (*Input) GetExampleListWithContext ¶
func (m *Input) GetExampleListWithContext() *ExampleListWithContext
func (*Input) ProtoMessage ¶
func (*Input) ProtoMessage()
type Input_ExampleList ¶
type Input_ExampleList struct {
ExampleList *ExampleList `protobuf:"bytes,1,opt,name=example_list,json=exampleList,oneof"`
}
type Input_ExampleListWithContext ¶
type Input_ExampleListWithContext struct {
ExampleListWithContext *ExampleListWithContext `protobuf:"bytes,2,opt,name=example_list_with_context,json=exampleListWithContext,oneof"`
}
type ModelSpec ¶
type ModelSpec struct { // Required servable name. Name string `protobuf:"bytes,1,opt,name=name" json:"name,omitempty"` // Optional version. If unspecified, will use the latest (numerical) version. // Typically not needed unless coordinating across multiple models that were // co-trained and/or have inter-dependencies on the versions used at inference // time. Version *google_protobuf.Int64Value `protobuf:"bytes,2,opt,name=version" json:"version,omitempty"` // A named signature to evaluate. If unspecified, the default signature will // be used. SignatureName string `protobuf:"bytes,3,opt,name=signature_name,json=signatureName" json:"signature_name,omitempty"` }
Metadata for an inference request such as the model name and version.
func (*ModelSpec) Descriptor ¶
func (*ModelSpec) GetSignatureName ¶
func (*ModelSpec) GetVersion ¶
func (m *ModelSpec) GetVersion() *google_protobuf.Int64Value
func (*ModelSpec) ProtoMessage ¶
func (*ModelSpec) ProtoMessage()
type MultiInferenceRequest ¶
type MultiInferenceRequest struct { // Inference tasks. Tasks []*InferenceTask `protobuf:"bytes,1,rep,name=tasks" json:"tasks,omitempty"` // Input data. Input *Input `protobuf:"bytes,2,opt,name=input" json:"input,omitempty"` }
Inference request containing one or more requests.
func (*MultiInferenceRequest) Descriptor ¶
func (*MultiInferenceRequest) Descriptor() ([]byte, []int)
func (*MultiInferenceRequest) GetInput ¶
func (m *MultiInferenceRequest) GetInput() *Input
func (*MultiInferenceRequest) GetTasks ¶
func (m *MultiInferenceRequest) GetTasks() []*InferenceTask
func (*MultiInferenceRequest) ProtoMessage ¶
func (*MultiInferenceRequest) ProtoMessage()
func (*MultiInferenceRequest) Reset ¶
func (m *MultiInferenceRequest) Reset()
func (*MultiInferenceRequest) String ¶
func (m *MultiInferenceRequest) String() string
type MultiInferenceResponse ¶
type MultiInferenceResponse struct { // List of results; one for each InferenceTask in the request, returned in the // same order as the request. Results []*InferenceResult `protobuf:"bytes,1,rep,name=results" json:"results,omitempty"` }
Inference request containing one or more responses.
func (*MultiInferenceResponse) Descriptor ¶
func (*MultiInferenceResponse) Descriptor() ([]byte, []int)
func (*MultiInferenceResponse) GetResults ¶
func (m *MultiInferenceResponse) GetResults() []*InferenceResult
func (*MultiInferenceResponse) ProtoMessage ¶
func (*MultiInferenceResponse) ProtoMessage()
func (*MultiInferenceResponse) Reset ¶
func (m *MultiInferenceResponse) Reset()
func (*MultiInferenceResponse) String ¶
func (m *MultiInferenceResponse) String() string
type PredictRequest ¶
type PredictRequest struct { // Model Specification. ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Input tensors. // Names of input tensor are alias names. The mapping from aliases to real // input tensor names is expected to be stored as named generic signature // under the key "inputs" in the model export. // Each alias listed in a generic signature named "inputs" should be provided // exactly once in order to run the prediction. Inputs map[string]*tensorflow5.TensorProto `` /* 132-byte string literal not displayed */ // Output filter. // Names specified are alias names. The mapping from aliases to real output // tensor names is expected to be stored as named generic signature under // the key "outputs" in the model export. // Only tensors specified here will be run/fetched and returned, with the // exception that when none is specified, all tensors specified in the // named signature will be run/fetched and returned. OutputFilter []string `protobuf:"bytes,3,rep,name=output_filter,json=outputFilter" json:"output_filter,omitempty"` }
PredictRequest specifies which TensorFlow model to run, as well as how inputs are mapped to tensors and how outputs are filtered before returning to user.
func (*PredictRequest) Descriptor ¶
func (*PredictRequest) Descriptor() ([]byte, []int)
func (*PredictRequest) GetInputs ¶
func (m *PredictRequest) GetInputs() map[string]*tensorflow5.TensorProto
func (*PredictRequest) GetModelSpec ¶
func (m *PredictRequest) GetModelSpec() *ModelSpec
func (*PredictRequest) GetOutputFilter ¶
func (m *PredictRequest) GetOutputFilter() []string
func (*PredictRequest) ProtoMessage ¶
func (*PredictRequest) ProtoMessage()
func (*PredictRequest) Reset ¶
func (m *PredictRequest) Reset()
func (*PredictRequest) String ¶
func (m *PredictRequest) String() string
type PredictResponse ¶
type PredictResponse struct { // Output tensors. Outputs map[string]*tensorflow5.TensorProto `` /* 134-byte string literal not displayed */ }
Response for PredictRequest on successful run.
func (*PredictResponse) Descriptor ¶
func (*PredictResponse) Descriptor() ([]byte, []int)
func (*PredictResponse) GetOutputs ¶
func (m *PredictResponse) GetOutputs() map[string]*tensorflow5.TensorProto
func (*PredictResponse) ProtoMessage ¶
func (*PredictResponse) ProtoMessage()
func (*PredictResponse) Reset ¶
func (m *PredictResponse) Reset()
func (*PredictResponse) String ¶
func (m *PredictResponse) String() string
type PredictionServiceClient ¶
type PredictionServiceClient interface { // Classify. Classify(ctx context.Context, in *ClassificationRequest, opts ...grpc.CallOption) (*ClassificationResponse, error) // Regress. Regress(ctx context.Context, in *RegressionRequest, opts ...grpc.CallOption) (*RegressionResponse, error) // Predict -- provides access to loaded TensorFlow model. Predict(ctx context.Context, in *PredictRequest, opts ...grpc.CallOption) (*PredictResponse, error) // PredictJSON -- provides access to loaded TensorFlow model. PredictJSON(ctx context.Context, in *ml_serving.PredictJSONData, opts ...grpc.CallOption) (*ml_serving.PredictJSONData, error) // MultiInference API for multi-headed models. MultiInference(ctx context.Context, in *MultiInferenceRequest, opts ...grpc.CallOption) (*MultiInferenceResponse, error) // GetModelMetadata - provides access to metadata for loaded models. GetModelMetadata(ctx context.Context, in *GetModelMetadataRequest, opts ...grpc.CallOption) (*GetModelMetadataResponse, error) }
func NewPredictionServiceClient ¶
func NewPredictionServiceClient(cc *grpc.ClientConn) PredictionServiceClient
type PredictionServiceServer ¶
type PredictionServiceServer interface { // Classify. Classify(context.Context, *ClassificationRequest) (*ClassificationResponse, error) // Regress. Regress(context.Context, *RegressionRequest) (*RegressionResponse, error) // Predict -- provides access to loaded TensorFlow model. Predict(context.Context, *PredictRequest) (*PredictResponse, error) // PredictJSON -- provides access to loaded TensorFlow model. PredictJSON(context.Context, *ml_serving.PredictJSONData) (*ml_serving.PredictJSONData, error) // MultiInference API for multi-headed models. MultiInference(context.Context, *MultiInferenceRequest) (*MultiInferenceResponse, error) // GetModelMetadata - provides access to metadata for loaded models. GetModelMetadata(context.Context, *GetModelMetadataRequest) (*GetModelMetadataResponse, error) }
type Regression ¶
type Regression struct {
Value float32 `protobuf:"fixed32,1,opt,name=value" json:"value,omitempty"`
}
Regression result for a single item (tensorflow.Example).
func (*Regression) Descriptor ¶
func (*Regression) Descriptor() ([]byte, []int)
func (*Regression) GetValue ¶
func (m *Regression) GetValue() float32
func (*Regression) ProtoMessage ¶
func (*Regression) ProtoMessage()
func (*Regression) Reset ¶
func (m *Regression) Reset()
func (*Regression) String ¶
func (m *Regression) String() string
type RegressionRequest ¶
type RegressionRequest struct { // Model Specification. ModelSpec *ModelSpec `protobuf:"bytes,1,opt,name=model_spec,json=modelSpec" json:"model_spec,omitempty"` // Input data. Input *Input `protobuf:"bytes,2,opt,name=input" json:"input,omitempty"` }
func (*RegressionRequest) Descriptor ¶
func (*RegressionRequest) Descriptor() ([]byte, []int)
func (*RegressionRequest) GetInput ¶
func (m *RegressionRequest) GetInput() *Input
func (*RegressionRequest) GetModelSpec ¶
func (m *RegressionRequest) GetModelSpec() *ModelSpec
func (*RegressionRequest) ProtoMessage ¶
func (*RegressionRequest) ProtoMessage()
func (*RegressionRequest) Reset ¶
func (m *RegressionRequest) Reset()
func (*RegressionRequest) String ¶
func (m *RegressionRequest) String() string
type RegressionResponse ¶
type RegressionResponse struct {
Result *RegressionResult `protobuf:"bytes,1,opt,name=result" json:"result,omitempty"`
}
func (*RegressionResponse) Descriptor ¶
func (*RegressionResponse) Descriptor() ([]byte, []int)
func (*RegressionResponse) GetResult ¶
func (m *RegressionResponse) GetResult() *RegressionResult
func (*RegressionResponse) ProtoMessage ¶
func (*RegressionResponse) ProtoMessage()
func (*RegressionResponse) Reset ¶
func (m *RegressionResponse) Reset()
func (*RegressionResponse) String ¶
func (m *RegressionResponse) String() string
type RegressionResult ¶
type RegressionResult struct {
Regressions []*Regression `protobuf:"bytes,1,rep,name=regressions" json:"regressions,omitempty"`
}
Contains one result per input example, in the same order as the input in RegressionRequest.
func (*RegressionResult) Descriptor ¶
func (*RegressionResult) Descriptor() ([]byte, []int)
func (*RegressionResult) GetRegressions ¶
func (m *RegressionResult) GetRegressions() []*Regression
func (*RegressionResult) ProtoMessage ¶
func (*RegressionResult) ProtoMessage()
func (*RegressionResult) Reset ¶
func (m *RegressionResult) Reset()
func (*RegressionResult) String ¶
func (m *RegressionResult) String() string
type SignatureDefMap ¶
type SignatureDefMap struct {
SignatureDef map[string]*tensorflow13.SignatureDef `` /* 164-byte string literal not displayed */
}
Message returned for "signature_def" field.
func (*SignatureDefMap) Descriptor ¶
func (*SignatureDefMap) Descriptor() ([]byte, []int)
func (*SignatureDefMap) GetSignatureDef ¶
func (m *SignatureDefMap) GetSignatureDef() map[string]*tensorflow13.SignatureDef
func (*SignatureDefMap) ProtoMessage ¶
func (*SignatureDefMap) ProtoMessage()
func (*SignatureDefMap) Reset ¶
func (m *SignatureDefMap) Reset()
func (*SignatureDefMap) String ¶
func (m *SignatureDefMap) String() string