gopenpgp

module
v2.0.5 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jul 4, 2020 License: MIT

README

GopenPGP V2

Build Status

GopenPGP is a high-level OpenPGP library built on top of a fork of the golang crypto library.

Table of Contents

Download/Install

Vendored install

To use this library using Go Modules just edit your go.mod configuration to contain:

require (
    ...
    github.com/klische/gopenpgp/v2 v2.0.1
)

replace golang.org/x/crypto => github.com/ProtonMail/crypto v0.0.0-20200416114516-1fa7f403fb9c

It can then be installed by running:

go mod vendor

Finally your software can include it in your software as follows:

package main

import (
	"fmt"
	"github.com/klische/gopenpgp/v2/crypto"
)

func main() {
	fmt.Println(crypto.GetUnixTime())
}
Git-Clone install

To install for development mode, cloning the repository, it can be done in the following way:

cd $GOPATH
mkdir -p src/github.com/ProtonMail/
cd $GOPATH/src/github.com/ProtonMail/
git clone git@github.com:ProtonMail/gopenpgp.git
cd gopenpgp
ln -s . v2
go mod

Documentation

A full overview of the API can be found here: https://godoc.org/gopkg.in/ProtonMail/gopenpgp.v2/crypto

In this document examples are provided and the proper use of (almost) all functions is tested.

Using with Go Mobile

This library can be compiled with Gomobile too. First ensure you have a working installation of gomobile:

gomobile version

In case this fails, install it with:

go get -u golang.org/x/mobile/cmd/gomobile

Then ensure your path env var has gomobile's binary, and it is properly init-ed:

export PATH="$PATH:$GOPATH/bin"
gomobile init

Then you must ensure that the Android or iOS frameworks are installed and the respective env vars set.

Finally, build the application

sh build.sh

This script will build for both android and iOS at the same time, to filter one out you can comment out the line in the corresponding section.

Examples

Encrypt / Decrypt with password
import "github.com/klische/gopenpgp/v2/helper"

const password = []byte("hunter2")

// Encrypt data with password
armor, err := helper.EncryptMessageWithPassword(password, "my message")

// Decrypt data with password
message, err := helper.DecryptMessageWithPassword(password, armor)

To encrypt binary data or use more advanced modes:

import "github.com/klische/gopenpgp/v2/constants"

const password = []byte("hunter2")

var message = crypto.NewPlainMessage(data)
// Or
message = crypto.NewPlainMessageFromString(string)

// Encrypt data with password
encrypted, err := EncryptMessageWithPassword(message, password)
// Encrypted message in encrypted.GetBinary() or encrypted.GetArmored()

// Decrypt data with password
decrypted, err := DecryptMessageWithPassword(encrypted, password)

//Original message in decrypted.GetBinary()
Encrypt / Decrypt with PGP keys
import "github.com/klische/gopenpgp/v2/helper"

// put keys in backtick (``) to avoid errors caused by spaces or tabs
const pubkey = `-----BEGIN PGP PUBLIC KEY BLOCK-----
...
-----END PGP PUBLIC KEY BLOCK-----`

const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // encrypted private key

const passphrase = []byte(`the passphrase of the private key`) // Passphrase of the privKey

// encrypt message using public key
armor, err := helper.EncryptMessageArmored(pubkey, "plain text")

// decrypt armored encrypted message using the private key
decrypted, err := helper.DecryptMessageArmored(privkey, passphrase, armor)

With signatures:

// Keys initialization as before (omitted)

// encrypt message using public key, sign with the private key
armor, err := helper.EncryptSignMessageArmored(pubkey, privkey, passphrase, "plain text")

// decrypt armored encrypted message using the private key, verify with the public key
// err != nil if verification fails
decrypted, err := helper.DecryptVerifyMessageArmored(pubkey, privkey, passphrase, armor)

With binary data or advanced modes:

// Keys initialization as before (omitted)
var binMessage = crypto.NewPlainMessage(data)

publicKeyObj, err := crypto.NewKeyFromArmored(publicKey)
publicKeyRing, err := crypto.NewKeyRing(publicKeyObj)

pgpMessage, err := publicKeyRing.Encrypt(binMessage, privateKeyRing)

// Armored message in pgpMessage.GetArmored()
// pgpMessage can be obtained from NewPGPMessageFromArmored(ciphertext)

//pgpMessage can be obtained from a byte array
var pgpMessage = crypto.NewPGPMessage([]byte)

privateKeyObj, err := crypto.NewKeyFromArmored(privateKey)
unlockedKeyObj = privateKeyObj.Unlock(passphrase)
privateKeyRing, err := crypto.NewKeyRing(unlockedKeyObj)

message, err := privateKeyRing.Decrypt(pgpMessage, publicKeyRing, crypto.GetUnixTime())

privateKeyRing.ClearPrivateParams()

// Original data in message.GetString()
// `err` can be a SignatureVerificationError
Generate key

Keys are generated with the GenerateKey function, that returns the armored key as a string and a potential error. The library supports RSA with different key lengths or Curve25519 keys.

const (
  name = "Max Mustermann"
  email = "max.mustermann@example.com"
  passphrase = []byte("LongSecret")
  rsaBits = 2048
)

// RSA, string
rsaKey, err := helper.GenerateKey(name, email, passphrase, "rsa", rsaBits)

// Curve25519, string
ecKey, err := helper.GenerateKey(name, email, passphrase, "x25519", 0)

// RSA, Key struct
rsaKey, err := crypto.GenerateKey(name, email, "rsa", rsaBits)

// Curve25519, Key struct
ecKey, err := crypto.GenerateKey(name, email, "x25519", 0)
Detached signatures for plain text messages

To sign plain text data either an unlocked private keyring or a passphrase must be provided. The output is an armored signature.

const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // Encrypted private key
const passphrase = []byte("LongSecret") // Private key passphrase

var message = crypto.NewPlaintextMessage("Verified message")

privateKeyObj, err := crypto.NewKeyFromArmored(privkey)
unlockedKeyObj = privateKeyObj.Unlock(passphrase)
signingKeyRing, err := crypto.NewKeyRing(unlockedKeyObj)

pgpSignature, err := signingKeyRing.SignDetached(message, trimNewlines)

// The armored signature is in pgpSignature.GetArmored()
// The signed text is in message.GetString()

To verify a signature either private or public keyring can be provided.

const pubkey = `-----BEGIN PGP PUBLIC KEY BLOCK-----
...
-----END PGP PUBLIC KEY BLOCK-----`

const signature = `-----BEGIN PGP SIGNATURE-----
...
-----END PGP SIGNATURE-----`

message := crypto.NewPlaintextMessage("Verified message")
pgpSignature, err := crypto.NewPGPSignatureFromArmored(signature)

publicKeyObj, err := crypto.NewKeyFromArmored(pubkey)
signingKeyRing, err := crypto.NewKeyRing(publicKeyObj)

err := signingKeyRing.VerifyDetached(message, pgpSignature, crypto.GetUnixTime())

if err == nil {
  // verification success
}
Detached signatures for binary data
const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // encrypted private key
const passphrase = "LongSecret"

var message = crypto.NewPlainMessage(data)

privateKeyObj, err := crypto.NewKeyFromArmored(privkey)
unlockedKeyObj := privateKeyObj.Unlock(passphrase)
signingKeyRing, err := crypto.NewKeyRing(unlockedKeyObj)

pgpSignature, err := signingKeyRing.SignDetached(message)

// The armored signature is in pgpSignature.GetArmored()
// The signed text is in message.GetBinary()

To verify a signature either private or public keyring can be provided.

const pubkey = `-----BEGIN PGP PUBLIC KEY BLOCK-----
...
-----END PGP PUBLIC KEY BLOCK-----`

const signature = `-----BEGIN PGP SIGNATURE-----
...
-----END PGP SIGNATURE-----`

message := crypto.NewPlainMessage("Verified message")
pgpSignature, err := crypto.NewPGPSignatureFromArmored(signature)

publicKeyObj, err := crypto.NewKeyFromArmored(pubkey)
signingKeyRing, err := crypto.NewKeyRing(publicKeyObj)

err := signingKeyRing.VerifyDetached(message, pgpSignature, crypto.GetUnixTime())

if err == nil {
  // verification success
}
Cleartext signed messages
// Keys initialization as before (omitted)
armored, err := helper.SignCleartextMessageArmored(privateKey, passphrase, plaintext)

To verify the message it has to be provided unseparated to the library. If verification fails an error will be returned.

// Keys initialization as before (omitted)
verifiedPlainText, err := helper.VerifyCleartextMessageArmored(publicKey, armored, crypto.GetUnixTime())
Encrypting and decrypting session Keys

A session key can be generated, encrypted to a Asymmetric/Symmetric key packet and obtained from it

// Keys initialization as before (omitted)

sessionKey, err := crypto.GenerateSessionKey()

keyPacket, err := publicKeyRing.EncryptSessionKey(sessionKey)
keyPacketSymm, err := crypto.EncryptSessionKeyWithPassword(sessionKey, password)

KeyPacket is a []byte containing the session key encrypted with the private key or password.

decodedKeyPacket, err := privateKeyRing.DecryptSessionKey(keyPacket)
decodedSymmKeyPacket, err := crypto.DecryptSessionKeyWithPassword(keyPacketSymm, password)

decodedKeyPacket and decodedSymmKeyPacket are objects of type *SymmetricKey that can be used to decrypt the corresponding symmetrically encrypted data packets:

var message = crypto.NewPlainMessage(data)

// Encrypt data with session key
dataPacket, err := sessionKey.Encrypt(message)

// Decrypt data with session key
decrypted, err := sessionKey.Decrypt(password, dataPacket)

//Original message in decrypted.GetBinary()

Note that it is not possible to process signatures when using data packets directly. Joining the data packet and a key packet gives us a valid PGP message:

pgpSplitMessage := NewPGPSplitMessage(keyPacket, dataPacket)
pgpMessage := pgpSplitMessage.GetPGPMessage()

// And vice-versa
newPGPSplitMessage, err := pgpMessage.SeparateKeyAndData()
// Key Packet is in newPGPSplitMessage.GetBinaryKeyPacket()
// Data Packet is in newPGPSplitMessage.GetBinaryDataPacket()
Checking keys

In order to check that the primary key is valid the Key#Check function can be used. This operation is as of 2.0.0 fairly expensive, as it requires a signature operation. It will be improved in the future versions, and possibly expanded to the subkeys, that are for now assumed to be correct thanks to the binding signature.

const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // Encrypted private key
const passphrase = []byte("LongSecret") // Private key passphrase

privateKeyObj, err := crypto.NewKeyFromArmored(privkey)
unlockedKeyObj = privateKeyObj.Unlock(passphrase)

isVerified, _ := unlockedKeyObj.Check();
if !isVerified {
    // Handle broken keys
}

This function runs on unlocked private keys, and it will return an error if called with public keys or locked keys.

Directories

Path Synopsis
Package armor contains a set of helper methods for armoring and unarmoring data.
Package armor contains a set of helper methods for armoring and unarmoring data.
Package constants provides a set of common OpenPGP constants.
Package constants provides a set of common OpenPGP constants.
Package crypto provides a high-level API for common OpenPGP functionality.
Package crypto provides a high-level API for common OpenPGP functionality.
Package helper contains several functions with a simple interface to extend usability and compatibility with gomobile
Package helper contains several functions with a simple interface to extend usability and compatibility with gomobile
Package internal contains internal methods and constants.
Package internal contains internal methods and constants.
Package models provides structs containing message data.
Package models provides structs containing message data.
Package subtle contains subtly insecure methods not recommended for casual use.
Package subtle contains subtly insecure methods not recommended for casual use.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL