Documentation ¶
Index ¶
Constants ¶
const FavCritRateBias = 8
Variables ¶
This section is empty.
Functions ¶
func PrettyPrintStatsCounts ¶
Helper function to pretty print substat counts. Stolen from similar function that takes in the float array
Types ¶
type Slice ¶
type Slice struct {
// contains filtered or unexported fields
}
Thin wrapper around sort Slice to retrieve the sorted indices as well
type SubstatOptimizer ¶
type SubstatOptimizer struct {
// contains filtered or unexported fields
}
func NewSubstatOptimizer ¶
func NewSubstatOptimizer(optionsMap map[string]float64, sugarLog *zap.SugaredLogger, verbose bool) *SubstatOptimizer
func (*SubstatOptimizer) PrettyPrint ¶
func (o *SubstatOptimizer) PrettyPrint(output string, statsFinal *SubstatOptimizerDetails) string
Final output This doesn't take much time relatively speaking, so just always do the processing...
func (*SubstatOptimizer) Run ¶
func (o *SubstatOptimizer) Run(cfg string, simopt simulator.Options, simcfg *info.ActionList, gcsl ast.Node)
Substat Optimization strategy is very simplistic right now: This is not fully optimal - see other comments in code 1) User sets team, weapons, artifact sets/main stats, and rotation 2) Given those, for each character, sim picks ER substat value that functionally maximizes DPS Mean/SD, subject to a penalty on high ER values
- Strategy is to just do a dumb grid search over ER substat values for each character
- ER substat values are set in increments of 2 to make the search easier
3) Given ER values, we then optimize the other substats by doing a "gradient descent" (but not really) method
type SubstatOptimizerDetails ¶
type SubstatOptimizerDetails struct {
// contains filtered or unexported fields
}
func NewSubstatOptimizerDetails ¶
func NewSubstatOptimizerDetails( optimizer *SubstatOptimizer, cfg string, simopt simulator.Options, simcfg *info.ActionList, gcsl ast.Node, indivLiquidCap int, totalLiquidSubstats int, fixedSubstatCount int, ) *SubstatOptimizerDetails