ethereum

package module
v1.0.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 19, 2019 License: GPL-3.0, GPL-3.0 Imports: 5 Imported by: 0

README

IOV Blockchain

简体中文|English

The Website of CNI

IOV Blockchain Certified Service Providers

IOV Blockchain Explore

Introduction

The IOV Blockchain is developed by CNI Blockchain Technologies, which supports multi-scenario of Blockchain platform in intelligent vehicle network, has it own core technology competitiveness and independent intellectual property rights.In addition to, IOV Blockchain has applied a number of nvention patents, software copyrights and other intellectual property rights. The source code of IOV Blockchain has been uploaded to GitHub on December 19, 2019 and officially open-source for global application. It aims to build a world-class Blockchain technology infrastructure, build a Blockchain application ecological scene with the automobile industry chain, and serve the global automobile industry and users.

The development and application of Blockchain technology is driving the global economy into a new era of digital economy development. Just as in the Internet era, not every enterprise must build an Alibaba, but rather it should quickly seize the e-commerce market based on Alibaba. The construction of international Blockchain infrastructure is a responsibility that industry leaders must bear, and CNI Blockchain Technologies has it responsibility.

IOV Blockchain has own innovative bottom consensus algorithm -MDPOS(Multi-Delegated Proof of Stake ), which greatly optimizes the impossible triangle problem, and creatively realizes the co-governance mechanism between public chain and alliance chain.

The IOV Blockchain has two major technological advantages

  1. At the technical level, the performance of IOV public chain has been greatly improved while the decentralization and safety are guaranteed. The measured TPS has reached 128 times of BTC and 60 times of Eth. With a capacity of 20 million TPS, the IOV Blockchain has become one of the first-line public chain in the world, serving the vehicle industry efficiently.

  2. At the application level, the public chain and alliance chain of IOV are combined to open the industrial chain and the community, which effectively solve the specific problems of economic stimulation and storage in the industrial chain and the community vertical field.

Significance

  1. IOV Blockchain is the first public Blockchain of vehicle in the world, the opensource of IOVBlockchain will break the unique situation of Blockchain applications in global financial industry and push the automotive Blockchain industry to a new level ,which must bring new breakthroughs in the global automotive industry in security governance and the development of the digital economy.

  2. IOV Blockchain and the automotive industry chain jointly build a multi-scenario Blockchain application ecosystem that will help to quickly achieve a unified standard for the value of the global connected vehicle data. Digital chips for trading centers and connected vehicles will be rapidly developed.

  3. The opensource of IOV Blockchain will promote the realization of 5G communication technology in vehicle intelligent network V2X (Vehicle to everthing) scenario. Make benefit to all car user , bring new experiences in vehicle network entertainment and digital value.

IOV Blockchain Certified Service Providers

Click here to join the IOV Blockchain Certified Service Providers

 

Why you need to join in the Certified Service Providers of IOV Blockchain?

With a deep understanding of the underlying technology and scenarios of the Blockchain, the IOV Blockchain team can provide a full range of deep technical support and consulting services for Certified Service Providers . At the same time, we believe that the best way to develop Blockchain technology is to join or participate in international Blockchain technology organizations to learn from each other.

Anyone can join the IOV Blockchain Certified Service Providers , whether you are an individual, organization or enterprise, as long as you have relevant Blockchain applications or technical conditions, you can apply to join.

The Rights of Certified Service Providers:

1.Obtain the opportunity to give priority to providing public sector social governance and market economy activity Blockchain technology services;

2.The right to participate in our regional market, technology, and publicity related summit activities;

3.Display your company / organization logo on the website of CNI as a certification service provider;

4.Opportunities to communicate and discuss with the IOV Blockchain international technical team;

5.List your products and services in the IOVBlockchain application case directory

6.Get the priority recommendation of IOV Blockchain in the project bidding and other commercial activities,

7.Have the opportunity to be invited to attend relevant events as a guest to match appropriate keynote speech opportunities.

Documentation

Overview

Package ethereum defines interfaces for interacting with Ethereum.

Index

Constants

This section is empty.

Variables

View Source
var NotFound = errors.New("not found")

NotFound is returned by API methods if the requested item does not exist.

Functions

This section is empty.

Types

type CallMsg

type CallMsg struct {
	From     common.Address  // the sender of the 'transaction'
	To       *common.Address // the destination contract (nil for contract creation)
	Gas      uint64          // if 0, the call executes with near-infinite gas
	GasPrice *big.Int        // wei <-> gas exchange ratio
	Value    *big.Int        // amount of wei sent along with the call
	Data     []byte          // input data, usually an ABI-encoded contract method invocation
	AppId    string
}

CallMsg contains parameters for contract calls.

type ChainReader

type ChainReader interface {
	BlockByHash(ctx context.Context, hash common.Hash) (*types.Block, error)
	BlockByNumber(ctx context.Context, number *big.Int) (*types.Block, error)
	HeaderByHash(ctx context.Context, hash common.Hash) (*types.Header, error)
	HeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error)
	TransactionCount(ctx context.Context, blockHash common.Hash) (uint, error)
	TransactionInBlock(ctx context.Context, blockHash common.Hash, index uint) (*types.Transaction, error)

	// This method subscribes to notifications about changes of the head block of
	// the canonical chain.
	SubscribeNewHead(ctx context.Context, ch chan<- *types.Header) (Subscription, error)
}

ChainReader provides access to the blockchain. The methods in this interface access raw data from either the canonical chain (when requesting by block number) or any blockchain fork that was previously downloaded and processed by the node. The block number argument can be nil to select the latest canonical block. Reading block headers should be preferred over full blocks whenever possible.

The returned error is NotFound if the requested item does not exist.

type ChainStateReader

type ChainStateReader interface {
	BalanceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (*big.Int, error)
	StorageAt(ctx context.Context, account common.Address, key common.Hash, blockNumber *big.Int) ([]byte, error)
	CodeAt(ctx context.Context, account common.Address, blockNumber *big.Int) ([]byte, error)
	NonceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (uint64, error)
}

ChainStateReader wraps access to the state trie of the canonical blockchain. Note that implementations of the interface may be unable to return state values for old blocks. In many cases, using CallContract can be preferable to reading raw contract storage.

type ChainSyncReader

type ChainSyncReader interface {
	SyncProgress(ctx context.Context) (*SyncProgress, error)
}

ChainSyncReader wraps access to the node's current sync status. If there's no sync currently running, it returns nil.

type ContractCaller

type ContractCaller interface {
	CallContract(ctx context.Context, call CallMsg, blockNumber *big.Int) ([]byte, error)
}

A ContractCaller provides contract calls, essentially transactions that are executed by the EVM but not mined into the blockchain. ContractCall is a low-level method to execute such calls. For applications which are structured around specific contracts, the abigen tool provides a nicer, properly typed way to perform calls.

type FilterQuery

type FilterQuery struct {
	FromBlock *big.Int         // beginning of the queried range, nil means genesis block
	ToBlock   *big.Int         // end of the range, nil means latest block
	Addresses []common.Address // restricts matches to events created by specific contracts

	// The Topic list restricts matches to particular event topics. Each event has a list
	// of topics. Topics matches a prefix of that list. An empty element slice matches any
	// topic. Non-empty elements represent an alternative that matches any of the
	// contained topics.
	//
	// Examples:
	// {} or nil          matches any topic list
	// {{A}}              matches topic A in first position
	// {{}, {B}}          matches any topic in first position, B in second position
	// {{A}}, {B}}        matches topic A in first position, B in second position
	// {{A, B}}, {C, D}}  matches topic (A OR B) in first position, (C OR D) in second position
	Topics [][]common.Hash
}

FilterQuery contains options for contract log filtering.

type GasEstimator

type GasEstimator interface {
	EstimateGas(ctx context.Context, call CallMsg) (uint64, error)
}

GasEstimator wraps EstimateGas, which tries to estimate the gas needed to execute a specific transaction based on the pending state. There is no guarantee that this is the true gas limit requirement as other transactions may be added or removed by miners, but it should provide a basis for setting a reasonable default.

type GasPricer

type GasPricer interface {
	SuggestGasPrice(ctx context.Context) (*big.Int, error)
}

GasPricer wraps the gas price oracle, which monitors the blockchain to determine the optimal gas price given current fee market conditions.

type LogFilterer

type LogFilterer interface {
	FilterLogs(ctx context.Context, q FilterQuery) ([]types.Log, error)
	SubscribeFilterLogs(ctx context.Context, q FilterQuery, ch chan<- types.Log) (Subscription, error)
}

LogFilterer provides access to contract log events using a one-off query or continuous event subscription.

Logs received through a streaming query subscription may have Removed set to true, indicating that the log was reverted due to a chain reorganisation.

type PendingContractCaller

type PendingContractCaller interface {
	PendingCallContract(ctx context.Context, call CallMsg) ([]byte, error)
}

PendingContractCaller can be used to perform calls against the pending state.

type PendingStateEventer

type PendingStateEventer interface {
	SubscribePendingTransactions(ctx context.Context, ch chan<- *types.Transaction) (Subscription, error)
}

A PendingStateEventer provides access to real time notifications about changes to the pending state.

type PendingStateReader

type PendingStateReader interface {
	PendingBalanceAt(ctx context.Context, account common.Address) (*big.Int, error)
	PendingStorageAt(ctx context.Context, account common.Address, key common.Hash) ([]byte, error)
	PendingCodeAt(ctx context.Context, account common.Address) ([]byte, error)
	PendingNonceAt(ctx context.Context, account common.Address) (uint64, error)
	PendingTransactionCount(ctx context.Context) (uint, error)
}

A PendingStateReader provides access to the pending state, which is the result of all known executable transactions which have not yet been included in the blockchain. It is commonly used to display the result of ’unconfirmed’ actions (e.g. wallet value transfers) initiated by the user. The PendingNonceAt operation is a good way to retrieve the next available transaction nonce for a specific account.

type Subscription

type Subscription interface {
	// Unsubscribe cancels the sending of events to the data channel
	// and closes the error channel.
	Unsubscribe()
	// Err returns the subscription error channel. The error channel receives
	// a value if there is an issue with the subscription (e.g. the network connection
	// delivering the events has been closed). Only one value will ever be sent.
	// The error channel is closed by Unsubscribe.
	Err() <-chan error
}

Subscription represents an event subscription where events are delivered on a data channel.

type SyncProgress

type SyncProgress struct {
	StartingBlock uint64 // Block number where sync began
	CurrentBlock  uint64 // Current block number where sync is at
	HighestBlock  uint64 // Highest alleged block number in the chain
	PulledStates  uint64 // Number of state trie entries already downloaded
	KnownStates   uint64 // Total number of state trie entries known about
}

SyncProgress gives progress indications when the node is synchronising with the Ethereum network.

type TransactionReader

type TransactionReader interface {
	// TransactionByHash checks the pool of pending transactions in addition to the
	// blockchain. The isPending return value indicates whether the transaction has been
	// mined yet. Note that the transaction may not be part of the canonical chain even if
	// it's not pending.
	TransactionByHash(ctx context.Context, txHash common.Hash) (tx *types.Transaction, isPending bool, err error)
	// TransactionReceipt returns the receipt of a mined transaction. Note that the
	// transaction may not be included in the current canonical chain even if a receipt
	// exists.
	TransactionReceipt(ctx context.Context, txHash common.Hash) (*types.Receipt, error)
}

TransactionReader provides access to past transactions and their receipts. Implementations may impose arbitrary restrictions on the transactions and receipts that can be retrieved. Historic transactions may not be available.

Avoid relying on this interface if possible. Contract logs (through the LogFilterer interface) are more reliable and usually safer in the presence of chain reorganisations.

The returned error is NotFound if the requested item does not exist.

type TransactionSender

type TransactionSender interface {
	SendTransaction(ctx context.Context, tx *types.Transaction) error
}

TransactionSender wraps transaction sending. The SendTransaction method injects a signed transaction into the pending transaction pool for execution. If the transaction was a contract creation, the TransactionReceipt method can be used to retrieve the contract address after the transaction has been mined.

The transaction must be signed and have a valid nonce to be included. Consumers of the API can use package accounts to maintain local private keys and need can retrieve the next available nonce using PendingNonceAt.

Directories

Path Synopsis
Package accounts implements high level Ethereum account management.
Package accounts implements high level Ethereum account management.
abi
Package abi implements the Ethereum ABI (Application Binary Interface).
Package abi implements the Ethereum ABI (Application Binary Interface).
abi/bind
Package bind generates Ethereum contract Go bindings.
Package bind generates Ethereum contract Go bindings.
keystore
Package keystore implements encrypted storage of secp256k1 private keys.
Package keystore implements encrypted storage of secp256k1 private keys.
usbwallet
Package usbwallet implements support for USB hardware wallets.
Package usbwallet implements support for USB hardware wallets.
usbwallet/internal/trezor
Package trezor contains the wire protocol wrapper in Go.
Package trezor contains the wire protocol wrapper in Go.
Package bmt provides a binary merkle tree implementation
Package bmt provides a binary merkle tree implementation
cmd
bootnode
bootnode runs a bootstrap node for the Ethereum Discovery Protocol.
bootnode runs a bootstrap node for the Ethereum Discovery Protocol.
clef
signer is a utility that can be used so sign transactions and arbitrary data.
signer is a utility that can be used so sign transactions and arbitrary data.
evm
evm executes EVM code snippets.
evm executes EVM code snippets.
faucet
faucet is a Ether faucet backed by a light client.
faucet is a Ether faucet backed by a light client.
giov
giov is the official command-line client for GIOV.
giov is the official command-line client for GIOV.
internal/browser
Package browser provides utilities for interacting with users' browsers.
Package browser provides utilities for interacting with users' browsers.
p2psim
p2psim provides a command-line client for a simulation HTTP API.
p2psim provides a command-line client for a simulation HTTP API.
puppeth
puppeth is a command to assemble and maintain private networks.
puppeth is a command to assemble and maintain private networks.
rlpdump
rlpdump is a pretty-printer for RLP data.
rlpdump is a pretty-printer for RLP data.
swarm
Command bzzhash computes a swarm tree hash.
Command bzzhash computes a swarm tree hash.
utils
Package utils contains internal helper functions for go-ethereum commands.
Package utils contains internal helper functions for go-ethereum commands.
Package common contains various helper functions.
Package common contains various helper functions.
bitutil
Package bitutil implements fast bitwise operations.
Package bitutil implements fast bitwise operations.
compiler
Package compiler wraps the Solidity compiler executable (solc).
Package compiler wraps the Solidity compiler executable (solc).
hexutil
Package hexutil implements hex encoding with 0x prefix.
Package hexutil implements hex encoding with 0x prefix.
math
Package math provides integer math utilities.
Package math provides integer math utilities.
mclock
package mclock is a wrapper for a monotonic clock source
package mclock is a wrapper for a monotonic clock source
Package consensus implements different Ethereum consensus engines.
Package consensus implements different Ethereum consensus engines.
clique
Package clique implements the proof-of-authority consensus engine.
Package clique implements the proof-of-authority consensus engine.
ethash
Package ethash implements the ethash proof-of-work consensus engine.
Package ethash implements the ethash proof-of-work consensus engine.
contracts
chequebook
Package chequebook package wraps the 'chequebook' Ethereum smart contract.
Package chequebook package wraps the 'chequebook' Ethereum smart contract.
ens
Package core implements the Ethereum consensus protocol.
Package core implements the Ethereum consensus protocol.
asm
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
bloombits
Package bloombits implements bloom filtering on batches of data.
Package bloombits implements bloom filtering on batches of data.
state
Package state provides a caching layer atop the Ethereum state trie.
Package state provides a caching layer atop the Ethereum state trie.
types
Package types contains data types related to Ethereum consensus.
Package types contains data types related to Ethereum consensus.
vm
Package vm implements the Ethereum Virtual Machine.
Package vm implements the Ethereum Virtual Machine.
vm/runtime
Package runtime provides a basic execution model for executing EVM code.
Package runtime provides a basic execution model for executing EVM code.
bn256
Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
bn256/cloudflare
Package bn256 implements a particular bilinear group at the 128-bit security level.
Package bn256 implements a particular bilinear group at the 128-bit security level.
bn256/google
Package bn256 implements a particular bilinear group.
Package bn256 implements a particular bilinear group.
secp256k1
Package secp256k1 wraps the bitcoin secp256k1 C library.
Package secp256k1 wraps the bitcoin secp256k1 C library.
sha3
Package sha3 implements the SHA-3 fixed-output-length hash functions and the SHAKE variable-output-length hash functions defined by FIPS-202.
Package sha3 implements the SHA-3 fixed-output-length hash functions and the SHAKE variable-output-length hash functions defined by FIPS-202.
eth
Package eth implements the Ethereum protocol.
Package eth implements the Ethereum protocol.
downloader
Package downloader contains the manual full chain synchronisation.
Package downloader contains the manual full chain synchronisation.
fetcher
Package fetcher contains the block announcement based synchronisation.
Package fetcher contains the block announcement based synchronisation.
filters
Package filters implements an ethereum filtering system for block, transactions and log events.
Package filters implements an ethereum filtering system for block, transactions and log events.
tracers
Package tracers is a collection of JavaScript transaction tracers.
Package tracers is a collection of JavaScript transaction tracers.
tracers/internal/tracers
Package tracers contains the actual JavaScript tracer assets.
Package tracers contains the actual JavaScript tracer assets.
Package ethclient provides a client for the Ethereum RPC API.
Package ethclient provides a client for the Ethereum RPC API.
Package ethstats implements the network stats reporting service.
Package ethstats implements the network stats reporting service.
Package event deals with subscriptions to real-time events.
Package event deals with subscriptions to real-time events.
filter
Package filter implements event filters.
Package filter implements event filters.
internal
debug
Package debug interfaces Go runtime debugging facilities.
Package debug interfaces Go runtime debugging facilities.
ethapi
Package ethapi implements the general Ethereum API functions.
Package ethapi implements the general Ethereum API functions.
guide
Package guide is a small test suite to ensure snippets in the dev guide work.
Package guide is a small test suite to ensure snippets in the dev guide work.
jsre
Package jsre provides execution environment for JavaScript.
Package jsre provides execution environment for JavaScript.
jsre/deps
Package deps contains the console JavaScript dependencies Go embedded.
Package deps contains the console JavaScript dependencies Go embedded.
web3ext
package web3ext contains geth specific web3.js extensions.
package web3ext contains geth specific web3.js extensions.
les
Package les implements the Light Ethereum Subprotocol.
Package les implements the Light Ethereum Subprotocol.
flowcontrol
Package flowcontrol implements a client side flow control mechanism
Package flowcontrol implements a client side flow control mechanism
Package light implements on-demand retrieval capable state and chain objects for the Ethereum Light Client.
Package light implements on-demand retrieval capable state and chain objects for the Ethereum Light Client.
log
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
Go port of Coda Hale's Metrics library
Go port of Coda Hale's Metrics library
exp
Hook go-metrics into expvar on any /debug/metrics request, load all vars from the registry into expvar, and execute regular expvar handler
Hook go-metrics into expvar on any /debug/metrics request, load all vars from the registry into expvar, and execute regular expvar handler
Package miner implements Ethereum block creation and mining.
Package miner implements Ethereum block creation and mining.
Package geth contains the simplified mobile APIs to go-ethereum.
Package geth contains the simplified mobile APIs to go-ethereum.
Package node sets up multi-protocol Ethereum nodes.
Package node sets up multi-protocol Ethereum nodes.
p2p
Package p2p implements the Ethereum p2p network protocols.
Package p2p implements the Ethereum p2p network protocols.
discover
Package discover implements the Node Discovery Protocol.
Package discover implements the Node Discovery Protocol.
discv5
Package discv5 implements the RLPx v5 Topic Discovery Protocol.
Package discv5 implements the RLPx v5 Topic Discovery Protocol.
enr
Package enr implements Ethereum Node Records as defined in EIP-778.
Package enr implements Ethereum Node Records as defined in EIP-778.
nat
Package nat provides access to common network port mapping protocols.
Package nat provides access to common network port mapping protocols.
netutil
Package netutil contains extensions to the net package.
Package netutil contains extensions to the net package.
protocols
Package protocols is an extension to p2p.
Package protocols is an extension to p2p.
simulations
Package simulations simulates p2p networks.
Package simulations simulates p2p networks.
Package rlp implements the RLP serialization format.
Package rlp implements the RLP serialization format.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
signer
rules/deps
Package deps contains the console JavaScript dependencies Go embedded.
Package deps contains the console JavaScript dependencies Go embedded.
api
api/http
Show nicely (but simple) formatted HTML error pages (or respond with JSON if the appropriate `Accept` header is set)) for the http package.
Show nicely (but simple) formatted HTML error pages (or respond with JSON if the appropriate `Accept` header is set)) for the http package.
Package tests implements execution of Ethereum JSON tests.
Package tests implements execution of Ethereum JSON tests.
tps
Package trie implements Merkle Patricia Tries.
Package trie implements Merkle Patricia Tries.
whisper
whisperv5
Package whisperv5 implements the Whisper protocol (version 5).
Package whisperv5 implements the Whisper protocol (version 5).

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL