omniscidb

command module
v4.7.0+incompatible Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jun 14, 2019 License: Apache-2.0 Imports: 32 Imported by: 0

README

OmniSciDB (formerly MapD Core)

OmniSciDB is an in-memory, column store, SQL relational database designed from the ground up to run on GPUs.

The repository includes a number of third party packages provided under separate licenses. Details about these packages and their respective licenses is at ThirdParty/licenses/index.md.

Downloads and Installation Instructions

OmniSci provides pre-built binaries for Linux for stable releases of the project:

Distro Package type CPU/GPU Link Docs
CentOS RPM CPU https://releases.omnisci.com/os/yum/stable/cpu https://www.omnisci.com/docs/latest/4_centos7-yum-cpu-os-recipe.html
CentOS RPM GPU https://releases.omnisci.com/os/yum/stable/cuda https://www.omnisci.com/docs/latest/4_centos7-yum-gpu-os-recipe.html
Ubuntu DEB CPU deb https://releases.omnisci.com/os/apt/ stable cpu https://www.omnisci.com/docs/latest/4_ubuntu-apt-cpu-os-recipe.html
Ubuntu DEB GPU deb https://releases.omnisci.com/os/apt/ stable cuda https://www.omnisci.com/docs/latest/4_ubuntu-apt-gpu-os-recipe.html
* tarball CPU https://releases.omnisci.com/os/tar/omnisci-os-latest-Linux-x86_64-cpu.tar.gz
* tarball GPU https://releases.omnisci.com/os/tar/omnisci-os-latest-Linux-x86_64-cuda.tar.gz

Developing OmniSciDB: Table of Contents

License

This project is licensed under the Apache License, Version 2.0.

The repository includes a number of third party packages provided under separate licenses. Details about these packages and their respective licenses is at ThirdParty/licenses/index.md.

Contributing

In order to clarify the intellectual property license granted with Contributions from any person or entity, OmniSci must have a Contributor License Agreement ("CLA") on file that has been signed by each Contributor, indicating agreement to the Contributor License Agreement. After making a pull request, a bot will notify you if a signed CLA is required and provide instructions for how to sign it. Please read the agreement carefully before signing and keep a copy for your records.

Building

If this is your first time building OmniSciDB, install the dependencies mentioned in the Dependencies section below.

OmniSciDB uses CMake for its build system.

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=debug ..
make -j 4

The following cmake/ccmake options can enable/disable different features:

  • -DCMAKE_BUILD_TYPE=release - Build type and compiler options to use. Options are Debug, Release, RelWithDebInfo, MinSizeRel, and unset.
  • -DENABLE_ASAN=off - Enable address sanitizer. Default is off.
  • -DENABLE_AWS_S3=on - Enable AWS S3 support, if available. Default is on.
  • -DENABLE_CALCITE_DELETE_PATH=on - Enable Calcite Delete Path. Default is on.
  • -DENABLE_CALCITE_UPDATE_PATH=on - Enable Calcite Update Path. Default is on.
  • -DENABLE_CUDA=off - Disable CUDA. Default is on.
  • -DENABLE_CUDA_KERNEL_DEBUG=off - Enable debugging symbols for CUDA kernels. Will dramatically reduce kernel performance. Default is off.
  • -DENABLE_DECODERS_BOUNDS_CHECKING=off - Enable bounds checking for column decoding. Default is off.
  • -DENABLE_FOLLY=on - Use Folly. Default is on.
  • -DENABLE_IWYU=off - Enable include-what-you-use. Default is off.
  • -DENABLE_JIT_DEBUG=off - Enable debugging symbols for the JIT. Default is off.
  • -DENABLE_PROFILER=off - Enable google perftools. Default is off.
  • -DENABLE_STANDALONE_CALCITE=off - Require standalone Calcite server. Default is off.
  • -DENABLE_TESTS=on - Build unit tests. Default is on.
  • -DENABLE_TSAN=off - Enable thread sanitizer. Default is off.
  • -DENABLE_CODE_COVERAGE=off - Enable code coverage symbols (clang only). Default is off.
  • -DENALBE_JAVA_REMOTE_DEBUG=on - Enable Java Remote Debug. Default is off.
  • -DMAPD_DOCS_DOWNLOAD=on - Download the latest master build of the documentation / docs.mapd.com. Default is off. Note: this is a >50MB download.
  • -DPREFER_STATIC_LIBS=off - Static link dependencies, if available. Default is off.

Testing

OmniSciDB uses Google Test as its main testing framework. Tests reside under the Tests directory.

The sanity_tests target runs the most common tests. If using Makefiles to build, the tests may be run using:

make sanity_tests

AddressSanitizer

AddressSanitizer can be activated by setting the ENABLE_ASAN CMake flag in a fresh build directory. At this time CUDA must also be disabled. In an empty build directory run CMake and compile:

mkdir build && cd build
cmake -DENABLE_ASAN=on -DENABLE_CUDA=off ..
make -j 4

Finally run the tests:

export ASAN_OPTIONS=alloc_dealloc_mismatch=0:handle_segv=0
make sanity_tests

ThreadSanitizer

ThreadSanitizer can be activated by setting the ENABLE_TSAN CMake flag in a fresh build directory. At this time CUDA must also be disabled. In an empty build directory run CMake and compile:

mkdir build && cd build
cmake -DENABLE_TSAN=on -DENABLE_CUDA=off ..
make -j 4

We use a TSAN suppressions file to ignore warnings in third party libraries. Source the suppressions file by adding it to your TSAN_OPTIONS env:

export TSAN_OPTIONS="suppressions=/path/to/mapd/config/tsan.suppressions"

Finally run the tests:

make sanity_tests

Generating Packages

OmniSciDB uses CPack to generate packages for distribution. Packages generated on CentOS with static linking enabled can be used on most other recent Linux distributions.

To generate packages on CentOS (assuming starting from top level of the omniscidb repository):

mkdir build-package && cd build-package
cmake -DPREFER_STATIC_LIBS=on -DCMAKE_BUILD_TYPE=release ..
make -j 4
cpack -G TGZ

The first command creates a fresh build directory, to ensure there is nothing left over from a previous build.

The second command configures the build to prefer linking to the dependencies' static libraries instead of the (default) shared libraries, and to build using CMake's release configuration (enables compiler optimizations). Linking to the static versions of the libraries libraries reduces the number of dependencies that must be installed on target systems.

The last command generates a .tar.gz package. The TGZ can be replaced with, for example, RPM or DEB to generate a .rpm or .deb, respectively.

Using

The startomnisci wrapper script may be used to start OmniSciDB in a testing environment. This script performs the following tasks:

  • initializes the data storage directory via initdb, if required
  • starts the main OmniSciDB server, omnisci_server
  • starts the OmniSci web server, omnisci_web_server, for serving OmniSci Immerse
  • offers to download and import a sample dataset, using the insert_sample_data script
  • attempts to open OmniSci Immerse in your web browser

Assuming you are in the build directory, and it is a subdirectory of the omniscidb repository, startomnisci may be run by:

../startomnisci

Starting Manually

It is assumed that the following commands are run from inside the build directory.

Initialize the data storage directory. This command only needs to be run once.

mkdir data && ./bin/initdb data

Start the OmniSciDB server:

./bin/omnisci_server

In a new terminal, start the OmniSci web server:

./bin/omnisci_web_server

If desired, insert a sample dataset by running the insert_sample_data script in a new terminal:

../insert_sample_data

You can now start using the database. The omnisql utility may be used to interact with the database from the command line:

./bin/omnisql -p HyperInteractive

where HyperInteractive is the default password. The default user mapd is assumed if not provided.

You can also interact with the database using the web-based OmniSci Immerse frontend by visiting the web server's default port of 6273:

http://localhost:6273

Note: usage of OmniSci Immerse is governed by a separate license agreement, provided under EULA-CE.txt. The version bundled with this project may only be used for non-commercial purposes.

Code Style

Contributed code should compile without generating warnings by recent compilers on most Linux distributions. Changes to the code should follow the C++ Core Guidelines.

clang-format

A .clang-format style configuration, based on the Chromium style guide, is provided at the top level of the repository. Please format your code using a recent version (8.0+ preferred) of ClangFormat before submitting.

To use:

clang-format -i File.cpp

clang-tidy

A .clang-tidy configuration is provided at the top level of the repository. Please lint your code using a recent version (6.0+ preferred) of clang-tidy before submitting.

clang-tidy requires all generated files to exist before running. The easiest way to accomplish this is to simply run a full build before running clang-tidy. A build target which runs clang-tidy is provided. To use:

make clang-tidy

Note: clang-tidy may make invalid or overly verbose changes to the source code. It is recommended to first commit your changes, then run clang-tidy and review its recommended changes before amending them to your commit.

Note: the clang-tidy target uses the run-clang-tidy.py script provided with LLVM, which may depend on PyYAML. The target also depends on jq, which is used to filter portions of the compile_commands.json file.

Dependencies

OmniSciDB has the following dependencies:

Package Min Version Required
CMake 3.3 yes
LLVM 4.0 (8.0 recommended) yes
GCC 6.1 no, if building with clang
Go 1.6 yes
Boost 1.65.0 yes
OpenJDK 1.7 yes
CUDA 9.0 yes, if compiling with GPU support
gperftools yes
gdal 2.3 yes
Arrow 0.11.0 yes

Dependencies for omnisci_web_server and other Go utils are in ThirdParty/go. See ThirdParty/go/src/mapd/vendor/README.md for instructions on how to add new deps.

CentOS 7

OmniSciDB requires a number of dependencies which are not provided in the common CentOS/RHEL package repositories. A prebuilt package containing all these dependencies is provided for CentOS 7 (x86_64).

Use the scripts/mapd-deps-prebuilt.sh build script to install prebuilt dependencies.

These dependencies will be installed to a directory under /usr/local/mapd-deps. The mapd-deps-prebuilt.sh script also installs Environment Modules in order to simplify managing the required environment variables. Log out and log back in after running the mapd-deps-prebuilt.sh script in order to active Environment Modules command, module.

The mapd-deps environment module is disabled by default. To activate for your current session, run:

module load mapd-deps

To disable the mapd-deps module:

module unload mapd-deps

WARNING: The mapd-deps package contains newer versions of packages such as GCC and ncurses which might not be compatible with the rest of your environment. Make sure to disable the mapd-deps module before compiling other packages.

Instructions for installing CUDA are below.

CUDA

It is preferred, but not necessary, to install CUDA and the NVIDIA drivers using the .rpm using the instructions provided by NVIDIA. The rpm (network) method (preferred) will ensure you always have the latest stable drivers, while the rpm (local) method allows you to install does not require Internet access.

The .rpm method requires DKMS to be installed, which is available from the Extra Packages for Enterprise Linux repository:

sudo yum install epel-release

Be sure to reboot after installing in order to activate the NVIDIA drivers.

Environment Variables

The mapd-deps-prebuilt.sh script includes two files with the appropriate environment variables: mapd-deps-<date>.sh (for sourcing from your shell config) and mapd-deps-<date>.modulefile (for use with Environment Modules, yum package environment-modules). These files are placed in mapd-deps install directory, usually /usr/local/mapd-deps/<date>. Either of these may be used to configure your environment: the .sh may be sourced in your shell config; the .modulefile needs to be moved to the modulespath.

Building Dependencies

The scripts/mapd-deps-centos.sh script is used to build the dependencies. Modify this script and run if you would like to change dependency versions or to build on alternative CPU architectures.

cd scripts
module unload mapd-deps
./mapd-deps-centos.sh --compress

macOS

scripts/mapd-deps-osx.sh is provided that will automatically install and/or update Homebrew and use that to install all dependencies. Please make sure macOS is completely up to date and Xcode is installed before running. Xcode can be installed from the App Store.

CUDA

mapd-deps-osx.sh will automatically install CUDA via Homebrew and add the correct environment variables to ~/.bash_profile.

Java

mapd-deps-osx.sh will automatically install Java and Maven via Homebrew and add the correct environment variables to ~/.bash_profile.

Ubuntu

Most build dependencies required by OmniSciDB are available via APT. Certain dependencies such as Thrift, Blosc, and Folly must be built as they either do not exist in the default repositories or have outdated versions. A prebuilt package containing all these dependencies is provided for Ubuntu 18.04 (x86_64). The dependencies will be installed to /usr/local/mapd-deps/ by default; see the Environment Variables section below for how to add these dependencies to your environment.

Ubuntu 16.04

OmniSciDB requires a newer version of Boost than the version which is provided by Ubuntu 16.04. The scripts/mapd-deps-ubuntu1604.sh build script will compile and install a newer version of Boost into the /usr/local/mapd-deps/ directory.

Ubuntu 18.04

Use the scripts/mapd-deps-prebuilt.sh build script to install prebuilt dependencies.

These dependencies will be installed to a directory under /usr/local/mapd-deps. The mapd-deps-prebuilt.sh script above will generate a script named mapd-deps.sh containing the environment variables which need to be set. Simply source this file in your current session (or symlink it to /etc/profile.d/mapd-deps.sh) in order to activate it:

source /usr/local/mapd-deps/mapd-deps.sh

Some installs of Ubuntu 18.04 may fail while building with a message similar to:

java.security.InvalidAlgorithmParameterException: the trustAnchors parameter must be non-empty

This is a known issue in 18.04 which will be resolved in Ubuntu 18.04.1. To resolve on 18.04:

sudo rm /etc/ssl/certs/java/cacerts
sudo update-ca-certificates -f
Environment Variables

The CUDA and mapd-deps lib directories need to be added to LD_LIBRARY_PATH; the CUDA and mapd-deps bin directories need to be added to PATH. The mapd-deps-ubuntu.sh and mapd-deps-prebuilt.sh scripts will generate a script named mapd-deps.sh containing the environment variables which need to be set. Simply source this file in your current session (or symlink it to /etc/profile.d/mapd-deps.sh) in order to activate it:

source /usr/local/mapd-deps/mapd-deps.sh
CUDA

Recent versions of Ubuntu provide the NVIDIA CUDA Toolkit and drivers in the standard repositories. To install:

sudo apt install -y \
    nvidia-cuda-toolkit

Be sure to reboot after installing in order to activate the NVIDIA drivers.

Building Dependencies

The scripts/mapd-deps-ubuntu.sh and scripts/mapd-deps-ubuntu1604.sh scripts are used to build the dependencies for Ubuntu 18.04 and 16.04, respectively. The scripts will install all required dependencies (except CUDA) and build the dependencies which require it. Modify this script and run if you would like to change dependency versions or to build on alternative CPU architectures.

cd scripts
./mapd-deps-ubuntu.sh --compress

Arch

scripts/mapd-deps-arch.sh is provided that will use yay to install packages from the Arch User Repository and a custom PKGBUILD script for Apache Arrow. If you don't have yay yet, install it first: https://github.com/Jguer/yay#installation

Note: Apache Arrow, while available in the AUR, requires a few custom build flags in order to be used with Core. A custom PKGBUILD for it is included.

Note: packages aws-sdk-cpp and folly, while available in the AUR, are not supported while for building Core on Arch. If these packages are installed, support for them should be disabled when building Core. To do so, use the following options when running CMake:

cmake -DENABLE_FOLLY=off -DENABLE_AWS_S3=off ..
CUDA

CUDA and the NVIDIA drivers may be installed using the following.

yay -S \
    linux-headers \
    cuda \
    nvidia

Be sure to reboot after installing in order to activate the NVIDIA drivers.

Environment Variables

The cuda package should set up the environment variables required to use CUDA. If you receive errors saying nvcc is not found, then CUDA bin directories need to be added to PATH: the easiest way to do so is by creating a new file named /etc/profile.d/mapd-deps.sh containing the following:

PATH=/opt/cuda/bin:$PATH
export PATH

Documentation

The Go Gopher

There is no documentation for this package.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL