Get standard chrony metrics, requires chronyc executable.
Below is the documentation of the various headers returned by chronyc tracking
.
- Reference ID - This is the refid and name (or IP address) if available, of the
server to which the computer is currently synchronised. If this is 127.127.1.1
it means the computer is not synchronised to any external source and that you
have the ‘local’ mode operating (via the local command in chronyc (see section
local), or the local directive in the ‘/etc/chrony.conf’ file (see section
local)).
- Stratum - The stratum indicates how many hops away from a computer with an
attached reference clock we are. Such a computer is a stratum-1 computer, so
the computer in the example is two hops away (i.e. a.b.c is a stratum-2 and is
synchronised from a stratum-1).
- Ref time - This is the time (UTC) at which the last measurement from the
reference source was processed.
- System time - In normal operation, chronyd never steps the system clock,
because any jump in the timescale can have adverse consequences for certain
application programs. Instead, any error in the system clock is corrected by
slightly speeding up or slowing down the system clock until the error has been
removed, and then returning to the system clock’s normal speed. A consequence
of this is that there will be a period when the system clock (as read by other
programs using the gettimeofday() system call, or by the date command in the
shell) will be different from chronyd's estimate of the current true time
(which it reports to NTP clients when it is operating in server mode). The
value reported on this line is the difference due to this effect.
- Last offset - This is the estimated local offset on the last clock update.
- RMS offset - This is a long-term average of the offset value.
- Frequency - The ‘frequency’ is the rate by which the system’s clock would be
wrong if chronyd was not correcting it. It is expressed in ppm (parts per
million). For example, a value of 1ppm would mean that when the system’s
clock thinks it has advanced 1 second, it has actually advanced by 1.000001
seconds relative to true time.
- Residual freq - This shows the ‘residual frequency’ for the currently selected
reference source. This reflects any difference between what the measurements
from the reference source indicate the frequency should be and the frequency
currently being used. The reason this is not always zero is that a smoothing
procedure is applied to the frequency. Each time a measurement from the
reference source is obtained and a new residual frequency computed, the
estimated accuracy of this residual is compared with the estimated accuracy
(see ‘skew’ next) of the existing frequency value. A weighted average is
computed for the new frequency, with weights depending on these accuracies. If
the measurements from the reference source follow a consistent trend, the
residual will be driven to zero over time.
- Skew - This is the estimated error bound on the frequency.
- Root delay - This is the total of the network path delays to the stratum-1
computer from which the computer is ultimately synchronised. In certain
extreme situations, this value can be negative. (This can arise in a symmetric
peer arrangement where the computers’ frequencies are not tracking each other
and the network delay is very short relative to the turn-around time at each
computer.)
- Root dispersion - This is the total dispersion accumulated through all the
computers back to the stratum-1 computer from which the computer is ultimately
synchronised. Dispersion is due to system clock resolution, statistical
measurement variations etc.
- Leap status - This is the leap status, which can be Normal, Insert second,
Delete second or Not synchronised.
Global configuration options
In addition to the plugin-specific configuration settings, plugins support
additional global and plugin configuration settings. These settings are used to
modify metrics, tags, and field or create aliases and configure ordering, etc.
See the CONFIGURATION.md for more details.
Configuration
# Get standard chrony metrics, requires chronyc executable.
[[inputs.chrony]]
## If true, chronyc tries to perform a DNS lookup for the time server.
# dns_lookup = false
Metrics
- chrony
- system_time (float, seconds)
- last_offset (float, seconds)
- rms_offset (float, seconds)
- frequency (float, ppm)
- residual_freq (float, ppm)
- skew (float, ppm)
- root_delay (float, seconds)
- root_dispersion (float, seconds)
- update_interval (float, seconds)
- All measurements have the following tags:
- reference_id
- stratum
- leap_status
Example Output
chrony,leap_status=normal,reference_id=192.168.1.1,stratum=3 frequency=-35.657,system_time=0.000027073,last_offset=-0.000013616,residual_freq=-0,rms_offset=0.000027073,root_delay=0.000644,root_dispersion=0.003444,skew=0.001,update_interval=1031.2 1463750789687639161