geo

package
v0.183.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 12, 2022 License: MIT Imports: 13 Imported by: 1

README

Package geo

The package provides functions for geographic location filtering and grouping. It uses golang implementation of S2 Geometry Library [https://s2geometry.io/]. It is designed to work on a schema with a tags s2_cell_id which contains S2 cell ID (as token) of level decided by the user, and fields lat, lon containing WGS-84 coordinates in decimal degrees.

The s2_cell_id tag contains cell ID token (s2.CellID.ToToken()) of corresponding level. The cell levels are shown at [https://s2geometry.io/resources/s2cell_statistics.html]. The level must be decided by the user. The rule of thumb is that it should be as high as possible for faster filtering but not too high in order to avoid risk of having high cardinality. The token can be easily calculated from lat and lon using Google S2 library which is available for many languages.

The schema may further contain a tag which identifies data source (id by default), and a field representing track identification (tid by default). For some use cases a tag denoting point type (eg. with values like start/stop/via) may also be useful.

Examples of line protocol input (s2_cell_id with cell ID level 11 token):

taxi,pt=start,s2_cell_id=89c2594 tip=3.75,dist=14.3,lat=40.744614,lon=-73.979424,tid=1572566401123234345i 1572566401947779410
bike,id=biker-007,pt=via,s2_cell_id=89c25dc lat=40.753944,lon=-73.992035,tid=1572588100i 1572567115

Some functions in this package works on row-wise sets (as it very likely appears in line protocol), with fields lat, lon (and possibly tid) as columns. That can be achieved by calling v1.fieldsAsCols() or toRows() before these functions.

Fundamental transformations:

  • gridFilter
  • strictFilter
  • toRows
  • filterRows
  • shapeData

Aggregate operations:

  • groupByArea
  • asTracks

S2 geometry functions:

  • s2CellIDToken
  • s2CellLatLon

GIS functions:

  • ST_Contains
  • ST_Distance
  • ST_DWithin
  • ST_Intersects
  • ST_Length
  • ST_LineString

The package uses the following types:

  • region - depending on shape, it has the following named float values:
    • box - minLat, maxLat, minLon, maxLon
    • circle (cap) - lat, lon, radius (in decimal km)
    • point - lat, lon
    • polygon - points - array of points
  • geometry - can be any region type (typically point), and also:
    • path - linestring - string with comma-separated pairs of longitude and latitude

Units:

Supported units are:

  • distance - m, km, mile

Default units:

option units = {
  distance: "km"
}

To change units, assign a new value the to units option, eg:

import "experimental/geo"

option geo.units = {distance:"mile"}

from(bucket:"rides")
  ...

Function gridFilter

The gridFilter filters data by specified region. It calculates grid of tokens that overlays specified region and then uses s2_cell_id to filter against the set. The grid cells always overlay the region, therefore result may contain data with latitude and/or longitude outside the region.

This filter function is intended to be fast as it uses s2_cell_id tag to filter records. If precise filtering is needed, strictFilter() may be used later (after toRows()).

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.gridFilter(region: {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875})
from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.gridFilter(region: {lat: 40.69335938, lon: -73.30078125, radius: 20.0})
from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.gridFilter(region: {points: [{lat: 40.671659, lon: -73.936631}, {lat: 40.706543, lon: -73.749177},{lat: 40.791333, lon: -73.880327}]})

Grid calculation may be customized by following options:

  • minSize - minimum number of tiles that cover specified region (default value is 24).
  • maxSize - maximum number of tiles (optional)
  • level - desired cell level of the grid tiles (optional)
  • s2cellIDLevel - cell level in s2_cell_id tag (optional - the function attempts to autodetect it)

The level parameter is mutually exclusive with others and must be less or equal to s2cellIDLevel.

Function strictFilter

Filters records by lat/lon. Unlike gridFilter(), this is a strict filter. Must be used after toRows() because it requires lat and lon columns in records.

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.toRows()
  |> geo.strictFilter(region: {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875})

For best performance, it should be used together with griFilter().

Function toRows

Note: this function is equivalent to v1.fieldsAsCols() and will be removed in the future.

Collects values to row-wise sets. For geo-temporal data sets the result contains rows with lat and lon, ie. suitable for visualization and for functions such as strictFilter or groupByArea.

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.toRows()
Function definition
toRows = (tables=<-) =>
  tables
    |> v1.fieldsAsCols()

Function filterRows

Combined filter. The sequence is either gridFilter |> toRows |> strictFilter or just gridFilter |> toRows, depending on strict parameter. filterRows also checks to see if input data has already been pivoted into row-wise sets and, if so, will skip the call to toRows.

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.filterRows(region: {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875})

It has the same input parameters as gridFilter. By default it applies strict filtering (strict=true).

Function definition
filterRows = (tables=<-, region, minSize=24, maxSize=-1, level=-1, s2cellIDLevel=-1, strict=true) => {
  _columns =
    tables
      |> columns(column: "_value")
      |> tableFind(fn: (key) => true )
      |> getColumn(column: "_value")
  _rows =
    if contains(value: "lat", set: _columns) then
      tables
        |> gridFilter(region: region, minSize: minSize, maxSize: maxSize, level: level, s2cellIDLevel: s2cellIDLevel)
    else
      tables
        |> gridFilter(region: region, minSize: minSize, maxSize: maxSize, level: level, s2cellIDLevel: s2cellIDLevel)
        |> toRows()
  _result =
    if strict then
      _rows
        |> strictFilter(region)
    else
      _rows
  return _result
}

Function shapeData

Shapes data with existing longitude and a latitude fields into the the structure functions in the Geo package require. It renames the existing longitude and latitude fields to lon and lat, pivots the data into row-wise sets, uses the lat and lon values to generate and add the s2_cell_id tag based on the specified level, and adds the s2_cell_id column to the group key.

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "migration")
  |> geo.shapeData(lonField: "longitude", latField: "latitude", level: 11)
Function definition
shapeData = (tables=<-, latField, lonField, level) =>
  tables
    |> map(fn: (r) => ({ r with
        _field:
          if r._field == latField then "lat"
          else if r._field == lonField then "lon"
          else r._field
      })
    )
    |> toRows()
    |> map(fn: (r) => ({ r with
        s2_cell_id: s2CellIDToken(point: {lat: r.lat, lon: r.lon}, level: level)
      })
    )
    |> experimental.group(
      columns: ["s2_cell_id"],
      mode: "extend"
    )

Function groupByArea

Groups rows by area blocks of size determined by level (see [https://s2geometry.io/resources/s2cell_statistics.html]). Result is grouped by newColumn.

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "taxi")
  |> geo.gridFilter(region: {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875})
  |> geo.toRows()
  |> geo.groupByArea(newColumn: "l3", level: 3)

Optional parameter s2cellIDLevel specifies cell level of s2_cell_id tag. By default the function attempts to autodetect it.

Function asTracks

Groups rows into tracks.

Example:

from(bucket: "rides")
  |> range(start: 2019-11-01T00:00:00Z)
  |> filter(fn: (r) => r._measurement == "bike")
  |> geo.gridFilter(region: {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875})
  |> geo.toRows()
  |> geo.asTracks()
Function definition
asTracks = (tables=<-, groupBy=["id","tid"], orderBy=["_time"]) =>
  tables
    |> group(columns: groupBy)
    |> sort(columns: orderBy)

Function s2CellIDToken

Returns S2 cell ID token.

Input parameters are:

  • token - source token
  • point - source coordinates
  • level - requested cell level of the target token

Either token or point must be specified.

Example:

t = geo.s2CellIDToken(point: {lat: 40.51757813, lon: -73.65234375}, level: 10)

Function s2CellLatLon

Returns coordinates of the S2 cell center.

Input parameters are:

  • token - cell ID token

Example:

ll = geo.s2CellLatLon(token: "89c284")

Function ST_Contains

Returns boolean value whether the region contains geometry or not. Parameter geometry can be either a point or a linestring.

Input parameters are:

  • region
  • geometry

Example:

box = {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875}

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> map(fn: (r) => ({
      r with st_contains: ST_Contains(region: box, geometry: {lat: r.lat, lon: r.lon})
    }))
box = {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875}

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> geo.asTracks()
    |> geo.ST_LineString()
    |> map(fn: (r) => ({
      r with st_contains: ST_Contains(region: box, geometry: {linestring: r.st_linestring})
    }))

Function ST_Distance

Returns distance between specified region and geometry. Parameter geometry can be either a point or a linestring.

Input parameters are:

  • region
  • geometry

Example:

box = {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875}

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> map(fn: (r) => ({
      r with st_distance: ST_Distance(region: box, geometry: {lat: r.lat, lon: r.lon})
    }))

Function ST_DWithin

Returns boolean if geometry is within a distance to specified region. Parameter geometry can be either a point or a linestring.

Input parameters are:

  • region
  • geometry

Example:

box = {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875}

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> map(fn: (r) => ({
      r with st_within: ST_DWithin(region: box, geometry: {lat: r.lat, lon: r.lon}, distance: 15.0)
    }))
Function definition
ST_DWithin = (region, distance, geometry) =>
  ST_Distance(region: region, geometry: geometry) <= distance

Function ST_Intersects

Returns boolean whether geometry intersects specified region. Parameter geometry can be either a point or a linestring.

Example:

box = {minLat: 40.51757813, maxLat: 40.86914063, minLon: -73.65234375, maxLon: -72.94921875}

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> geo.asTracks()
    |> geo.ST_LineString()
    |> map(fn: (r) => ({
      r with st_intersects: ST_Intersects(region: box, geometry: {linestring: r.st_linestring})
    }))
Function definition
ST_Intersects = (region, geometry) =>
  ST_Contains(region: region, geometry: geometry)

Function ST_Length

Returns spherical length of specified geometry. Parameter geometry can be either a point (result is 0.0) or a linestring.

Example:

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> geo.asTracks()
    |> geo.ST_LineString()
    |> map(fn: (r) => ({
      r with st_length: ST_Length(geometry: {linestring: r.st_linestring})
    }))

Function ST_LineString

Constructs a linestring from a series of points. Input data should be grouped in such way that they represent a meaningful path before calling this function. Output is a table with st_linestring column holding the result.

Example:

from(bucket:"mta")
    ...
    |> geo.toRows()
    |> geo.asTracks()
    |> geo.ST_LineString()

Function definition

ST_LineString = (tables=<-) =>
  tables
    |> reduce(fn: (r, accumulator) => ({
        r with
        __linestring: accumulator.__linestring + (if accumulator.__count > 0 then ", " else "") + string(v: r.lat) + " " + string(v: r.lon),
        __count: accumulator.__count + 1
      }), identity: {
        __linestring: "",
        __count: 0
      }
    )
    |> rename(columns: {__linestring: "st_linestring"})

Geofencing

Geofencing use case can be realized using custom check query. In the following example, a point that is outside the region is evaluated as "warn" level status. Then, in the notification rule, change from "ok" to "warn" signals that object left specified region, and vice versa.

Example:

import "influxdata/influxdb/monitor"
import "experimental/geo"

// Injected
option task = {name: "Geofencing", every: 1m}

// Injected
check = {
    _check_id: "0000000000000001",
    _check_name: "Central Long Island check",
    _type: "custom",
    tags: {},
}

box = {
    minLat: 40.5880775,
    maxLat: 40.8247008,
    minLon: -73.80014,
    maxLon: -73.4630336,
}

from(bucket: "mta")
  |> range(start: -task.every)
  |> geo.toRows()
  |> keep(columns: ["_measurement", "_time", "id", "lat", "lon")
  |> monitor.check(
      data: check,
      messageFn: messageFn: (r) => (if r._level == monitor.levelWarn then "Train ${r.id} is out" else "Train ${r.id} is in"),
      warn: (r) => not geo.ST_Contains(region: box, geometry: {lat: r.lat, lon: r.lon})
  )

Notes: in this example, only a subset of columns is kept, but of course, it is optional step (columns _measurement and _time are required by monitor.check()).

Documentation

Index

Constants

View Source
const AbsoluteMaxSize = 100

Variables

This section is empty.

Functions

This section is empty.

Types

This section is empty.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL