Documentation ¶
Index ¶
- Constants
- Variables
- func CPUTicks() int64
- func Calloc(n int64) []byte
- func CallocNoRef(n int) []byte
- func FastRand() uint32
- func Free(b []byte)
- func HistogramBounds(minExponent, maxExponent uint32) []float64
- func KeyToHash(key interface{}) (uint64, uint64)
- func Madvise(b []byte, readahead bool) error
- func MemHash(data []byte) uint64
- func MemHashString(str string) uint64
- func Mmap(fd *os.File, writable bool, size int64) ([]byte, error)
- func Msync(b []byte) error
- func Munmap(b []byte) error
- func NanoTime() int64
- func NumAllocBytes() int64
- func PrintAllocators()
- func PrintLeaks()
- func ReadMemStats(_ *MemStats)
- func StatsPrint()
- func SyncDir(dir string) error
- func ZeroOut(dst []byte, start, end int)
- type Allocator
- type Bloom
- func (bl *Bloom) Add(hash uint64)
- func (bl *Bloom) AddIfNotHas(hash uint64) bool
- func (bl *Bloom) Clear()
- func (bl Bloom) Has(hash uint64) bool
- func (bl *Bloom) IsSet(idx uint64) bool
- func (bl Bloom) JSONMarshal() []byte
- func (bl *Bloom) Set(idx uint64)
- func (bl *Bloom) Size(sz uint64)
- func (bl *Bloom) TotalSize() int
- type Buffer
- func (b *Buffer) Allocate(n int64) []byte
- func (b *Buffer) AllocateOffset(n int64) int64
- func (b *Buffer) AutoMmapAfter(size int64)
- func (b *Buffer) Bytes() []byte
- func (b *Buffer) Data(offset int64) []byte
- func (b *Buffer) Grow(n int64)
- func (b *Buffer) IsEmpty() bool
- func (b *Buffer) Len() int64
- func (b *Buffer) Release() error
- func (b *Buffer) Reset()
- func (b *Buffer) Slice(offset int64) ([]byte, int64)
- func (b *Buffer) SliceAllocate(sz int64) []byte
- func (b *Buffer) SliceIterate(f func(slice []byte) error) error
- func (b *Buffer) SliceOffsets() []int64
- func (b *Buffer) SortSlice(less func(left, right []byte) bool)
- func (b *Buffer) SortSliceBetween(start, end int64, less LessFunc)
- func (b *Buffer) Write(p []byte) (n int64, err error)
- func (b *Buffer) WriteSlice(slice []byte)
- type BufferType
- type Closer
- type HistogramData
- type LessFunc
- type MemStats
- type MmapFile
- func (m *MmapFile) AllocateSlice(sz, offset int) ([]byte, int)
- func (m *MmapFile) Bytes(off, sz int) ([]byte, error)
- func (m *MmapFile) Close(maxSz int64) error
- func (m *MmapFile) Delete() error
- func (m *MmapFile) NewReader(offset int) io.Reader
- func (m *MmapFile) Slice(offset int) []byte
- func (m *MmapFile) Sync() error
- func (m *MmapFile) Truncate(maxSz int64) error
Constants ¶
const (
// MaxArrayLen is a safe maximum length for slices on this architecture.
MaxArrayLen = 1<<50 - 1
)
Variables ¶
var NewFile = errors.New("Create a new file")
Functions ¶
func CPUTicks ¶
func CPUTicks() int64
CPUTicks is a faster alternative to NanoTime to measure time duration.
func CallocNoRef ¶
CallocNoRef will not give you memory back without jemalloc.
func HistogramBounds ¶
Creates bounds for an histogram. The bounds are powers of two of the form [2^min_exponent, ..., 2^max_exponent].
func KeyToHash ¶
TODO: Figure out a way to re-use memhash for the second uint64 hash, we
already know that appending bytes isn't reliable for generating a second hash (see Ristretto PR #88). We also know that while the Go runtime has a runtime memhash128 function, it's not possible to use it to generate [2]uint64 or anything resembling a 128bit hash, even though that's exactly what we need in this situation.
func Madvise ¶
Madvise uses the madvise system call to give advise about the use of memory when using a slice that is memory-mapped to a file. Set the readahead flag to false if page references are expected in random order.
func MemHash ¶
MemHash is the hash function used by go map, it utilizes available hardware instructions(behaves as aeshash if aes instruction is available). NOTE: The hash seed changes for every process. So, this cannot be used as a persistent hash.
func MemHashString ¶
MemHashString is the hash function used by go map, it utilizes available hardware instructions (behaves as aeshash if aes instruction is available). NOTE: The hash seed changes for every process. So, this cannot be used as a persistent hash.
func Mmap ¶
Mmap uses the mmap system call to memory-map a file. If writable is true, memory protection of the pages is set so that they may be written to as well.
func NanoTime ¶
func NanoTime() int64
NanoTime returns the current time in nanoseconds from a monotonic clock.
func NumAllocBytes ¶
func NumAllocBytes() int64
NumAllocBytes returns the number of bytes allocated using calls to z.Calloc. The allocations could be happening via either Go or jemalloc, depending upon the build flags.
func PrintAllocators ¶
func PrintAllocators()
func PrintLeaks ¶
func PrintLeaks()
func ReadMemStats ¶
func ReadMemStats(_ *MemStats)
ReadMemStats doesn't do anything since all the memory is being managed by the Go runtime.
func StatsPrint ¶
func StatsPrint()
Types ¶
type Allocator ¶
Allocator amortizes the cost of small allocations by allocating memory in bigger chunks. Internally it uses z.Calloc to allocate memory. Once allocated, the memory is not moved, so it is safe to use the allocated bytes to unsafe cast them to Go struct pointers.
func AllocatorFrom ¶
AllocatorFrom would return the allocator corresponding to the ref.
func NewAllocator ¶
NewAllocator creates an allocator starting with the given size.
func (*Allocator) Allocate ¶
Allocate would allocate a byte slice of length sz. It is safe to use this memory to unsafe cast to Go structs.
func (*Allocator) AllocateAligned ¶
type Bloom ¶
type Bloom struct { ElemNum uint64 // contains filtered or unexported fields }
Bloom filter
func JSONUnmarshal ¶
JSONUnmarshal takes JSON-Object (type bloomJSONImExport) as []bytes returns bloom32 / bloom64 object.
func NewBloomFilter ¶
NewBloomFilter returns a new bloomfilter.
func (*Bloom) AddIfNotHas ¶
AddIfNotHas only Adds hash, if it's not present in the bloomfilter. Returns true if hash was added. Returns false if hash was already registered in the bloomfilter.
func (Bloom) Has ¶
Has checks if bit(s) for entry hash is/are set, returns true if the hash was added to the Bloom Filter.
func (Bloom) JSONMarshal ¶
JSONMarshal returns JSON-object (type bloomJSONImExport) as []byte.
type Buffer ¶
type Buffer struct {
// contains filtered or unexported fields
}
Buffer is equivalent of bytes.Buffer without the ability to read. It is NOT thread-safe.
In UseCalloc mode, z.Calloc is used to allocate memory, which depending upon how the code is compiled could use jemalloc for allocations.
In UseMmap mode, Buffer uses file mmap to allocate memory. This allows us to store big data structures without using physical memory.
MaxSize can be set to limit the memory usage.
func NewBuffer ¶
Newbuffer is a helper utility, which creates a virtually unlimited Buffer in UseCalloc mode.
func NewBufferWith ¶
func NewBufferWith(sz, maxSz int64, bufType BufferType) (*Buffer, error)
NewBufferWith would allocate a buffer of size sz upfront, with the total size of the buffer not exceeding maxSz. Both sz and maxSz can be set to zero, in which case reasonable defaults would be used. Buffer can't be used without initialization via NewBuffer.
func (*Buffer) Allocate ¶
Allocate is a way to get a slice of size n back from the buffer. This slice can be directly written to. Warning: Allocate is not thread-safe. The byte slice returned MUST be used before further calls to Buffer.
func (*Buffer) AllocateOffset ¶
AllocateOffset works the same way as allocate, but instead of returning a byte slice, it returns the offset of the allocation.
func (*Buffer) AutoMmapAfter ¶
func (*Buffer) Grow ¶
Grow would grow the buffer to have at least n more bytes. In case the buffer is at capacity, it would reallocate twice the size of current capacity + n, to ensure n bytes can be written to the buffer without further allocation. In UseMmap mode, this might result in underlying file expansion.
func (*Buffer) Release ¶
Release would free up the memory allocated by the buffer. Once the usage of buffer is done, it is important to call Release, otherwise a memory leak can happen.
func (*Buffer) SliceAllocate ¶
SliceAllocate would encode the size provided into the buffer, followed by a call to Allocate, hence returning the slice of size sz. This can be used to allocate a lot of small buffers into this big buffer. Note that SliceAllocate should NOT be mixed with normal calls to Write.
func (*Buffer) SliceOffsets ¶
SliceOffsets is an expensive function. Use sparingly.
func (*Buffer) SortSliceBetween ¶
func (*Buffer) WriteSlice ¶
type BufferType ¶
type BufferType int
const ( UseCalloc BufferType = iota UseMmap UseInvalid )
func (BufferType) String ¶
func (t BufferType) String() string
type Closer ¶
type Closer struct {
// contains filtered or unexported fields
}
Closer holds the two things we need to close a goroutine and wait for it to finish: a chan to tell the goroutine to shut down, and a WaitGroup with which to wait for it to finish shutting down.
func (*Closer) AddRunning ¶
AddRunning Add()'s delta to the WaitGroup.
func (*Closer) Ctx ¶
Ctx can be used to get a context, which would automatically get cancelled when Signal is called.
func (*Closer) HasBeenClosed ¶
func (lc *Closer) HasBeenClosed() <-chan struct{}
HasBeenClosed gets signaled when Signal() is called.
func (*Closer) SignalAndWait ¶
func (lc *Closer) SignalAndWait()
SignalAndWait calls Signal(), then Wait().
type HistogramData ¶
type HistogramData struct { Bounds []float64 Count int64 CountPerBucket []int64 Min int64 Max int64 Sum int64 }
HistogramData stores the information needed to represent the sizes of the keys and values as a histogram.
func NewHistogramData ¶
func NewHistogramData(bounds []float64) *HistogramData
NewHistogramData returns a new instance of HistogramData with properly initialized fields.
func (*HistogramData) Copy ¶
func (histogram *HistogramData) Copy() *HistogramData
func (*HistogramData) Mean ¶
func (histogram *HistogramData) Mean() float64
Mean returns the mean value for the histogram.
func (*HistogramData) String ¶
func (histogram *HistogramData) String() string
String converts the histogram data into human-readable string.
func (*HistogramData) Update ¶
func (histogram *HistogramData) Update(value int64)
Update changes the Min and Max fields if value is less than or greater than the current values.
type MemStats ¶
type MemStats struct { // Total number of bytes allocated by the application. // http://jemalloc.net/jemalloc.3.html#stats.allocated Allocated uint64 // Total number of bytes in active pages allocated by the application. This // is a multiple of the page size, and greater than or equal to // Allocated. // http://jemalloc.net/jemalloc.3.html#stats.active Active uint64 // Maximum number of bytes in physically resident data pages mapped by the // allocator, comprising all pages dedicated to allocator metadata, pages // backing active allocations, and unused dirty pages. This is a maximum // rather than precise because pages may not actually be physically // resident if they correspond to demand-zeroed virtual memory that has not // yet been touched. This is a multiple of the page size, and is larger // than stats.active. // http://jemalloc.net/jemalloc.3.html#stats.resident Resident uint64 // Total number of bytes in virtual memory mappings that were retained // rather than being returned to the operating system via e.g. munmap(2) or // similar. Retained virtual memory is typically untouched, decommitted, or // purged, so it has no strongly associated physical memory (see extent // hooks http://jemalloc.net/jemalloc.3.html#arena.i.extent_hooks for // details). Retained memory is excluded from mapped memory statistics, // e.g. stats.mapped (http://jemalloc.net/jemalloc.3.html#stats.mapped). // http://jemalloc.net/jemalloc.3.html#stats.retained Retained uint64 }
MemStats is used to fetch JE Malloc Stats. The stats are fetched from the mallctl namespace http://jemalloc.net/jemalloc.3.html#mallctl_namespace.
type MmapFile ¶
MmapFile represents an mmapd file and includes both the buffer to the data and the file descriptor.
func OpenMmapFile ¶
OpenMmapFile opens an existing file or creates a new file. If the file is created, it would truncate the file to maxSz. In both cases, it would mmap the file to maxSz and returned it. In case the file is created, z.NewFile is returned.
func OpenMmapFileUsing ¶
func (*MmapFile) AllocateSlice ¶
AllocateSlice allocates a slice of the given size at the given offset.
func (*MmapFile) Bytes ¶
Bytes returns data starting from offset off of size sz. If there's not enough data, it would return nil slice and io.EOF.