Documentation ¶
Overview ¶
Package llm provides functionalities for working with Large Language Models (LLMs).
Index ¶
- Variables
- func EnforceStopTokens(text string, stop []string) string
- type AI21
- type AI21Client
- type AI21Options
- type AzureOpenAI
- type AzureOpenAIOptions
- type Bedrock
- func NewBedrock(client BedrockRuntimeClient, optFns ...func(o *BedrockOptions)) (*Bedrock, error)
- func NewBedrockAI21(client BedrockRuntimeClient, optFns ...func(o *BedrockAI21Options)) (*Bedrock, error)
- func NewBedrockAmazon(client BedrockRuntimeClient, optFns ...func(o *BedrockAmazonOptions)) (*Bedrock, error)
- func NewBedrockAntrophic(client BedrockRuntimeClient, optFns ...func(o *BedrockAnthropicOptions)) (*Bedrock, error)
- func NewBedrockCohere(client BedrockRuntimeClient, optFns ...func(o *BedrockCohereOptions)) (*Bedrock, error)
- func NewBedrockMeta(client BedrockRuntimeClient, optFns ...func(o *BedrockMetaOptions)) (*Bedrock, error)
- type BedrockAI21Options
- type BedrockAmazonOptions
- type BedrockAnthropicOptions
- type BedrockCohereOptions
- type BedrockInputOutputAdapter
- type BedrockMetaOptions
- type BedrockOptions
- type BedrockRuntimeClient
- type Cohere
- type CohereClient
- type CohereOptions
- type ContentHandler
- type Fake
- type FakeOptions
- type FakeResultFunc
- type HuggingFaceHub
- func (l *HuggingFaceHub) Callbacks() []schema.Callback
- func (l *HuggingFaceHub) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
- func (l *HuggingFaceHub) InvocationParams() map[string]any
- func (l *HuggingFaceHub) Type() string
- func (l *HuggingFaceHub) Verbose() bool
- type HuggingFaceHubClient
- type HuggingFaceHubOptions
- type OpenAI
- type OpenAIClient
- type OpenAIOptions
- type Palm
- type PalmClient
- type PalmOptions
- type ReturnLikelihood
- type SagemakerEndpoint
- func (l *SagemakerEndpoint) Callbacks() []schema.Callback
- func (l *SagemakerEndpoint) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
- func (l *SagemakerEndpoint) InvocationParams() map[string]any
- func (l *SagemakerEndpoint) Type() string
- func (l *SagemakerEndpoint) Verbose() bool
- type SagemakerEndpointOptions
- type SagemakerRuntimeClient
- type Transformer
- type VertexAI
- func (l *VertexAI) Callbacks() []schema.Callback
- func (l *VertexAI) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
- func (l *VertexAI) InvocationParams() map[string]any
- func (l *VertexAI) Type() string
- func (l *VertexAI) Verbose() bool
- type VertexAIClient
- type VertexAIOptions
Constants ¶
This section is empty.
Variables ¶
var DefaultOpenAIOptions = OpenAIOptions{ CallbackOptions: &schema.CallbackOptions{ Verbose: golc.Verbose, }, ModelName: openai.GPT3Dot5TurboInstruct, Temperature: 0.7, MaxTokens: 256, TopP: 1, PresencePenalty: 0, FrequencyPenalty: 0, N: 1, BestOf: 1, Stream: false, MaxRetries: 3, }
var DefaultPenalty = ai21.Penalty{ Scale: 0, ApplyToWhitespaces: true, ApplyToPunctuations: true, ApplyToNumbers: true, ApplyToStopwords: true, ApplyToEmojis: true, }
DefaultPenalty represents the default penalty options for AI21 text completion.
Functions ¶
func EnforceStopTokens ¶ added in v0.0.71
EnforceStopTokens cuts off the text as soon as any stop words occur.
Types ¶
type AI21 ¶ added in v0.0.70
AI21 is an AI21 LLM model that generates text based on a provided response function.
func NewAI21 ¶ added in v0.0.70
func NewAI21(apiKey string, optFns ...func(o *AI21Options)) (*AI21, error)
NewAI21 creates a new AI21 LLM instance with the provided API key and optional configuration options.
func NewAI21FromClient ¶ added in v0.0.70
func NewAI21FromClient(client AI21Client, optFns ...func(o *AI21Options)) (*AI21, error)
NewAI21FromClient creates a new AI21 LLM instance using the provided AI21 client and optional configuration options.
func (*AI21) Generate ¶ added in v0.0.70
func (l *AI21) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*AI21) InvocationParams ¶ added in v0.0.70
InvocationParams returns the parameters used in the model invocation.
type AI21Client ¶ added in v0.0.70
type AI21Client interface {
CreateCompletion(ctx context.Context, model string, req *ai21.CompleteRequest) (*ai21.CompleteResponse, error)
}
AI21Client is an interface for interacting with the AI21 API.
type AI21Options ¶ added in v0.0.70
type AI21Options struct { // CallbackOptions specify options for handling callbacks during text generation. *schema.CallbackOptions `map:"-"` // Tokenizer represents the tokenizer to be used with the LLM model. schema.Tokenizer `map:"-"` // Model is the name of the AI21 model to use for text completion. Model string `map:"model,omitempty"` // Temperature controls the randomness of text generation. Higher values make it more random. Temperature float64 `map:"temperature"` // MaxTokens sets the maximum number of tokens in the generated text. MaxTokens int `map:"maxTokens"` // MinTokens sets the minimum number of tokens in the generated text. MinTokens int `map:"minTokens"` // TopP sets the nucleus sampling probability. Higher values result in more diverse text. TopP float64 `map:"topP"` // PresencePenalty specifies the penalty for repeating words in generated text. PresencePenalty ai21.Penalty `map:"presencePenalty"` // CountPenalty specifies the penalty for repeating tokens in generated text. CountPenalty ai21.Penalty `map:"countPenalty"` // FrequencyPenalty specifies the penalty for generating frequent words. FrequencyPenalty ai21.Penalty `map:"frequencyPenalty"` // NumResults sets the number of completion results to return. NumResults int `map:"numResults"` }
AI21Options contains options for configuring the AI21 LLM model.
type AzureOpenAI ¶ added in v0.0.38
type AzureOpenAI struct { *OpenAI // contains filtered or unexported fields }
func NewAzureOpenAI ¶ added in v0.0.38
func NewAzureOpenAI(apiKey, baseURL string, optFns ...func(o *AzureOpenAIOptions)) (*AzureOpenAI, error)
func (*AzureOpenAI) InvocationParams ¶ added in v0.0.55
func (l *AzureOpenAI) InvocationParams() map[string]any
InvocationParams returns the parameters used in the model invocation.
func (*AzureOpenAI) Type ¶ added in v0.0.38
func (l *AzureOpenAI) Type() string
Type returns the type of the model.
type AzureOpenAIOptions ¶ added in v0.0.38
type AzureOpenAIOptions struct { OpenAIOptions Deployment string `map:"deployment,omitempty"` }
type Bedrock ¶ added in v0.0.71
Bedrock is a Bedrock LLM model that generates text based on a provided response function.
func NewBedrock ¶ added in v0.0.71
func NewBedrock(client BedrockRuntimeClient, optFns ...func(o *BedrockOptions)) (*Bedrock, error)
NewBedrock creates a new instance of the Bedrock LLM model with the provided response function and options.
func NewBedrockAI21 ¶ added in v0.0.78
func NewBedrockAI21(client BedrockRuntimeClient, optFns ...func(o *BedrockAI21Options)) (*Bedrock, error)
func NewBedrockAmazon ¶ added in v0.0.79
func NewBedrockAmazon(client BedrockRuntimeClient, optFns ...func(o *BedrockAmazonOptions)) (*Bedrock, error)
func NewBedrockAntrophic ¶ added in v0.0.77
func NewBedrockAntrophic(client BedrockRuntimeClient, optFns ...func(o *BedrockAnthropicOptions)) (*Bedrock, error)
func NewBedrockCohere ¶ added in v0.0.79
func NewBedrockCohere(client BedrockRuntimeClient, optFns ...func(o *BedrockCohereOptions)) (*Bedrock, error)
func NewBedrockMeta ¶ added in v0.0.87
func NewBedrockMeta(client BedrockRuntimeClient, optFns ...func(o *BedrockMetaOptions)) (*Bedrock, error)
NewBedrockMeta creates a new instance of Bedrock for the "meta" provider.
func (*Bedrock) Callbacks ¶ added in v0.0.71
Callbacks returns the registered callbacks of the model.
func (*Bedrock) Generate ¶ added in v0.0.71
func (l *Bedrock) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*Bedrock) InvocationParams ¶ added in v0.0.71
InvocationParams returns the parameters used in the model invocation.
type BedrockAI21Options ¶ added in v0.0.78
type BedrockAI21Options struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model id to use. ModelID string `map:"model_id,omitempty"` // Temperature controls the randomness of text generation. Higher values make it more random. Temperature float64 `map:"temperature"` // TopP sets the nucleus sampling probability. Higher values result in more diverse text. TopP float64 `map:"topP"` // MaxTokens sets the maximum number of tokens in the generated text. MaxTokens int `map:"maxTokens"` // PresencePenalty specifies the penalty for repeating words in generated text. PresencePenalty ai21.Penalty `map:"presencePenalty"` // CountPenalty specifies the penalty for repeating tokens in generated text. CountPenalty ai21.Penalty `map:"countPenalty"` // FrequencyPenalty specifies the penalty for generating frequent words. FrequencyPenalty ai21.Penalty `map:"frequencyPenalty"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` }
type BedrockAmazonOptions ¶ added in v0.0.79
type BedrockAmazonOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model id to use. ModelID string `map:"model_id,omitempty"` // Temperature controls the randomness of text generation. Higher values make it more random. Temperature float64 `json:"temperature"` // TopP is the total probability mass of tokens to consider at each step. TopP float64 `json:"topP"` // MaxTokenCount sets the maximum number of tokens in the generated text. MaxTokenCount int `json:"maxTokenCount"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` }
type BedrockAnthropicOptions ¶ added in v0.0.77
type BedrockAnthropicOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model id to use. ModelID string `map:"model_id,omitempty"` // MaxTokensToSmaple sets the maximum number of tokens in the generated text. MaxTokensToSample int `map:"max_tokens_to_sample"` // Temperature controls the randomness of text generation. Higher values make it more random. Temperature float32 `map:"temperature"` // TopP is the total probability mass of tokens to consider at each step. TopP float32 `map:"top_p,omitempty"` // TopK determines how the model selects tokens for output. TopK int `map:"top_k"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` }
type BedrockCohereOptions ¶ added in v0.0.79
type BedrockCohereOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model id to use. ModelID string `map:"model_id,omitempty"` // Temperature controls the randomness of text generation. Higher values make it more random. Temperature float64 `json:"temperature,omitempty"` // P is the total probability mass of tokens to consider at each step. P float64 `json:"p,omitempty"` // K determines how the model selects tokens for output. K float64 `json:"k,omitempty"` // MaxTokens sets the maximum number of tokens in the generated text. MaxTokens int `json:"max_tokens,omitempty"` // ReturnLikelihoods specifies how and if the token likelihoods are returned with the response. ReturnLikelihoods ReturnLikelihood `json:"return_likelihoods,omitempty"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` }
type BedrockInputOutputAdapter ¶ added in v0.0.71
type BedrockInputOutputAdapter struct {
// contains filtered or unexported fields
}
BedrockInputOutputAdapter is a helper struct for preparing input and handling output for Bedrock model.
func NewBedrockInputOutputAdapter ¶ added in v0.0.71
func NewBedrockInputOutputAdapter(provider string) *BedrockInputOutputAdapter
NewBedrockInputOutputAdpter creates a new instance of BedrockInputOutputAdpter.
func (*BedrockInputOutputAdapter) PrepareInput ¶ added in v0.0.71
func (bioa *BedrockInputOutputAdapter) PrepareInput(prompt string, modelParams map[string]any) ([]byte, error)
PrepareInput prepares the input for the Bedrock model based on the specified provider.
func (*BedrockInputOutputAdapter) PrepareOutput ¶ added in v0.0.71
func (bioa *BedrockInputOutputAdapter) PrepareOutput(response []byte) (string, error)
PrepareOutput prepares the output for the Bedrock model based on the specified provider.
type BedrockMetaOptions ¶ added in v0.0.87
type BedrockMetaOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model id to use. ModelID string `map:"model_id,omitempty"` // Temperature controls the randomness of text generation. Higher values make it more random. Temperature float32 `map:"temperature"` // TopP is the total probability mass of tokens to consider at each step. TopP float32 `map:"top_p,omitempty"` // MaxGenLen specify the maximum number of tokens to use in the generated response. MaxGenLen int `map:"max_gen_len"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` }
BedrockMetaOptions contains options for configuring the Bedrock model with the "meta" provider.
type BedrockOptions ¶ added in v0.0.71
type BedrockOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model id to use. ModelID string `map:"model_id,omitempty"` // Model params to use. ModelParams map[string]any `map:"model_params,omitempty"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` }
BedrockOptions contains options for configuring the Bedrock LLM model.
type BedrockRuntimeClient ¶ added in v0.0.71
type BedrockRuntimeClient interface { InvokeModel(ctx context.Context, params *bedrockruntime.InvokeModelInput, optFns ...func(*bedrockruntime.Options)) (*bedrockruntime.InvokeModelOutput, error) InvokeModelWithResponseStream(ctx context.Context, params *bedrockruntime.InvokeModelWithResponseStreamInput, optFns ...func(*bedrockruntime.Options)) (*bedrockruntime.InvokeModelWithResponseStreamOutput, error) }
BedrockRuntimeClient is an interface for the Bedrock model runtime client.
type Cohere ¶
Cohere represents the Cohere language model.
func NewCohere ¶
func NewCohere(apiKey string, optFns ...func(o *CohereOptions)) (*Cohere, error)
NewCohere creates a new Cohere instance using the provided API key and optional configuration options. It internally creates a Cohere client using the provided API key and initializes the Cohere struct.
func NewCohereFromClient ¶ added in v0.0.31
func NewCohereFromClient(client CohereClient, optFns ...func(o *CohereOptions)) (*Cohere, error)
NewCohereFromClient creates a new Cohere instance using the provided Cohere client and optional configuration options.
func (*Cohere) Generate ¶
func (l *Cohere) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*Cohere) InvocationParams ¶ added in v0.0.27
InvocationParams returns the parameters used in the llm model invocation.
type CohereClient ¶ added in v0.0.31
type CohereClient interface {
Generate(opts cohere.GenerateOptions) (*cohere.GenerateResponse, error)
}
CohereClient is an interface for the Cohere client.
type CohereOptions ¶
type CohereOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Model represents the name or identifier of the Cohere language model to use. Model string `map:"model,omitempty"` // NumGenerations denotes the maximum number of generations that will be returned. string NumGenerations int `map:"num_generations"` // MaxTokens denotes the number of tokens to predict per generation. MaxTokens uint `map:"max_tokens"` // Temperature is a non-negative float that tunes the degree of randomness in generation. Temperature float64 `map:"temperature"` // K specifies the number of top most likely tokens to consider for generation at each step. K int `map:"k"` // P is a probability value between 0.0 and 1.0. It ensures that only the most likely tokens, // with a total probability mass of P, are considered for generation at each step. P float64 `map:"p"` // FrequencyPenalty is used to reduce repetitiveness of generated tokens. A higher value applies // a stronger penalty to previously present tokens, proportional to how many times they have // already appeared in the prompt or prior generation. FrequencyPenalty float64 `map:"frequency_penalty"` // PresencePenalty is used to reduce repetitiveness of generated tokens. It applies a penalty // equally to all tokens that have already appeared, regardless of their exact frequencies. PresencePenalty float64 `map:"presence_penalty"` // ReturnLikelihoods specifies whether and how the token likelihoods are returned with the response. // It can be set to "GENERATION", "ALL", or "NONE". If "GENERATION" is selected, the token likelihoods // will only be provided for generated text. If "ALL" is selected, the token likelihoods will be // provided for both the prompt and the generated text. ReturnLikelihoods string `map:"return_likelihoods,omitempty"` // MaxRetries represents the maximum number of retries to make when generating. MaxRetries uint `map:"max_retries,omitempty"` }
CohereOptions contains options for configuring the Cohere LLM model.
type ContentHandler ¶ added in v0.0.41
type ContentHandler struct {
// contains filtered or unexported fields
}
ContentHandler handles content transformation for the LLM model.
func NewContentHandler ¶ added in v0.0.41
func NewContentHandler(contentType, accept string, transformer Transformer) *ContentHandler
NewContentHandler creates a new ContentHandler instance.
func (*ContentHandler) Accept ¶ added in v0.0.41
func (ch *ContentHandler) Accept() string
Accept returns the accept type of the ContentHandler.
func (*ContentHandler) ContentType ¶ added in v0.0.41
func (ch *ContentHandler) ContentType() string
ContentType returns the content type of the ContentHandler.
func (*ContentHandler) TransformInput ¶ added in v0.0.41
func (ch *ContentHandler) TransformInput(prompt string) ([]byte, error)
TransformInput transforms the input prompt using the ContentHandler's transformer.
func (*ContentHandler) TransformOutput ¶ added in v0.0.41
func (ch *ContentHandler) TransformOutput(output []byte) (string, error)
TransformOutput transforms the output from the LLM model using the ContentHandler's transformer.
type Fake ¶ added in v0.0.14
Fake is a fake LLM model that generates text based on a provided response function.
func NewFake ¶ added in v0.0.14
func NewFake(fakeResultFunc FakeResultFunc, optFns ...func(o *FakeOptions)) *Fake
NewFake creates a new instance of the Fake LLM model with the provided response function and options.
func NewSimpleFake ¶ added in v0.0.58
func NewSimpleFake(resultText string, optFns ...func(o *FakeOptions)) *Fake
NewSimpleFake creates a simple instance of the Fake LLM model with a fixed response for all inputs.
func (*Fake) Generate ¶ added in v0.0.14
func (l *Fake) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*Fake) InvocationParams ¶ added in v0.0.27
InvocationParams returns the parameters used in the model invocation.
type FakeOptions ¶ added in v0.0.31
type FakeOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` LLMType string `map:"-"` }
FakeOptions contains options for configuring the Fake LLM model.
type FakeResultFunc ¶ added in v0.0.58
FakeResultFunc is a function type for generating fake responses based on a prompt.
type HuggingFaceHub ¶ added in v0.0.14
HuggingFaceHub represents the Hugging Face Hub LLM model.
func NewHuggingFaceHub ¶ added in v0.0.14
func NewHuggingFaceHub(apiToken string, optFns ...func(o *HuggingFaceHubOptions)) (*HuggingFaceHub, error)
NewHuggingFaceHub creates a new instance of the HuggingFaceHub model using the provided API token and options.
func NewHuggingFaceHubFromClient ¶ added in v0.0.31
func NewHuggingFaceHubFromClient(client HuggingFaceHubClient, optFns ...func(o *HuggingFaceHubOptions)) (*HuggingFaceHub, error)
NewHuggingFaceHubFromClient creates a new instance of the HuggingFaceHub model using the provided client and options.
func (*HuggingFaceHub) Callbacks ¶ added in v0.0.14
func (l *HuggingFaceHub) Callbacks() []schema.Callback
Callbacks returns the registered callbacks of the model.
func (*HuggingFaceHub) Generate ¶ added in v0.0.14
func (l *HuggingFaceHub) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*HuggingFaceHub) InvocationParams ¶ added in v0.0.27
func (l *HuggingFaceHub) InvocationParams() map[string]any
InvocationParams returns the parameters used in the model invocation.
func (*HuggingFaceHub) Type ¶ added in v0.0.14
func (l *HuggingFaceHub) Type() string
Type returns the type of the model.
func (*HuggingFaceHub) Verbose ¶ added in v0.0.14
func (l *HuggingFaceHub) Verbose() bool
Verbose returns the verbosity setting of the model.
type HuggingFaceHubClient ¶ added in v0.0.31
type HuggingFaceHubClient interface { // TextGeneration performs text generation based on the provided request and returns the response. TextGeneration(ctx context.Context, req *huggingface.TextGenerationRequest) (huggingface.TextGenerationResponse, error) // Text2TextGeneration performs text-to-text generation based on the provided request and returns the response. Text2TextGeneration(ctx context.Context, req *huggingface.Text2TextGenerationRequest) (huggingface.Text2TextGenerationResponse, error) // Summarization performs text summarization based on the provided request and returns the response. Summarization(ctx context.Context, req *huggingface.SummarizationRequest) (huggingface.SummarizationResponse, error) // SetModel sets the model to be used for inference. SetModel(model string) }
HuggingFaceHubClient represents the client for interacting with the Hugging Face Hub service.
type HuggingFaceHubOptions ¶ added in v0.0.14
type HuggingFaceHubOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` Model string `map:"model,omitempty"` Task string `map:"task,omitempty"` Options huggingface.Options }
HuggingFaceHubOptions contains options for configuring the Hugging Face Hub LLM model.
type OpenAI ¶
OpenAI is an implementation of the LLM interface for the OpenAI language model.
func NewOpenAI ¶
func NewOpenAI(apiKey string, optFns ...func(o *OpenAIOptions)) (*OpenAI, error)
NewOpenAI creates a new OpenAI instance with the provided API key and options.
func NewOpenAIFromClient ¶ added in v0.0.31
func NewOpenAIFromClient(client OpenAIClient, optFns ...func(o *OpenAIOptions)) (*OpenAI, error)
NewOpenAIFromClient creates a new OpenAI instance with the provided client and options.
func (*OpenAI) Generate ¶
func (l *OpenAI) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*OpenAI) InvocationParams ¶ added in v0.0.27
InvocationParams returns the parameters used in the model invocation.
type OpenAIClient ¶ added in v0.0.31
type OpenAIClient interface { // CreateCompletionStream creates a streaming completion request with the provided completion request. // It returns a completion stream for receiving streamed completion responses from the OpenAI API. // The `CompletionStream` should be closed after use. CreateCompletionStream(ctx context.Context, request openai.CompletionRequest) (stream *openai.CompletionStream, err error) // CreateCompletion sends a completion request to the OpenAI API and returns the completion response. // It blocks until the response is received from the API. CreateCompletion(ctx context.Context, request openai.CompletionRequest) (response openai.CompletionResponse, err error) }
OpenAIClient represents the interface for interacting with the OpenAI API.
type OpenAIOptions ¶
type OpenAIOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // ModelName is the name of the OpenAI language model to use. ModelName string `map:"model_name,omitempty"` // Temperature is the sampling temperature to use during text generation. Temperature float32 `map:"temperature,omitempty"` // MaxTokens is the maximum number of tokens to generate in the completion. MaxTokens int `map:"max_tokens,omitempty"` // TopP is the total probability mass of tokens to consider at each step. TopP float32 `map:"top_p,omitempty"` // PresencePenalty penalizes repeated tokens. PresencePenalty float32 `map:"presence_penalty,omitempty"` // FrequencyPenalty penalizes repeated tokens according to frequency. FrequencyPenalty float32 `map:"frequency_penalty,omitempty"` // N is the number of completions to generate for each prompt. N int `map:"n,omitempty"` // BestOf selects the best completion from multiple completions. BestOf int `map:"best_of,omitempty"` // LogitBias adjusts the probability of specific tokens being generated. LogitBias map[string]int `map:"logit_bias,omitempty"` // Stream indicates whether to stream the results or not. Stream bool `map:"stream,omitempty"` // MaxRetries represents the maximum number of retries to make when generating. MaxRetries uint `map:"max_retries,omitempty"` // BaseURL is the base URL of the OpenAI service. BaseURL string `map:"base_url,omitempty"` // OrgID is the organization ID for accessing the OpenAI service. OrgID string `map:"org_id,omitempty"` }
OpenAIOptions contains options for configuring the OpenAI LLM model.
type Palm ¶ added in v0.0.36
type Palm struct {
// contains filtered or unexported fields
}
Palm is a struct representing the PALM language model.
func NewPalm ¶ added in v0.0.36
func NewPalm(client PalmClient, optFns ...func(o *PalmOptions)) (*Palm, error)
NewPalm creates a new instance of the PALM language model.
func (*Palm) Generate ¶ added in v0.0.36
func (l *Palm) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*Palm) InvocationParams ¶ added in v0.0.36
InvocationParams returns the parameters used in the model invocation.
type PalmClient ¶ added in v0.0.36
type PalmClient interface {
GenerateText(ctx context.Context, req *generativelanguagepb.GenerateTextRequest, opts ...gax.CallOption) (*generativelanguagepb.GenerateTextResponse, error)
}
PalmClient is the interface for the PALM client.
type PalmOptions ¶ added in v0.0.36
type PalmOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // ModelName is the name of the Palm language model to use. ModelName string `map:"model_name,omitempty"` // Temperature is the sampling temperature to use during text generation. Temperature float32 `map:"temperature,omitempty"` // TopP is the total probability mass of tokens to consider at each step. TopP float32 `map:"top_p,omitempty"` // TopK determines how the model selects tokens for output. TopK int32 `map:"top_k"` // MaxOutputTokens specifies the maximum number of output tokens for text generation. MaxOutputTokens int32 `map:"max_output_tokens"` // CandidateCount specifies the number of candidates to generate during text completion. CandidateCount int32 `map:"candidate_count"` }
PalmOptions is the options struct for the PALM language model.
type ReturnLikelihood ¶ added in v0.0.79
type ReturnLikelihood string
const ( ReturnLikelihoodGeneration ReturnLikelihood = "GENERATION" ReturnLikelihoodAll ReturnLikelihood = "ALL" ReturnLikelihoodNone ReturnLikelihood = "NONE" )
type SagemakerEndpoint ¶
SagemakerEndpoint represents an LLM model deployed on AWS SageMaker.
func NewSagemakerEndpoint ¶
func NewSagemakerEndpoint(client SagemakerRuntimeClient, endpointName string, contenHandler *ContentHandler, optFns ...func(o *SagemakerEndpointOptions)) (*SagemakerEndpoint, error)
NewSagemakerEndpoint creates a new SagemakerEndpoint instance.
func (*SagemakerEndpoint) Callbacks ¶
func (l *SagemakerEndpoint) Callbacks() []schema.Callback
Callbacks returns the registered callbacks of the model.
func (*SagemakerEndpoint) Generate ¶
func (l *SagemakerEndpoint) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*SagemakerEndpoint) InvocationParams ¶ added in v0.0.27
func (l *SagemakerEndpoint) InvocationParams() map[string]any
InvocationParams returns the parameters used in the model invocation.
func (*SagemakerEndpoint) Type ¶
func (l *SagemakerEndpoint) Type() string
Type returns the type of the model.
func (*SagemakerEndpoint) Verbose ¶
func (l *SagemakerEndpoint) Verbose() bool
Verbose returns the verbosity setting of the model.
type SagemakerEndpointOptions ¶
type SagemakerEndpointOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` }
SagemakerEndpointOptions contains options for configuring the SagemakerEndpoint.
type SagemakerRuntimeClient ¶ added in v0.0.34
type SagemakerRuntimeClient interface { // InvokeEndpoint invokes an endpoint in the SageMaker Runtime service with the specified input parameters. // It returns the output of the endpoint invocation or an error if the invocation fails. InvokeEndpoint(ctx context.Context, params *sagemakerruntime.InvokeEndpointInput, optFns ...func(*sagemakerruntime.Options)) (*sagemakerruntime.InvokeEndpointOutput, error) }
SagemakerRuntimeClient is an interface that represents the client for interacting with the SageMaker Runtime service.
type Transformer ¶
type Transformer interface { // Transforms the input to a format that model can accept // as the request Body. Should return bytes or seekable file // like object in the format specified in the content_type // request header. TransformInput(prompt string) ([]byte, error) // Transforms the output from the model to string that // the LLM class expects. TransformOutput(output []byte) (string, error) }
Transformer defines the interface for transforming input and output data for the LLM model.
type VertexAI ¶ added in v0.0.31
VertexAI represents the VertexAI language model.
func NewVertexAI ¶ added in v0.0.31
func NewVertexAI(client VertexAIClient, endpoint string, optFns ...func(o *VertexAIOptions)) (*VertexAI, error)
NewVertexAI creates a new VertexAI instance with the provided client and endpoint.
func (*VertexAI) Callbacks ¶ added in v0.0.31
Callbacks returns the registered callbacks of the model.
func (*VertexAI) Generate ¶ added in v0.0.31
func (l *VertexAI) Generate(ctx context.Context, prompt string, optFns ...func(o *schema.GenerateOptions)) (*schema.ModelResult, error)
Generate generates text based on the provided prompt and options.
func (*VertexAI) InvocationParams ¶ added in v0.0.31
InvocationParams returns the parameters used in the model invocation.
type VertexAIClient ¶ added in v0.0.31
type VertexAIClient interface { // Predict sends a prediction request to the Vertex AI service. // It takes a context, predict request, and optional call options. // It returns the predict response or an error if the prediction fails. Predict(ctx context.Context, req *aiplatformpb.PredictRequest, opts ...gax.CallOption) (*aiplatformpb.PredictResponse, error) }
VertexAIClient represents the interface for interacting with Vertex AI.
type VertexAIOptions ¶ added in v0.0.31
type VertexAIOptions struct { *schema.CallbackOptions `map:"-"` schema.Tokenizer `map:"-"` // Temperature is the sampling temperature to use during text generation. Temperature float32 `map:"temperature"` // MaxOutputTokens determines the maximum amount of text output from one prompt. MaxOutputTokens int `map:"max_output_tokens"` // TopP is the total probability mass of tokens to consider at each step. TopP float32 `map:"top_p"` // TopK determines how the model selects tokens for output. TopK int `map:"top_k"` }
VertexAIOptions contains options for configuring the VertexAI language model.