Documentation ¶
Overview ¶
Package embedding contains the implementation to create vector embeddings from text using different APIs
Index ¶
- Variables
- type AzureOpenAIOptions
- type Bedrock
- type BedrockOptions
- type BedrockRuntimeClient
- type Cohere
- type CohereClient
- type CohereOptions
- type Ernie
- type ErnieClient
- type ErnieOptions
- type Fake
- type GoogleGenAI
- type GoogleGenAIClient
- type GoogleGenAIOptions
- type HuggingFaceHub
- type HuggingFaceHubClient
- type HuggingFaceHubOptions
- type Ollama
- type OllamaClient
- type OllamaOptions
- type OpenAI
- type OpenAIClient
- type OpenAIOptions
Constants ¶
This section is empty.
Variables ¶
var DefaultOpenAIConfig = OpenAIOptions{
ModelName: "text-embedding-ada-002",
EmbeddingContextLength: 8191,
ChunkSize: 1000,
MaxRetries: 3,
}
Functions ¶
This section is empty.
Types ¶
type AzureOpenAIOptions ¶ added in v0.0.26
type AzureOpenAIOptions struct { OpenAIOptions APIVersion string Deployment string }
type Bedrock ¶ added in v0.0.73
type Bedrock struct {
// contains filtered or unexported fields
}
Bedrock is a struct representing the Bedrock model embedding functionality.
func NewBedrock ¶ added in v0.0.73
func NewBedrock(client BedrockRuntimeClient, optFns ...func(o *BedrockOptions)) *Bedrock
NewBedrock creates a new instance of Bedrock with the provided BedrockRuntimeClient and optional configuration.
func (*Bedrock) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type BedrockOptions ¶ added in v0.0.73
type BedrockOptions struct { MaxConcurrency int // Model id to use. ModelID string `map:"model_id,omitempty"` // Model params to use. ModelParams map[string]any `map:"model_params,omitempty"` }
BedrockOptions contains options for configuring the Bedrock model.
type BedrockRuntimeClient ¶ added in v0.0.73
type BedrockRuntimeClient interface {
InvokeModel(ctx context.Context, params *bedrockruntime.InvokeModelInput, optFns ...func(*bedrockruntime.Options)) (*bedrockruntime.InvokeModelOutput, error)
}
BedrockRuntimeClient is an interface for the Bedrock model runtime client.
type Cohere ¶ added in v0.0.39
type Cohere struct {
// contains filtered or unexported fields
}
Cohere is a client for the Cohere API.
func NewCohere ¶ added in v0.0.39
func NewCohere(apiKey string, optFns ...func(o *CohereOptions)) (*Cohere, error)
NewCohere creates a new Cohere instance with the provided API key and options. It returns the initialized Cohere instance or an error if initialization fails.
func NewCohereFromClient ¶ added in v0.0.39
func NewCohereFromClient(client CohereClient, optFns ...func(o *CohereOptions)) (*Cohere, error)
NewCohereFromClient creates a new Cohere instance from an existing Cohere client and options. It returns the initialized Cohere instance.
func (*Cohere) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type CohereClient ¶ added in v0.0.39
type CohereClient interface {
Embed(ctx context.Context, request *cohere.EmbedRequest, opts ...core.RequestOption) (*cohere.EmbedResponse, error)
}
CohereClient is an interface for the Cohere client.
type CohereOptions ¶ added in v0.0.39
type CohereOptions struct { // Model name to use. Model string // Truncate embeddings that are too long from start or end ("NONE"|"START"|"END") Truncate string // MaxRetries represents the maximum number of retries to make when embedding. MaxRetries uint `map:"max_retries,omitempty"` }
CohereOptions contains options for configuring the Cohere instance.
type Ernie ¶ added in v0.0.67
type Ernie struct {
// contains filtered or unexported fields
}
Ernie represents the text embedding component powered by Ernie.
func NewErnie ¶ added in v0.0.67
func NewErnie(clientID, clientSecret string, optFns ...func(o *ErnieOptions)) *Ernie
NewErnie creates a new instance of the Ernie text embedding component with default options.
func NewErnieFromClient ¶ added in v0.0.67
func NewErnieFromClient(client ErnieClient, optFns ...func(o *ErnieOptions)) *Ernie
NewErnieFromClient creates a new instance of the Ernie text embedding component with a custom ErnieClient and optional configuration.
func (*Ernie) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type ErnieClient ¶ added in v0.0.67
type ErnieClient interface { // CreateEmbedding generates text embeddings using the specified model and request. CreateEmbedding(ctx context.Context, model string, request ernie.EmbeddingRequest) (*ernie.EmbeddingResponse, error) }
ErnieClient is an interface for interacting with the Ernie API for text embedding.
type ErnieOptions ¶ added in v0.0.67
type ErnieOptions struct {
Model string
}
ErnieOptions represents configuration options for the Ernie text embedding component.
type Fake ¶
type Fake struct {
Size int
}
func (*Fake) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type GoogleGenAI ¶ added in v0.0.92
type GoogleGenAI struct {
// contains filtered or unexported fields
}
GoogleGenAI is a client for the GoogleGenAI embedding service.
func NewGoogleGenAI ¶ added in v0.0.92
func NewGoogleGenAI(client GoogleGenAIClient, optFns ...func(o *GoogleGenAIOptions)) *GoogleGenAI
NewGoogleGenAI creates a new instance of the GoogleGenAI client.
func (*GoogleGenAI) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type GoogleGenAIClient ¶ added in v0.0.92
type GoogleGenAIClient interface { EmbedContent(context.Context, *generativelanguagepb.EmbedContentRequest, ...gax.CallOption) (*generativelanguagepb.EmbedContentResponse, error) BatchEmbedContents(context.Context, *generativelanguagepb.BatchEmbedContentsRequest, ...gax.CallOption) (*generativelanguagepb.BatchEmbedContentsResponse, error) }
GoogleGenAIClient is an interface for the GoogleGenAI client.
type GoogleGenAIOptions ¶ added in v0.0.92
type GoogleGenAIOptions struct {
ModelName string
}
GoogleGenAIOptions contains options for configuring the GoogleGenAI client.
type HuggingFaceHub ¶ added in v0.0.66
type HuggingFaceHub struct {
// contains filtered or unexported fields
}
HuggingFaceHub represents an embedder for Hugging Face Hub models.
func NewHuggingFaceHub ¶ added in v0.0.66
func NewHuggingFaceHub(token string, optFns ...func(o *HuggingFaceHubOptions)) *HuggingFaceHub
NewHuggingFaceHub creates a new instance of the HuggingFaceHub embedder.
func NewHuggingFaceHubFromClient ¶ added in v0.0.66
func NewHuggingFaceHubFromClient(client HuggingFaceHubClient, optFns ...func(o *HuggingFaceHubOptions)) *HuggingFaceHub
NewHuggingFaceHubFromClient creates a new instance of the HuggingFaceHub embedder from a custom client.
func (*HuggingFaceHub) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type HuggingFaceHubClient ¶ added in v0.0.66
type HuggingFaceHubClient interface { // FeatureExtractionWithAutomaticReduction performs feature extraction with automatic reduction. // It returns the extraction response or an error if the operation fails. FeatureExtractionWithAutomaticReduction(ctx context.Context, req *huggingface.FeatureExtractionRequest) (huggingface.FeatureExtractionWithAutomaticReductionResponse, error) }
HuggingFaceHubClient represents a client for interacting with Hugging Face Hub.
type HuggingFaceHubOptions ¶ added in v0.0.66
type HuggingFaceHubOptions struct { // Model to use for embedding. Model string // Options represents optional settings for the feature extraction. Options huggingface.Options }
type Ollama ¶ added in v0.0.96
type Ollama struct {
// contains filtered or unexported fields
}
Ollama is a struct representing the Ollama embedding model.
func NewOllama ¶ added in v0.0.96
func NewOllama(client OllamaClient, optFns ...func(o *OllamaOptions)) *Ollama
NewOllama creates a new instance of the Ollama embedding model.
func (*Ollama) BatchEmbedText ¶ added in v0.0.96
BatchEmbedText embeds a list of texts and returns their embeddings.
type OllamaClient ¶ added in v0.0.96
type OllamaClient interface {
CreateEmbedding(ctx context.Context, req *ollama.EmbeddingRequest) (*ollama.EmbeddingResponse, error)
}
OllamaClient is an interface for interacting with the Ollama model's embedding functionality.
type OllamaOptions ¶ added in v0.0.96
type OllamaOptions struct { MaxConcurrency int // ModelName is the name of the Gemini model to use. ModelName string `map:"model_name,omitempty"` }
OllamaOptions contains options for configuring the Ollama model.
type OpenAI ¶ added in v0.0.6
type OpenAI struct {
// contains filtered or unexported fields
}
func NewAzureOpenAI ¶ added in v0.0.26
func NewAzureOpenAI(apiKey, baseURL string, optFns ...func(o *AzureOpenAIOptions)) (*OpenAI, error)
func NewOpenAI ¶ added in v0.0.6
func NewOpenAI(apiKey string, optFns ...func(o *OpenAIOptions)) (*OpenAI, error)
func NewOpenAIFromClient ¶ added in v0.0.38
func NewOpenAIFromClient(client OpenAIClient, optFns ...func(o *OpenAIOptions)) (*OpenAI, error)
func (*OpenAI) BatchEmbedText ¶ added in v0.0.93
BatchEmbedText embeds a list of texts and returns their embeddings.
type OpenAIClient ¶ added in v0.0.68
type OpenAIOptions ¶ added in v0.0.6
type OpenAIOptions struct { // Model name to use. ModelName string EmbeddingContextLength int // Maximum number of texts to embed in each batch ChunkSize int // BaseURL is the base URL of the OpenAI service. BaseURL string // OrgID is the organization ID for accessing the OpenAI service. OrgID string // MaxRetries represents the maximum number of retries to make when embedding. MaxRetries uint `map:"max_retries,omitempty"` }