Documentation ¶
Index ¶
- func Abs(A *matrix.ComplexMatrix) *matrix.FloatMatrix
- func Add(A *matrix.ComplexMatrix, alpha complex128, indexes ...int) *matrix.ComplexMatrix
- func AddAt(A *matrix.ComplexMatrix, values []complex128, indexes []int) *matrix.ComplexMatrix
- func Apply(A *matrix.ComplexMatrix, fn func(complex128) complex128, indexes ...int) *matrix.ComplexMatrix
- func ApplyConst(A *matrix.ComplexMatrix, x complex128, ...) *matrix.ComplexMatrix
- func ApplyConstValues(A *matrix.ComplexMatrix, values []complex128, ...) *matrix.ComplexMatrix
- func Complex(Real, Imag *matrix.FloatMatrix) *matrix.ComplexMatrix
- func Conj(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
- func Div(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix
- func Exp(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
- func Imag(A *matrix.ComplexMatrix) *matrix.FloatMatrix
- func Inv(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
- func Log(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
- func Minus(matrices ...*matrix.ComplexMatrix) *matrix.ComplexMatrix
- func Mul(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix
- func Plus(matrices ...*matrix.ComplexMatrix) *matrix.ComplexMatrix
- func Pow(A *matrix.ComplexMatrix, exp complex128, indexes ...int) *matrix.ComplexMatrix
- func Real(A *matrix.ComplexMatrix) *matrix.FloatMatrix
- func Scale(A *matrix.ComplexMatrix, alpha complex128, indexes ...int) *matrix.ComplexMatrix
- func ScaleAt(A *matrix.ComplexMatrix, values []complex128, indexes []int) *matrix.ComplexMatrix
- func Sqrt(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
- func Times(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Abs ¶
func Abs(A *matrix.ComplexMatrix) *matrix.FloatMatrix
Compute Abs(A), Returns a new float valued matrix.
func Add ¶
func Add(A *matrix.ComplexMatrix, alpha complex128, indexes ...int) *matrix.ComplexMatrix
Make a copy C of A and compute C += alpha for all elements in the matrix if list of indexes is empty. Otherwise compute C[i] += alpha for indexes in column-major order.
func AddAt ¶
func AddAt(A *matrix.ComplexMatrix, values []complex128, indexes []int) *matrix.ComplexMatrix
Make copy C of A and compute C[indexes[i]] += values[i]. Indexes are in column-major order. Returns a new matrix.
func Apply ¶
func Apply(A *matrix.ComplexMatrix, fn func(complex128) complex128, indexes ...int) *matrix.ComplexMatrix
Make a copy C of A and apply function fn element wise to C. For indexes is not empty then C[indexes[i]] = fn(C[indexes[i]]). Returns a new matrix.
func ApplyConst ¶
func ApplyConst(A *matrix.ComplexMatrix, x complex128, fn func(complex128, complex128) complex128, indexes ...int) *matrix.ComplexMatrix
Make a copy C of A and apply function fn element wise to C. For indexes is not empty then C[indexes[i]] = fn(C[indexes[i]], x). Returns a new matrix.
func ApplyConstValues ¶
func ApplyConstValues(A *matrix.ComplexMatrix, values []complex128, fn func(complex128, complex128) complex128, indexes []int) *matrix.ComplexMatrix
Makes a copy of A and for all elements pointed by the element of the indexes array calculates fn(A[k], values[i]) where k is the i'th value in the indexes array.
func Complex ¶
func Complex(Real, Imag *matrix.FloatMatrix) *matrix.ComplexMatrix
Return Complex(Real, Imag). Return a new matrix.
func Conj ¶
func Conj(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
Compute element-wise C = Conj(A). Returns a new matrix.
func Div ¶
func Div(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix
Compute element wise division C[i,j] = A[i,j] / B[i,j]. Returns new matrix.
func Exp ¶
func Exp(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
Compute element-wise C = Exp(A). Returns a new matrix.
func Inv ¶
func Inv(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
Make a copy C of A and compute inverse C[i] = 1.0/C[i]. If indexes is empty calculates for all elements. Returns a new matrix.
func Log ¶
func Log(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
Compute element-wise C = Log(A). Returns a new matrix.
func Minus ¶
func Minus(matrices ...*matrix.ComplexMatrix) *matrix.ComplexMatrix
Compute element-wise difference C = A - B. Returns a new matrix.
func Mul ¶
func Mul(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix
Compute element-wise product C[i,j] = A[i,j] * B[i,j]. Returns new matrix.
func Plus ¶
func Plus(matrices ...*matrix.ComplexMatrix) *matrix.ComplexMatrix
Compute element-wise sum C = A + B. Returns a new matrix.
func Pow ¶
func Pow(A *matrix.ComplexMatrix, exp complex128, indexes ...int) *matrix.ComplexMatrix
Compute element-wise C = Pow(A). Returns a new matrix.
func Scale ¶
func Scale(A *matrix.ComplexMatrix, alpha complex128, indexes ...int) *matrix.ComplexMatrix
Make a copy C of A and compute C *= alpha for all elements in the matrix if list of indexes is empty. Otherwise compute C[i] *= alpha for i in indexes array.
func ScaleAt ¶
func ScaleAt(A *matrix.ComplexMatrix, values []complex128, indexes []int) *matrix.ComplexMatrix
Make a copy C of A and compute for all k in indexes: C[k] *= values[k]. Indexes are in column-major order. Returns a new matrix
func Sqrt ¶
func Sqrt(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix
Compute element-wise C = Sqrt(A). Returns a new matrix.
func Times ¶
func Times(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix
Compute matrix product C = A * B where A is m*p and B is p*n. Returns a new m*n matrix.
Types ¶
This section is empty.