graph

package
v1.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 9, 2017 License: BSD-3-Clause Imports: 8 Imported by: 0

README

Gosl. gm. Graph theory structures and algorithms

GoDoc

More information is available in the documentation of this package.

This package implements algorithms for handling graphs and solving problems such as shortest path finding. It also implements an algorithm to solve the assignment problem.

Graph representation

In graph, directed graphs are mainly defined by edges. A weight can be assigned to each edge as well. For example, the graph below:

          [10]
     0 ––––––––→ 3      numbers in parentheses
     |    (1)    ↑      indicate edge ids
  [5]|(0)        |
     |        (3)|[1]
     ↓    (2)    |      numbers in brackets
     1 ––––––––→ 2      indicate weights
          [3]

is defined with the following code:

var G Graph
G.Init(
    // edge:  0       1       2       3
    [][]int{{0, 1}, {0, 3}, {1, 2}, {2, 3}},
    []float64{5, 10, 3, 1}, // edge/weights
    nil, nil, // optional: vertices and vertex/weights
)

Vertex coordinates can be specified as well. Furthermore, weights can be assigned to vertices. These are useful when computing distances, for example.

Floyd-Warshall algorithm to compute shortest paths

The ShortestPaths method of Graph computes the shortest paths using the Floyd-Warshall algorithm. For example, the graph above has the following distances matrix:

       [10]
    0 ––––––→ 3            numbers in brackets
    |         ↑            indicate weights
[5] |         | [1]
    ↓         |
    1 ––––––→ 2
        [3]                ∞ means that there are no
                           connections from i to j
graph:  j= 0  1  2  3
           -----------  i=
           0  5  ∞ 10 |  0  ⇒  w(0→1)=5, w(0→3)=10
           ∞  0  3  ∞ |  1  ⇒  w(1→2)=3
           ∞  ∞  0  1 |  2  ⇒  w(2→3)=1
           ∞  ∞  ∞  0 |  3

After running the ShortestPaths command, paths from source (s) to destination (t) can be extracted with the Path method.

Example: Small graph
//           [10]
//      0 ––––––––→ 3      numbers in parentheses
//      |    (1)    ↑      indicate edge ids
//   [5]|(0)        |
//      |        (3)|[1]
//      ↓    (2)    |      numbers in brackets
//      1 ––––––––→ 2      indicate weights
//           [3]

// initialise graph
var g graph.Graph
g.Init(
    // edge:  0       1       2       3
    [][]int{{0, 1}, {0, 3}, {1, 2}, {2, 3}},

    // weights:
    []float64{5, 10, 3, 1},

    // vertices (coordinates, for drawings):
    [][]float64{
        {0, 1}, // x,y vertex 0
        {0, 0}, // x,y vertex 1
        {1, 0}, // x,y vertex 2
        {1, 1}, // x,y vertex 3
    },

    // weights:
    nil,
)

// compute paths
g.ShortestPaths("FW")

// print shortest path from 0 to 2
io.Pf("dist from = %v\n", g.Path(0, 2))

// print shortest path from 0 to 3
io.Pf("dist from = %v\n", g.Path(0, 3))

// print distance matrix
io.Pf("dist =\n%v", g.StrDistMatrix())

// constants for plot
radius, width, gap := 0.05, 1e-8, 0.05

// plot
plt.Reset(true, &plt.A{WidthPt: 250, Dpi: 150, Prop: 1.0})
err := g.Draw(nil, nil, radius, width, gap, nil, nil, nil, nil)
if err != nil {
    io.Pf("%v", err)
    return
}
plt.Equal()
plt.AxisOff()
plt.Save("/tmp/gosl/graph", "shortestpath01")

Source code: ../examples/graph_shortestpaths01.go

Example: Sioux Falls
// load graph data from FLOW file
g := graph.ReadGraphTable("../graph/data/SiouxFalls.flow", false)

// compute paths
g.ShortestPaths("FW")

// print shortest path from 0 to 20
io.Pf("dist from = %v\n", g.Path(0, 20))
io.Pf("must be: [0, 2, 11, 12, 23, 20]\n")

// data for drawing: ids of vertices along columns in plot grid
columns := [][]int{
    {0, 2, 11, 12},
    {3, 10, 13, 22, 23},
    {4, 8, 9, 14, 21, 20},
    {1, 5, 7, 15, 16, 18, 19},
    {6, 17},
}

// data for drawing: y-coordinats of vertices in plot
Y := [][]float64{
    {7, 6, 4, 0},          // col0
    {6, 4, 2, 1, 0},       // col1
    {6, 5, 4, 2, 1, 0},    // col2
    {7, 6, 5, 4, 3, 2, 0}, // col3
    {5, 4},                // col4
}

// data for drawing: set vertices in graph structure
scalex := 1.8
scaley := 1.3
nv := 24
g.Verts = make([][]float64, nv)
for j, col := range columns {
    x := float64(j) * scalex
    for i, vid := range col {
        g.Verts[vid] = []float64{x, Y[j][i] * scaley}
    }
}

// data for drawing: set vertex labels
vlabels := make(map[int]string)
for i := 0; i < nv; i++ {
    vlabels[i] = io.Sf("%d", i)
}

// data for drawing: set edge labels
ne := 76
elabels := make(map[int]string)
for i := 0; i < ne; i++ {
    elabels[i] = io.Sf("%d", i)
}

// plot
plt.Reset(true, &plt.A{WidthPt: 500, Dpi: 150, Prop: 1.1})
err := g.Draw(vlabels, elabels, 0, 0, 0, nil, nil, nil, nil)
if err != nil {
    io.Pf("%v", err)
    return
}
plt.Equal()
plt.AxisOff()
plt.Save("/tmp/gosl/graph", "graph_siouxfalls01")

Source code: ../examples/graph_siouxfalls01.go

Munkres (Hungarian algorithm): the assignment problem

The Munkres method, also known as the Hungarian algorithm, aims to solve the assignment problem; i.e. problems such as the following example:

Minimise the cost of operation when assigning three employees (Fry, Leela, Bender) to three tasks,
where (the minimum cost is highlighted):

           $ | Clean  Sweep   Wash
      -------|--------------------
      Fry    |   [2]      3      3
      Leela  |     3    [2]      3
      Bender |     3      3    [2]
      minimum cost = 6

The code is based on Bob Pilgrim' work.

The method runs in O(n²), in the worst case; therefore is not efficient for large matrices.

The Munkres structure implements the solver.

Examples

Solution of Euler's problem # 345 using the Hungarian algorithm.

// problem matrix
C := [][]float64{
    {7, 53, 183, 439, 863, 497, 383, 563, 79, 973, 287, 63, 343, 169, 583},
    {627, 343, 773, 959, 943, 767, 473, 103, 699, 303, 957, 703, 583, 639, 913},
    {447, 283, 463, 29, 23, 487, 463, 993, 119, 883, 327, 493, 423, 159, 743},
    {217, 623, 3, 399, 853, 407, 103, 983, 89, 463, 290, 516, 212, 462, 350},
    {960, 376, 682, 962, 300, 780, 486, 502, 912, 800, 250, 346, 172, 812, 350},
    {870, 456, 192, 162, 593, 473, 915, 45, 989, 873, 823, 965, 425, 329, 803},
    {973, 965, 905, 919, 133, 673, 665, 235, 509, 613, 673, 815, 165, 992, 326},
    {322, 148, 972, 962, 286, 255, 941, 541, 265, 323, 925, 281, 601, 95, 973},
    {445, 721, 11, 525, 473, 65, 511, 164, 138, 672, 18, 428, 154, 448, 848},
    {414, 456, 310, 312, 798, 104, 566, 520, 302, 248, 694, 976, 430, 392, 198},
    {184, 829, 373, 181, 631, 101, 969, 613, 840, 740, 778, 458, 284, 760, 390},
    {821, 461, 843, 513, 17, 901, 711, 993, 293, 157, 274, 94, 192, 156, 574},
    {34, 124, 4, 878, 450, 476, 712, 914, 838, 669, 875, 299, 823, 329, 699},
    {815, 559, 813, 459, 522, 788, 168, 586, 966, 232, 308, 833, 251, 631, 107},
    {813, 883, 451, 509, 615, 77, 281, 613, 459, 205, 380, 274, 302, 35, 805},
}

// solver seeks to minimise cost, thus, multiply coefficients by -1
for i := 0; i < len(C); i++ {
    for j := 0; j < len(C[i]); j++ {
        C[i][j] *= -1
    }
}

// initialise solver
var mnk graph.Munkres
mnk.Init(len(C), len(C[0]))
mnk.SetCostMatrix(C)

// solve rpoblem
mnk.Run()

// results
io.Pf("links = %v\n", mnk.Links)
io.Pf("cost = %v  (optimal 13938)\n", -mnk.Cost)

Output:

links = [9 10 7 4 3 0 13 2 14 11 6 5 12 8 1]
cost = 13938  (optimal 13938)

Source code: ../examples/graph_munkres01.go

Documentation

Overview

Package graph implements solvers based on Graph theory

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func BuildIndicatorMatrix

func BuildIndicatorMatrix(nv int, pth []int) (x [][]int)

BuildIndicatorMatrix builds indicator matrix

func CheckIndicatorMatrix

func CheckIndicatorMatrix(source, target int, x [][]int, verbose bool) (errPath, errLoop int)

CheckIndicatorMatrix checks indicator matirx

func CheckIndicatorMatrixRowMaj

func CheckIndicatorMatrixRowMaj(source, target, nv int, xmat []int) (errPath, errLoop int)

CheckIndicatorMatrixRowMaj checks indicator matrix in row-major format

func MetisPartition

func MetisPartition(npart, nvert int, xadj, adjncy []int32, recursive bool) (objval int32, parts []int32)

MetisPartition performs graph partitioning using METIS

func PrintIndicatorMatrix

func PrintIndicatorMatrix(x [][]int) (l string)

PrintIndicatorMatrix prints indicator matrix

Types

type Graph

type Graph struct {

	// input
	Edges    [][]int     // [nedges][2] edges (connectivity)
	WeightsE []float64   // [nedges] weights of edges. can be <nil>
	Verts    [][]float64 // [nverts][ndim] vertices. can be <nil>
	WeightsV []float64   // [nverts] weights of vertices. can be <nil>

	// auxiliary
	Shares   map[int][]int // [nverts] edges sharing a vertex
	Key2edge map[int]int   // maps (i,j) vertex to edge index
	Dist     [][]float64   // [nverts][nverts] distances
	Next     [][]int       // [nverts][nverts] next tree connection. -1 means no connection
}

Graph defines a graph structure

func ReadGraphTable

func ReadGraphTable(fname string, bargera bool) *Graph

ReadGraphTable reads data and allocate graph

func (*Graph) CalcDist

func (o *Graph) CalcDist()

CalcDist computes distances beetween all vertices and initialises 'Next' matrix

func (*Graph) GetAdjacency

func (o *Graph) GetAdjacency() (xadj, adjncy []int32)

GetAdjacency returns adjacency list as a compressed storage format for METIS

func (*Graph) GetEdge

func (o *Graph) GetEdge(i, j int) (k int)

GetEdge performs a lookup on Key2edge map and returs id of edge for given nodes ides

func (*Graph) HashEdgeKey

func (o *Graph) HashEdgeKey(i, j int) (edge int)

HashEdgeKey creates a unique hash key identifying an edge

func (*Graph) Init

func (o *Graph) Init(edges [][]int, weightsE []float64, verts [][]float64, weightsV []float64)

Init initialises graph

Input:
  edges    -- [nedges][2] edges (connectivity)
  weightsE -- [nedges] weights of edges. can be <nil>
  verts    -- [nverts][ndim] vertices. can be <nil>
  weightsV -- [nverts] weights of vertices. can be <nil>

func (*Graph) Nverts

func (o *Graph) Nverts() int

Nverts returns the number of vertices

func (*Graph) Path

func (o *Graph) Path(s, t int) (p []int)

Path returns the path from source (s) to destination (t)

Note: ShortestPaths method must be called first

func (*Graph) ShortestPaths

func (o *Graph) ShortestPaths(method string)

ShortestPaths computes the shortest paths in a graph defined as follows

        [10]
     0 ––––––→ 3            numbers in brackets
     |         ↑            indicate weights
 [5] |         | [1]
     ↓         |
     1 ––––––→ 2
         [3]                ∞ means that there are no
                            connections from i to j
 graph:  j= 0  1  2  3
            -----------  i=
            0  5  ∞ 10 |  0  ⇒  w(0→1)=5, w(0→3)=10
            ∞  0  3  ∞ |  1  ⇒  w(1→2)=3
            ∞  ∞  0  1 |  2  ⇒  w(2→3)=1
            ∞  ∞  ∞  0 |  3
Input:
 method -- FW: Floyd-Warshall method

func (*Graph) StrDistMatrix

func (o *Graph) StrDistMatrix() (l string)

StrDistMatrix returns a string representation of Dist matrix

type MaskType

type MaskType int

MaskType defines the type of mask

const (

	// NoneType defines the NONE mask type
	NoneType MaskType = iota

	// StarType defines the STAR mask type
	StarType

	// PrimeType defines the PRIME mask type
	PrimeType
)

type Munkres

type Munkres struct {

	// main
	C     [][]float64 // [nrow][ncol] cost matrix
	Cori  [][]float64 // [nrow][ncol] original cost matrix
	Links []int       // [nrow] will contain links/assignments after Run(), where j := o.Links[i] means that i is assigned to j. -1 means no assignment/link
	Cost  float64     // total cost after Run() and links are established

	// auxiliary
	M [][]MaskType // [nrow][ncol] mask matrix. If Mij==1, then Cij is a starred zero. If Mij==2, then Cij is a primed zero
	// contains filtered or unexported fields
}

Munkres (Hungarian algorithm) method to solve the assignment problem

based on code by Bob Pilgrim from http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
Note: this method runs in O(n²), in the worst case; therefore is not efficient for large matrix
 Example:
         $ | Clean  Sweep   Wash
    -------|--------------------
    Fry    |   [2]      3      3
    Leela  |     3    [2]      3
    Bender |     3      3    [2]
    minimum cost = 6

Note: cost will be minimised

func (*Munkres) Init

func (o *Munkres) Init(nrow, ncol int)

Init initialises Munkres' structure

func (*Munkres) Run

func (o *Munkres) Run()

Run runs the iterative algorithm

Output:
 o.Links -- will contain assignments, where len(assignments) == nrow and
            j := o.Links[i] means that i is assigned to j
            -1 means no assignment/link
 o.Cost -- will have the total cost by following links

func (*Munkres) SetCostMatrix

func (o *Munkres) SetCostMatrix(C [][]float64)

SetCostMatrix sets cost matrix by copying from C to internal o.C

Note: costs must be positive

func (*Munkres) StrCostMatrix

func (o *Munkres) StrCostMatrix() (l string)

StrCostMatrix returns a representation of cost matrix with masks and covers

type Plotter

type Plotter struct {
	G            *Graph         // the graph
	Parts        []int32        // [nverts] partitions
	VertsLabels  map[int]string // [nverts] labels of vertices. may be nil
	EdgesLabels  map[int]string // [nedges] labels of edges. may be nil
	FcParts      []string       // [nverts] face colors of circles indicating partitions. may be nil
	Radius       float64        // radius of circles. can be 0
	Width        float64        // distance between two edges. can be 0
	Gap          float64        // gap between text and edges; e.g. width/2. can be 0
	ArgsVertsTxt *plt.A         // arguments for vertex ids. may be nil
	ArgsEdgesTxt *plt.A         // arguments for edge ids. may be nil
	ArgsVerts    *plt.A         // arguments for vertices. may be nil
	ArgsEdges    *plt.A         // arguments for edges. may be nil
}

Plotter draws graphs

func (*Plotter) Draw

func (o *Plotter) Draw()

Draw draws graph

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL