Documentation ¶
Overview ¶
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright IBM Corp. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Index ¶
- func AESCBCPKCS7Decrypt(key, src []byte) ([]byte, error)
- func AESCBCPKCS7Encrypt(key, src []byte) ([]byte, error)
- func AESCBCPKCS7EncryptWithIV(IV []byte, key, src []byte) ([]byte, error)
- func AESCBCPKCS7EncryptWithRand(prng io.Reader, key, src []byte) ([]byte, error)
- func GetRandomBytes(len int) ([]byte, error)
- func NewDefaultSecurityLevel(keyStorePath string) (bccsp.BCCSP, error)
- func NewDefaultSecurityLevelWithKeystore(keyStore bccsp.KeyStore) (bccsp.BCCSP, error)
- func NewDummyKeyStore() bccsp.KeyStore
- func NewFileBasedKeyStore(pwd []byte, path string, readOnly bool) (bccsp.KeyStore, error)
- func NewWithParams(securityLevel int, hashFamily string, keyStore bccsp.KeyStore) (bccsp.BCCSP, error)
- type CSP
- func (csp *CSP) AddWrapper(t reflect.Type, w interface{}) error
- func (csp *CSP) Decrypt(k bccsp.Key, ciphertext []byte, opts bccsp.DecrypterOpts) (plaintext []byte, err error)
- func (csp *CSP) Encrypt(k bccsp.Key, plaintext []byte, opts bccsp.EncrypterOpts) ([]byte, error)
- func (csp *CSP) GetHash(opts bccsp.HashOpts) (h hash.Hash, err error)
- func (csp *CSP) GetKey(ski []byte) (k bccsp.Key, err error)
- func (csp *CSP) Hash(msg []byte, opts bccsp.HashOpts) (digest []byte, err error)
- func (csp *CSP) KeyDeriv(k bccsp.Key, opts bccsp.KeyDerivOpts) (dk bccsp.Key, err error)
- func (csp *CSP) KeyGen(opts bccsp.KeyGenOpts) (k bccsp.Key, err error)
- func (csp *CSP) KeyImport(raw interface{}, opts bccsp.KeyImportOpts) (k bccsp.Key, err error)
- func (csp *CSP) Sign(k bccsp.Key, digest []byte, opts bccsp.SignerOpts) (signature []byte, err error)
- func (csp *CSP) Verify(k bccsp.Key, signature, digest []byte, opts bccsp.SignerOpts) (valid bool, err error)
- type Decryptor
- type Encryptor
- type Hasher
- type KeyDeriver
- type KeyGenerator
- type KeyImporter
- type Signer
- type Verifier
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func AESCBCPKCS7Decrypt ¶
AESCBCPKCS7Decrypt combines CBC decryption and PKCS7 unpadding
func AESCBCPKCS7Encrypt ¶
AESCBCPKCS7Encrypt combines CBC encryption and PKCS7 padding
func AESCBCPKCS7EncryptWithIV ¶ added in v1.1.0
AESCBCPKCS7Encrypt combines CBC encryption and PKCS7 padding, the IV used is the one passed to the function
func AESCBCPKCS7EncryptWithRand ¶ added in v1.1.0
AESCBCPKCS7Encrypt combines CBC encryption and PKCS7 padding using as prng the passed to the function
func GetRandomBytes ¶
GetRandomBytes returns len random looking bytes
func NewDefaultSecurityLevel ¶
NewDefaultSecurityLevel returns a new instance of the software-based BCCSP at security level 256, hash family SHA2 and using FolderBasedKeyStore as KeyStore.
func NewDefaultSecurityLevelWithKeystore ¶
NewDefaultSecurityLevel returns a new instance of the software-based BCCSP at security level 256, hash family SHA2 and using the passed KeyStore.
func NewDummyKeyStore ¶
NewDummyKeyStore instantiate a dummy key store that neither loads nor stores keys
func NewFileBasedKeyStore ¶
NewFileBasedKeyStore instantiated a file-based key store at a given position. The key store can be encrypted if a non-empty password is specifiec. It can be also be set as read only. In this case, any store operation will be forbidden
Types ¶
type CSP ¶ added in v1.2.0
type CSP struct {
// contains filtered or unexported fields
}
CSP provides a generic implementation of the BCCSP interface based on wrappers. It can be customized by providing implementations for the following algorithm-based wrappers: KeyGenerator, KeyDeriver, KeyImporter, Encryptor, Decryptor, Signer, Verifier, Hasher. Each wrapper is bound to a goland type representing either an option or a key.
func (*CSP) AddWrapper ¶ added in v1.2.0
AddWrapper binds the passed type to the passed wrapper. Notice that that wrapper must be an instance of one of the following interfaces: KeyGenerator, KeyDeriver, KeyImporter, Encryptor, Decryptor, Signer, Verifier, Hasher.
func (*CSP) Decrypt ¶ added in v1.2.0
func (csp *CSP) Decrypt(k bccsp.Key, ciphertext []byte, opts bccsp.DecrypterOpts) (plaintext []byte, err error)
Decrypt decrypts ciphertext using key k. The opts argument should be appropriate for the primitive used.
func (*CSP) Encrypt ¶ added in v1.2.0
Encrypt encrypts plaintext using key k. The opts argument should be appropriate for the primitive used.
func (*CSP) GetHash ¶ added in v1.2.0
GetHash returns and instance of hash.Hash using options opts. If opts is nil then the default hash function is returned.
func (*CSP) GetKey ¶ added in v1.2.0
GetKey returns the key this CSP associates to the Subject Key Identifier ski.
func (*CSP) KeyDeriv ¶ added in v1.2.0
KeyDeriv derives a key from k using opts. The opts argument should be appropriate for the primitive used.
func (*CSP) KeyImport ¶ added in v1.2.0
KeyImport imports a key from its raw representation using opts. The opts argument should be appropriate for the primitive used.
func (*CSP) Sign ¶ added in v1.2.0
func (csp *CSP) Sign(k bccsp.Key, digest []byte, opts bccsp.SignerOpts) (signature []byte, err error)
Sign signs digest using key k. The opts argument should be appropriate for the primitive used.
Note that when a signature of a hash of a larger message is needed, the caller is responsible for hashing the larger message and passing the hash (as digest).
type Decryptor ¶
type Decryptor interface { // Decrypt decrypts ciphertext using key k. // The opts argument should be appropriate for the algorithm used. Decrypt(k bccsp.Key, ciphertext []byte, opts bccsp.DecrypterOpts) (plaintext []byte, err error) }
Decryptor is a BCCSP-like interface that provides decryption algorithms
type Encryptor ¶
type Encryptor interface { // Encrypt encrypts plaintext using key k. // The opts argument should be appropriate for the algorithm used. Encrypt(k bccsp.Key, plaintext []byte, opts bccsp.EncrypterOpts) (ciphertext []byte, err error) }
Encryptor is a BCCSP-like interface that provides encryption algorithms
type Hasher ¶
type Hasher interface { // Hash hashes messages msg using options opts. // If opts is nil, the default hash function will be used. Hash(msg []byte, opts bccsp.HashOpts) (hash []byte, err error) // GetHash returns and instance of hash.Hash using options opts. // If opts is nil, the default hash function will be returned. GetHash(opts bccsp.HashOpts) (h hash.Hash, err error) }
Hasher is a BCCSP-like interface that provides hash algorithms
type KeyDeriver ¶
type KeyDeriver interface { // KeyDeriv derives a key from k using opts. // The opts argument should be appropriate for the primitive used. KeyDeriv(k bccsp.Key, opts bccsp.KeyDerivOpts) (dk bccsp.Key, err error) }
KeyDeriver is a BCCSP-like interface that provides key derivation algorithms
type KeyGenerator ¶
type KeyGenerator interface { // KeyGen generates a key using opts. KeyGen(opts bccsp.KeyGenOpts) (k bccsp.Key, err error) }
KeyGenerator is a BCCSP-like interface that provides key generation algorithms
type KeyImporter ¶
type KeyImporter interface { // KeyImport imports a key from its raw representation using opts. // The opts argument should be appropriate for the primitive used. KeyImport(raw interface{}, opts bccsp.KeyImportOpts) (k bccsp.Key, err error) }
KeyImporter is a BCCSP-like interface that provides key import algorithms
type Signer ¶
type Signer interface { // Sign signs digest using key k. // The opts argument should be appropriate for the algorithm used. // // Note that when a signature of a hash of a larger message is needed, // the caller is responsible for hashing the larger message and passing // the hash (as digest). Sign(k bccsp.Key, digest []byte, opts bccsp.SignerOpts) (signature []byte, err error) }
Signer is a BCCSP-like interface that provides signing algorithms
type Verifier ¶
type Verifier interface { // Verify verifies signature against key k and digest // The opts argument should be appropriate for the algorithm used. Verify(k bccsp.Key, signature, digest []byte, opts bccsp.SignerOpts) (valid bool, err error) }
Verifier is a BCCSP-like interface that provides verifying algorithms