ibctesting

package
v1.6.3 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 27, 2023 License: Apache-2.0 Imports: 34 Imported by: 0

README

IBC Testing Package

Components

The testing package comprises of four parts constructed as a stack:

  • coordinator
  • chain
  • path
  • endpoint

A coordinator sits at the highest level and contains all the chains which have been initialized. It also stores and updates the current global time. The time is manually incremented by a TimeIncrement. This allows all the chains to remain in synchrony avoiding the issue of a counterparty being perceived to be in the future. The coordinator also contains functions to do basic setup of clients, connections, and channels between two chains.

A chain is an SDK application (as represented by an app.go file). Inside the chain is an TestingApp which allows the chain to simulate block production and transaction processing. The chain contains by default a single tendermint validator. A chain is used to process SDK messages.

A path connects two channel endpoints. It contains all the information needed to relay between two endpoints.

An endpoint represents a channel (and its associated client and connections) on some specific chain. It contains references to the chain it is on and the counterparty endpoint it is connected to. The endpoint contains functions to interact with initialization and updates of its associated clients, connections, and channels. It can send, receive, and acknowledge packets.

In general:

  • endpoints are used for initialization and execution of IBC logic on one side of an IBC connection
  • paths are used to relay packets
  • chains are used to commit SDK messages
  • coordinator is used to setup a path between two chains

Integration

To integrate the testing package into your tests, you will need to define:

  • a testing application
  • a function to initialize the testing application
TestingApp

Your project will likely already have an application defined. This application will need to be extended to fulfill the TestingApp interface.

type TestingApp interface {
	abci.Application

	// ibc-go additions
	GetBaseApp() *baseapp.BaseApp
	GetStakingKeeper() stakingkeeper.Keeper
	GetIBCKeeper() *keeper.Keeper
	GetScopedIBCKeeper() capabilitykeeper.ScopedKeeper
	GetTxConfig() client.TxConfig

	// Implemented by SimApp
	AppCodec() codec.Codec

	// Implemented by BaseApp
	LastCommitID() sdk.CommitID
	LastBlockHeight() int64
}

To begin, you will need to extend your application by adding the following functions:

// TestingApp functions
// Example using SimApp to implement TestingApp

// GetBaseApp implements the TestingApp interface.
func (app *SimApp) GetBaseApp() *baseapp.BaseApp {
	return app.BaseApp
}

// GetStakingKeeper implements the TestingApp interface.
func (app *SimApp) GetStakingKeeper() stakingkeeper.Keeper {
	return app.StakingKeeper
}

// GetIBCKeeper implements the TestingApp interface.
func (app *SimApp) GetIBCKeeper() *ibckeeper.Keeper {
	return app.IBCKeeper
}

// GetScopedIBCKeeper implements the TestingApp interface.
func (app *SimApp) GetScopedIBCKeeper() capabilitykeeper.ScopedKeeper {
	return app.ScopedIBCKeeper
}

// GetTxConfig implements the TestingApp interface.
func (app *SimApp) GetTxConfig() client.TxConfig {
	return MakeTestEncodingConfig().TxConfig
}

Your application may need to define AppCodec() if it does not already exist:

// AppCodec returns SimApp's app codec.
//
// NOTE: This is solely to be used for testing purposes as it may be desirable
// for modules to register their own custom testing types.
func (app *SimApp) AppCodec() codec.Codec {
	return app.appCodec
}

It is assumed your application contains an embedded BaseApp and thus implements the abci.Application interface, LastCommitID() and LastBlockHeight()

Initialize TestingApp

The testing package requires that you provide a function to initialize your TestingApp. This is how ibc-go implements the initialize function with its SimApp:

func SetupTestingApp() (TestingApp, map[string]json.RawMessage) {
	db := dbm.NewMemDB()
	encCdc := simapp.MakeTestEncodingConfig()
	app := simapp.NewSimApp(log.NewNopLogger(), db, nil, true, map[int64]bool{}, simapp.DefaultNodeHome, 5, encCdc, simapp.EmptyAppOptions{})
	return app, simapp.NewDefaultGenesisState(encCdc.Marshaler)
}

This function returns the TestingApp and the default genesis state used to initialize the testing app.

Change the value of DefaultTestingAppInit to use your function:

func init() {
    ibctesting.DefaultTestingAppInit = MySetupTestingAppFunction
}

Example

Here is an example of how to setup your testing environment in every package you are testing:

// KeeperTestSuite is a testing suite to test keeper functions.
type KeeperTestSuite struct {
	suite.Suite

	coordinator *ibctesting.Coordinator

	// testing chains used for convenience and readability
	chainA *ibctesting.TestChain
	chainB *ibctesting.TestChain
}

// TestKeeperTestSuite runs all the tests within this package.
func TestKeeperTestSuite(t *testing.T) {
	suite.Run(t, new(KeeperTestSuite))
}

// SetupTest creates a coordinator with 2 test chains.
func (suite *KeeperTestSuite) SetupTest() {
	suite.coordinator = ibctesting.NewCoordinator(suite.T(), 2) // initializes 2 test chains
	suite.chainA = suite.coordinator.GetChain(ibctesting.GetChainID(1)) // convenience and readability
	suite.chainB = suite.coordinator.GetChain(ibctesting.GetChainID(2)) // convenience and readability
}

To create interaction between chainA and chainB, we need to contruct a Path these chains will use. A path contains two endpoints, EndpointA and EndpointB (corresponding to the order of the chains passed into the NewPath function). A path is a pointer and its values will be filled in as necessary during the setup portion of testing.

Endpoint Struct:

// Endpoint is a which represents a channel endpoint and its associated
// client and connections. It contains client, connection, and channel
// configuration parameters. Endpoint functions will utilize the parameters
// set in the configuration structs when executing IBC messages.
type Endpoint struct {
	Chain        *TestChain
	Counterparty *Endpoint
	ClientID     string
	ConnectionID string
	ChannelID    string

	ClientConfig     ClientConfig
	ConnectionConfig *ConnectionConfig
	ChannelConfig    *ChannelConfig
}

The fields empty after NewPath is called are ClientID, ConnectionID and ChannelID as the clients, connections, and channels for these endpoints have not yet been created. The ClientConfig, ConnectionConfig and ChannelConfig contain all the necessary information for clients, connections, and channels to be initialized. If you would like to use endpoints which are initialized to use your Port IDs, you might add a helper function similar to the one found in transfer:

func NewTransferPath(chainA, chainB *ibctesting.TestChain) *ibctesting.Path {
	path := ibctesting.NewPath(chainA, chainB)
	path.EndpointA.ChannelConfig.PortID = ibctesting.TransferPort
	path.EndpointB.ChannelConfig.PortID = ibctesting.TransferPort

	return path
}

Path configurations should be set to the desired values before calling any Setup coordinator functions.

To initialize the clients, connections, and channels for a path we can call the Setup functions of the coordinator:

  • Setup() -> setup clients, connections, channels
  • SetupClients() -> setup clients only
  • SetupConnections() -> setup clients and connections only

Here is a basic example of the testing package being used to simulate IBC functionality:

    path := ibctesting.NewPath(suite.chainA, suite.chainB) // clientID, connectionID, channelID empty
    suite.coordinator.Setup(path) // clientID, connectionID, channelID filled
    suite.Require().Equal("07-tendermint-0", path.EndpointA.ClientID)
    suite.Require().Equal("connection-0", path.EndpointA.ClientID)
    suite.Require().Equal("channel-0", path.EndpointA.ClientID)

    // create packet 1 
    packet1 := NewPacket() // NewPacket would construct your packet

    // send on endpointA
    path.EndpointA.SendPacket(packet1)

    // receive on endpointB
    path.EndpointB.RecvPacket(packet1)

    // acknowledge the receipt of the packet
    path.EndpointA.AcknowledgePacket(packet1, ack)

    // we can also relay
    packet2 := NewPacket()

    path.EndpointA.SendPacket(packet2)

    path.Relay(packet2, expectedAck)

    // if needed we can update our clients
    path.EndpointB.UpdateClient()    
Transfer Testing Example

If ICS 20 had its own simapp, its testing setup might include a testing/app.go file with the following contents:

package transfertesting

import (
	"encoding/json"

	"github.com/tendermint/tendermint/libs/log"
	dbm "github.com/tendermint/tm-db"

	"github.com/cosmos/ibc-go/v6/modules/apps/transfer/simapp"
	ibctesting "github.com/cosmos/ibc-go/v6/testing"
)

func SetupTransferTestingApp() (ibctesting.TestingApp, map[string]json.RawMessage) {
	db := dbm.NewMemDB()
	encCdc := simapp.MakeTestEncodingConfig()
	app := simapp.NewSimApp(log.NewNopLogger(), db, nil, true, map[int64]bool{}, simapp.DefaultNodeHome, 5, encCdc, simapp.EmptyAppOptions{})
	return app, simapp.NewDefaultGenesisState(encCdc.Marshaler)
}

func init() {
	ibctesting.DefaultTestingAppInit = SetupTransferTestingApp
}

func NewTransferPath(chainA, chainB *ibctesting.TestChain) *ibctesting.Path {
	path := ibctesting.NewPath(chainA, chainB)
	path.EndpointA.ChannelConfig.PortID = ibctesting.TransferPort
	path.EndpointB.ChannelConfig.PortID = ibctesting.TransferPort

	return path
}

func GetTransferSimApp(chain *ibctesting.TestChain) *simapp.SimApp {
	app, ok := chain.App.(*simapp.SimApp)
	if !ok {
		panic("not transfer app")
	}

	return app
}
Middleware Testing

When writing IBC applications acting as middleware, it might be desirable to test integration points. This can be done by wiring a middleware stack in the app.go file using existing applications as middleware and IBC base applications. The mock module may also be leveraged to act as a base application in the instance that such an application is not available for testing or causes dependency concerns.

The mock IBC module contains a MockIBCApp. This struct contains a function field for every IBC App Module callback. Each of these functions can be individually set to mock expected behavior of a base application.

For example, if one wanted to test that the base application cannot affect the outcome of the OnChanOpenTry callback, the mock module base application callback could be updated as such:

    mockModule.IBCApp.OnChanOpenTry = func(ctx sdk.Context, portID, channelID, version string) error {
			return fmt.Errorf("mock base app must not be called for OnChanOpenTry")
	}

Using a mock module as a base application in a middleware stack may require adding the module to your SimApp. This is because IBC will route to the top level IBC module of a middleware stack, so a module which never sits at the top of middleware stack will need to be accessed via a public field in SimApp

This might look like:

    suite.chainA.GetSimApp().ICAAuthModule.IBCApp.OnChanOpenInit = func(ctx sdk.Context, order channeltypes.Order, connectionHops []string,
		portID, channelID string, chanCap *capabilitytypes.Capability,
		counterparty channeltypes.Counterparty, version string,
	) error {
		return fmt.Errorf("mock ica auth fails")
	}

Documentation

Index

Constants

View Source
const DefaultFeeAmt = int64(150_000_000_000_000_000) // 0.15 ISLM

Variables

View Source
var ChainIDPrefix = "haqq_11235-"

ChainIDPrefix defines the default chain ID prefix for Haqq Network test chains

View Source
var DefaultTestingAppInit func() (ibcgotesting.TestingApp, map[string]json.RawMessage) = haqqapp.SetupTestingApp

Functions

func CreateChannels

func CreateChannels(coord *ibctesting.Coordinator, path *Path)

CreateChannel constructs and executes channel handshake messages in order to create OPEN channels on chainA and chainB. The function expects the channels to be successfully opened otherwise testing will fail.

func CreateConnections

func CreateConnections(coord *ibctesting.Coordinator, path *Path)

CreateConnection constructs and executes connection handshake messages in order to create OPEN channels on chainA and chainB. The connection information of for chainA and chainB are returned within a TestConnection struct. The function expects the connections to be successfully opened otherwise testing will fail.

func NewCoordinator

func NewCoordinator(t *testing.T, nEVMChains, mCosmosChains int) *ibctesting.Coordinator

NewCoordinator initializes Coordinator with N EVM TestChain's (Haqq apps) and M Cosmos chains (Simulation Apps)

func NewTestChain

func NewTestChain(t *testing.T, coord *ibcgotesting.Coordinator, chainID string) *ibcgotesting.TestChain

NewTestChain initializes a new TestChain instance with a single validator set using a generated private key. It also creates a sender account to be used for delivering transactions.

The first block height is committed to state in order to allow for client creations on counterparty chains. The TestChain will return with a block height starting at 2.

Time management is handled by the Coordinator in order to ensure synchrony between chains. Each update of any chain increments the block header time for all chains by 5 seconds.

func SendMsgs

func SendMsgs(chain *ibctesting.TestChain, feeAmt int64, msgs ...sdk.Msg) (*sdk.Result, error)

func SetupClients

func SetupClients(coord *ibctesting.Coordinator, path *Path)

SetupClients is a helper function to create clients on both chains. It assumes the caller does not anticipate any errors.

func SetupConnections

func SetupConnections(coord *ibctesting.Coordinator, path *Path)

SetupClientConnections is a helper function to create clients and the appropriate connections on both the source and counterparty chain. It assumes the caller does not anticipate any errors.

func SetupPath

func SetupPath(coord *ibctesting.Coordinator, path *Path)

SetupPath constructs a TM client, connection, and channel on both chains provided. It will fail if any error occurs. The clientID's, TestConnections, and TestChannels are returned for both chains. The channels created are connected to the ibc-transfer application.

func SetupWithGenesisValSet

func SetupWithGenesisValSet(t *testing.T, valSet *tmtypes.ValidatorSet, genAccs []authtypes.GenesisAccount, chainID string, balances ...banktypes.Balance) ibcgotesting.TestingApp

SetupWithGenesisValSet initializes a new SimApp with a validator set and genesis accounts that also act as delegators. For simplicity, each validator is bonded with a delegation of one consensus engine unit (10^6) in the default token of the simapp from first genesis account. A Nop logger is set in SimApp.

func SignAndDeliver

func SignAndDeliver(
	t *testing.T, txCfg client.TxConfig, app *baseapp.BaseApp, msgs []sdk.Msg,
	fee sdk.Coins,
	chainID string, accNums, accSeqs []uint64, expPass bool, priv ...cryptotypes.PrivKey,
) (sdk.GasInfo, *sdk.Result, error)

SignAndDeliver signs and delivers a transaction. No simulation occurs as the ibc testing package causes checkState and deliverState to diverge in block time.

CONTRACT: BeginBlock must be called before this function. Is a customization of IBC-go function that allows to modify the fee denom and amount IBC-go implementation: https://github.com/cosmos/ibc-go/blob/d34cef7e075dda1a24a0a3e9b6d3eff406cc606c/testing/simapp/test_helpers.go#L332-L364

Types

type Endpoint

type Endpoint struct {
	Chain        *ibctesting.TestChain
	Counterparty *Endpoint
	ClientID     string
	ConnectionID string
	ChannelID    string

	ClientConfig     ibctesting.ClientConfig
	ConnectionConfig *ibctesting.ConnectionConfig
	ChannelConfig    *ibctesting.ChannelConfig
}

Endpoint is a which represents a channel endpoint and its associated client and connections. It contains client, connection, and channel configuration parameters. Endpoint functions will utilize the parameters set in the configuration structs when executing IBC messages.

func NewDefaultEndpoint

func NewDefaultEndpoint(chain *ibctesting.TestChain) *Endpoint

NewDefaultEndpoint constructs a new endpoint using default values. CONTRACT: the counterparty endpoitn must be set by the caller.

func NewEndpoint

func NewEndpoint(
	chain *ibctesting.TestChain, clientConfig ibctesting.ClientConfig,
	connectionConfig *ibctesting.ConnectionConfig, channelConfig *ibctesting.ChannelConfig,
) *Endpoint

NewEndpoint constructs a new endpoint without the counterparty. CONTRACT: the counterparty endpoint must be set by the caller.

func (*Endpoint) AcknowledgePacket

func (endpoint *Endpoint) AcknowledgePacket(packet channeltypes.Packet, ack []byte) error

AcknowledgePacket sends a MsgAcknowledgement to the channel associated with the endpoint.

func (*Endpoint) ChanCloseInit

func (endpoint *Endpoint) ChanCloseInit() error

ChanCloseInit will construct and execute a MsgChannelCloseInit on the associated endpoint.

NOTE: does not work with ibc-transfer module

func (*Endpoint) ChanOpenAck

func (endpoint *Endpoint) ChanOpenAck() error

ChanOpenAck will construct and execute a MsgChannelOpenAck on the associated endpoint.

func (*Endpoint) ChanOpenConfirm

func (endpoint *Endpoint) ChanOpenConfirm() error

ChanOpenConfirm will construct and execute a MsgChannelOpenConfirm on the associated endpoint.

func (*Endpoint) ChanOpenInit

func (endpoint *Endpoint) ChanOpenInit() error

ChanOpenInit will construct and execute a MsgChannelOpenInit on the associated endpoint.

func (*Endpoint) ChanOpenTry

func (endpoint *Endpoint) ChanOpenTry() error

ChanOpenTry will construct and execute a MsgChannelOpenTry on the associated endpoint.

func (*Endpoint) ConnOpenAck

func (endpoint *Endpoint) ConnOpenAck() error

ConnOpenAck will construct and execute a MsgConnectionOpenAck on the associated endpoint.

func (*Endpoint) ConnOpenConfirm

func (endpoint *Endpoint) ConnOpenConfirm() error

ConnOpenConfirm will construct and execute a MsgConnectionOpenConfirm on the associated endpoint.

func (*Endpoint) ConnOpenInit

func (endpoint *Endpoint) ConnOpenInit() error

ConnOpenInit will construct and execute a MsgConnectionOpenInit on the associated endpoint.

func (*Endpoint) ConnOpenTry

func (endpoint *Endpoint) ConnOpenTry() error

ConnOpenTry will construct and execute a MsgConnectionOpenTry on the associated endpoint.

func (*Endpoint) CreateClient

func (endpoint *Endpoint) CreateClient() (err error)

CreateClient creates an IBC client on the endpoint. It will update the clientID for the endpoint if the message is successfully executed. NOTE: a solo machine client will be created with an empty diversifier.

func (*Endpoint) GetChannel

func (endpoint *Endpoint) GetChannel() channeltypes.Channel

GetChannel retrieves an IBC Channel for the endpoint. The channel is expected to exist otherwise testing will fail.

func (*Endpoint) GetClientState

func (endpoint *Endpoint) GetClientState() exported.ClientState

GetClientState retrieves the Client State for this endpoint. The client state is expected to exist otherwise testing will fail.

func (*Endpoint) GetConnection

func (endpoint *Endpoint) GetConnection() connectiontypes.ConnectionEnd

GetConnection retrieves an IBC Connection for the endpoint. The connection is expected to exist otherwise testing will fail.

func (*Endpoint) GetConsensusState

func (endpoint *Endpoint) GetConsensusState(height exported.Height) exported.ConsensusState

GetConsensusState retrieves the Consensus State for this endpoint at the provided height. The consensus state is expected to exist otherwise testing will fail.

func (*Endpoint) QueryClientStateProof

func (endpoint *Endpoint) QueryClientStateProof() (exported.ClientState, []byte)

QueryClientStateProof performs and abci query for a client stat associated with this endpoint and returns the ClientState along with the proof.

func (*Endpoint) QueryConnectionHandshakeProof

func (endpoint *Endpoint) QueryConnectionHandshakeProof() (
	clientState exported.ClientState, proofClient,
	proofConsensus []byte, consensusHeight clienttypes.Height,
	proofConnection []byte, proofHeight clienttypes.Height,
)

QueryConnectionHandshakeProof returns all the proofs necessary to execute OpenTry or Open Ack of the connection handshakes. It returns the counterparty client state, proof of the counterparty client state, proof of the counterparty consensus state, the consensus state height, proof of the counterparty connection, and the proof height for all the proofs returned.

func (*Endpoint) QueryProof

func (endpoint *Endpoint) QueryProof(key []byte) ([]byte, clienttypes.Height)

QueryProof queries proof associated with this endpoint using the lastest client state height on the counterparty chain.

func (*Endpoint) QueryProofAtHeight

func (endpoint *Endpoint) QueryProofAtHeight(key []byte, height uint64) ([]byte, clienttypes.Height)

QueryProofAtHeight queries proof associated with this endpoint using the proof height provided

func (*Endpoint) RecvPacket

func (endpoint *Endpoint) RecvPacket(packet channeltypes.Packet) error

RecvPacket receives a packet on the associated endpoint. The counterparty client is updated.

func (*Endpoint) RecvPacketWithResult

func (endpoint *Endpoint) RecvPacketWithResult(packet channeltypes.Packet) (*sdk.Result, error)

RecvPacketWithResult receives a packet on the associated endpoint and the result of the transaction is returned. The counterparty client is updated.

func (*Endpoint) SendPacket

func (endpoint *Endpoint) SendPacket(
	timeoutHeight clienttypes.Height,
	timeoutTimestamp uint64,
	data []byte,
) (uint64, error)

SendPacket sends a packet through the channel keeper using the associated endpoint The counterparty client is updated so proofs can be sent to the counterparty chain. The packet sequence generated for the packet to be sent is returned. An error is returned if one occurs.

func (*Endpoint) SetChannel

func (endpoint *Endpoint) SetChannel(channel channeltypes.Channel)

SetChannel sets the channel for this endpoint.

func (*Endpoint) SetChannelClosed

func (endpoint *Endpoint) SetChannelClosed() error

SetChannelClosed sets a channel state to CLOSED.

func (*Endpoint) SetClientState

func (endpoint *Endpoint) SetClientState(clientState exported.ClientState)

SetClientState sets the client state for this endpoint.

func (*Endpoint) SetConnection

func (endpoint *Endpoint) SetConnection(connection connectiontypes.ConnectionEnd)

SetConnection sets the connection for this endpoint.

func (*Endpoint) SetConsensusState

func (endpoint *Endpoint) SetConsensusState(consensusState exported.ConsensusState, height exported.Height)

SetConsensusState sets the consensus state for this endpoint.

func (*Endpoint) TimeoutOnClose

func (endpoint *Endpoint) TimeoutOnClose(packet channeltypes.Packet) error

TimeoutOnClose sends a MsgTimeoutOnClose to the channel associated with the endpoint.

func (*Endpoint) TimeoutPacket

func (endpoint *Endpoint) TimeoutPacket(packet channeltypes.Packet) error

TimeoutPacket sends a MsgTimeout to the channel associated with the endpoint.

func (*Endpoint) UpdateClient

func (endpoint *Endpoint) UpdateClient() (err error)

UpdateClient updates the IBC client associated with the endpoint.

func (*Endpoint) WriteAcknowledgement

func (endpoint *Endpoint) WriteAcknowledgement(ack exported.Acknowledgement, packet exported.PacketI) error

WriteAcknowledgement writes an acknowledgement on the channel associated with the endpoint. The counterparty client is updated.

type Path

type Path struct {
	EndpointA *Endpoint
	EndpointB *Endpoint
}

Path contains two endpoints representing two chains connected over IBC

func NewPath

func NewPath(chainA, chainB *ibctesting.TestChain) *Path

NewPath constructs an endpoint for each chain using the default values for the endpoints. Each endpoint is updated to have a pointer to the counterparty endpoint.

func NewTransferPath

func NewTransferPath(chainA, chainB *ibcgotesting.TestChain) *Path

func (*Path) RelayPacket

func (path *Path) RelayPacket(packet channeltypes.Packet) error

RelayPacket attempts to relay the packet first on EndpointA and then on EndpointB if EndpointA does not contain a packet commitment for that packet. An error is returned if a relay step fails or the packet commitment does not exist on either endpoint.

func (*Path) SetChannelOrdered

func (path *Path) SetChannelOrdered()

SetChannelOrdered sets the channel order for both endpoints to ORDERED.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL