happychain

module
v0.0.0-...-c862dcd Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 18, 2022 License: GPL-3.0

README

happyChain

happy chain

HappyWallet logo

!!!向以太坊致敬!!!

【初衷】:游戏领域被某些巨头垄断,而这些巨头研发基本靠抄,这一点自始至终未曾改变。 什么火抄什么一直是这些巨头的宗旨,虽然他们自己不承认。中、小型开发团队很难在游戏市场轻松的发展,玩家也很鄙视这个现象。 区块链技术这个新技术经过了时间的验证,已逐渐成熟,这是一个新兴赛道,从技术层面来说,以太坊除了tps太低及浪费电力问题。机制是很公平透明的。 只要有效解决以太坊的这些问题,相信会是一个玩家、开发者都喜闻乐见的康庄大道。

【目标】:基于ethereum代码,替代原pow开发算法为Dpos,自主开发的高TPS游戏公链项目。

【重要】:完美兼容以太坊,Dapp、Dex等生态都可无缝衔接。

【说明】:公链需要经过一段时间检验其稳定性和一些潜在的安全问题,所以前期只能向部分合作方开放最新源码,放开运行节点白名单,等后期稳定后即可对所有人开放,请谅解。 申请成为合作方,请联系:service@hld.im

!!! Pay tribute to Ethereum!!!

[original intention]: the game field is monopolized by some giants, and their R & D basically depends on copying, which has not changed from beginning to end. What fire copies what has always been the purpose of these giants, although they do not admit it. It is difficult for small and medium-sized development teams to develop easily in the game market, and players despise this phenomenon. Blockchain technology, a new technology, has been proven over time and has gradually matured. It is an emerging track. Technically, Ethereum has the problems of too low TPS and waste of power. The mechanism is very fair and transparent. As long as these problems of Ethereum are effectively solved, it will be a broad road loved by both players and developers.

[Objective]: a self-developed high TPS game public chain project based on Ethereum code and replacing the original POW development algorithm as dpos.

[important]: it is perfectly compatible with Ethereum, and DAPP, DEX and other ecosystems can be seamlessly connected.

[note]: the public chain needs a period of time to test its stability and some potential security problems, so in the early stage, it can only open the latest source code to some partners, release the white list of running nodes, and open it to everyone after it is stable in the later stage. Please understand. To apply to become a partner, please contact: service@hld.im Official golang implementation of the Ethereum protocol.

Official Golang implementation of the Ethereum protocol.

API Reference Go Report Card Travis Discord

Automated builds are available for stable releases and the unstable master branch. Binary archives are published at https://geth.ethereum.org/downloads/.

Building the source

For prerequisites and detailed build instructions please read the Installation Instructions.

Building geth requires both a Go (version 1.14 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make geth

or, to build the full suite of utilities:

make all

Executables

The go-ethereum project comes with several wrappers/executables found in the cmd directory.

Command Description
geth Our main Ethereum CLI client. It is the entry point into the Ethereum network (main-, test- or private net), capable of running as a full node (default), archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. geth --help and the CLI page for command line options.
clef Stand-alone signing tool, which can be used as a backend signer for geth.
devp2p Utilities to interact with nodes on the networking layer, without running a full blockchain.
abigen Source code generator to convert Ethereum contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain Ethereum contract ABIs with expanded functionality if the contract bytecode is also available. However, it also accepts Solidity source files, making development much more streamlined. Please see our Native DApps page for details.
bootnode Stripped down version of our Ethereum client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks.
evm Developer utility version of the EVM (Ethereum Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g. evm --code 60ff60ff --debug run).
rlpdump Developer utility tool to convert binary RLP (Recursive Length Prefix) dumps (data encoding used by the Ethereum protocol both network as well as consensus wise) to user-friendlier hierarchical representation (e.g. rlpdump --hex CE0183FFFFFFC4C304050583616263).
puppeth a CLI wizard that aids in creating a new Ethereum network.

Running geth

Going through all the possible command line flags is out of scope here (please consult our CLI Wiki page), but we've enumerated a few common parameter combos to get you up to speed quickly on how you can run your own geth instance.

Full node on the main Ethereum network

By far the most common scenario is people wanting to simply interact with the Ethereum network: create accounts; transfer funds; deploy and interact with contracts. For this particular use-case the user doesn't care about years-old historical data, so we can sync quickly to the current state of the network. To do so:

$ geth console

This command will:

  • Start geth in snap sync mode (default, can be changed with the --syncmode flag), causing it to download more data in exchange for avoiding processing the entire history of the Ethereum network, which is very CPU intensive.
  • Start up geth's built-in interactive JavaScript console, (via the trailing console subcommand) through which you can interact using web3 methods (note: the web3 version bundled within geth is very old, and not up to date with official docs), as well as geth's own management APIs. This tool is optional and if you leave it out you can always attach to an already running geth instance with geth attach.
A Full node on the Görli test network

Transitioning towards developers, if you'd like to play around with creating Ethereum contracts, you almost certainly would like to do that without any real money involved until you get the hang of the entire system. In other words, instead of attaching to the main network, you want to join the test network with your node, which is fully equivalent to the main network, but with play-Ether only.

$ geth --goerli console

The console subcommand has the exact same meaning as above and they are equally useful on the testnet too. Please, see above for their explanations if you've skipped here.

Specifying the --goerli flag, however, will reconfigure your geth instance a bit:

  • Instead of connecting the main Ethereum network, the client will connect to the Görli test network, which uses different P2P bootnodes, different network IDs and genesis states.
  • Instead of using the default data directory (~/.ethereum on Linux for example), geth will nest itself one level deeper into a goerli subfolder (~/.ethereum/goerli on Linux). Note, on OSX and Linux this also means that attaching to a running testnet node requires the use of a custom endpoint since geth attach will try to attach to a production node endpoint by default, e.g., geth attach <datadir>/goerli/geth.ipc. Windows users are not affected by this.

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for play-money and real-money. Unless you manually move accounts, geth will by default correctly separate the two networks and will not make any accounts available between them.

Full node on the Rinkeby test network

Go Ethereum also supports connecting to the older proof-of-authority based test network called Rinkeby which is operated by members of the community.

$ geth --rinkeby console
Full node on the Ropsten test network

In addition to Görli and Rinkeby, Geth also supports the ancient Ropsten testnet. The Ropsten test network is based on the Ethash proof-of-work consensus algorithm. As such, it has certain extra overhead and is more susceptible to reorganization attacks due to the network's low difficulty/security.

$ geth --ropsten console

Note: Older Geth configurations store the Ropsten database in the testnet subdirectory.

Configuration

As an alternative to passing the numerous flags to the geth binary, you can also pass a configuration file via:

$ geth --config /path/to/your_config.toml

To get an idea how the file should look like you can use the dumpconfig subcommand to export your existing configuration:

$ geth --your-favourite-flags dumpconfig

Note: This works only with geth v1.6.0 and above.

Docker quick start

One of the quickest ways to get Ethereum up and running on your machine is by using Docker:

docker run -d --name ethereum-node -v /Users/alice/ethereum:/root \
           -p 8545:8545 -p 30303:30303 \
           ethereum/client-go

This will start geth in snap-sync mode with a DB memory allowance of 1GB just as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an alpine tag available for a slim version of the image.

Do not forget --http.addr 0.0.0.0, if you want to access RPC from other containers and/or hosts. By default, geth binds to the local interface and RPC endpoints is not accessible from the outside.

Programmatically interfacing geth nodes

As a developer, sooner rather than later you'll want to start interacting with geth and the Ethereum network via your own programs and not manually through the console. To aid this, geth has built-in support for a JSON-RPC based APIs (standard APIs and geth specific APIs). These can be exposed via HTTP, WebSockets and IPC (UNIX sockets on UNIX based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by geth, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --http Enable the HTTP-RPC server
  • --http.addr HTTP-RPC server listening interface (default: localhost)
  • --http.port HTTP-RPC server listening port (default: 8545)
  • --http.api API's offered over the HTTP-RPC interface (default: eth,net,web3)
  • --http.corsdomain Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --ws.addr WS-RPC server listening interface (default: localhost)
  • --ws.port WS-RPC server listening port (default: 8546)
  • --ws.api API's offered over the WS-RPC interface (default: eth,net,web3)
  • --ws.origins Origins from which to accept websockets requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcapi API's offered over the IPC-RPC interface (default: admin,debug,eth,miner,net,personal,shh,txpool,web3)
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a geth node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert Ethereum nodes with exposed APIs! Further, all browser tabs can access locally running web servers, so malicious web pages could try to subvert locally available APIs!

Operating a private network

Maintaining your own private network is more involved as a lot of configurations taken for granted in the official networks need to be manually set up.

Defining the private genesis state

First, you'll need to create the genesis state of your networks, which all nodes need to be aware of and agree upon. This consists of a small JSON file (e.g. call it genesis.json):

{
  "config": {
    "chainId": <arbitrary positive integer>,
    "homesteadBlock": 0,
    "eip150Block": 0,
    "eip155Block": 0,
    "eip158Block": 0,
    "byzantiumBlock": 0,
    "constantinopleBlock": 0,
    "petersburgBlock": 0,
    "istanbulBlock": 0,
    "berlinBlock": 0,
    "londonBlock": 0
  },
  "alloc": {},
  "coinbase": "0x0000000000000000000000000000000000000000",
  "difficulty": "0x20000",
  "extraData": "",
  "gasLimit": "0x2fefd8",
  "nonce": "0x0000000000000042",
  "mixhash": "0x0000000000000000000000000000000000000000000000000000000000000000",
  "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000",
  "timestamp": "0x00"
}

The above fields should be fine for most purposes, although we'd recommend changing the nonce to some random value so you prevent unknown remote nodes from being able to connect to you. If you'd like to pre-fund some accounts for easier testing, create the accounts and populate the alloc field with their addresses.

"alloc": {
  "0x0000000000000000000000000000000000000001": {
    "balance": "111111111"
  },
  "0x0000000000000000000000000000000000000002": {
    "balance": "222222222"
  }
}

With the genesis state defined in the above JSON file, you'll need to initialize every geth node with it prior to starting it up to ensure all blockchain parameters are correctly set:

$ geth init path/to/genesis.json
Creating the rendezvous point

With all nodes that you want to run initialized to the desired genesis state, you'll need to start a bootstrap node that others can use to find each other in your network and/or over the internet. The clean way is to configure and run a dedicated bootnode:

$ bootnode --genkey=boot.key
$ bootnode --nodekey=boot.key

With the bootnode online, it will display an enode URL that other nodes can use to connect to it and exchange peer information. Make sure to replace the displayed IP address information (most probably [::]) with your externally accessible IP to get the actual enode URL.

Note: You could also use a full-fledged geth node as a bootnode, but it's the less recommended way.

Starting up your member nodes

With the bootnode operational and externally reachable (you can try telnet <ip> <port> to ensure it's indeed reachable), start every subsequent geth node pointed to the bootnode for peer discovery via the --bootnodes flag. It will probably also be desirable to keep the data directory of your private network separated, so do also specify a custom --datadir flag.

$ geth --datadir=path/to/custom/data/folder --bootnodes=<bootnode-enode-url-from-above>

Note: Since your network will be completely cut off from the main and test networks, you'll also need to configure a miner to process transactions and create new blocks for you.

Running a private miner

Mining on the public Ethereum network is a complex task as it's only feasible using GPUs, requiring an OpenCL or CUDA enabled ethminer instance. For information on such a setup, please consult the EtherMining subreddit and the ethminer repository.

In a private network setting, however a single CPU miner instance is more than enough for practical purposes as it can produce a stable stream of blocks at the correct intervals without needing heavy resources (consider running on a single thread, no need for multiple ones either). To start a geth instance for mining, run it with all your usual flags, extended by:

$ geth <usual-flags> --mine --miner.threads=1 --miner.etherbase=0x0000000000000000000000000000000000000000

Which will start mining blocks and transactions on a single CPU thread, crediting all proceedings to the account specified by --miner.etherbase. You can further tune the mining by changing the default gas limit blocks converge to (--miner.targetgaslimit) and the price transactions are accepted at (--miner.gasprice).

Contribution

Thank you for considering to help out with the source code! We welcome contributions from anyone on the internet, and are grateful for even the smallest of fixes!

If you'd like to contribute to go-ethereum, please fork, fix, commit and send a pull request for the maintainers to review and merge into the main code base. If you wish to submit more complex changes though, please check up with the core devs first on our Discord Server to ensure those changes are in line with the general philosophy of the project and/or get some early feedback which can make both your efforts much lighter as well as our review and merge procedures quick and simple.

Please make sure your contributions adhere to our coding guidelines:

  • Code must adhere to the official Go formatting guidelines (i.e. uses gofmt).
  • Code must be documented adhering to the official Go commentary guidelines.
  • Pull requests need to be based on and opened against the master branch.
  • Commit messages should be prefixed with the package(s) they modify.
    • E.g. "eth, rpc: make trace configs optional"

Please see the Developers' Guide for more details on configuring your environment, managing project dependencies, and testing procedures.

License

The go-ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The go-ethereum binaries (i.e. all code inside of the cmd directory) is licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.

Directories

Path Synopsis
Package ethereum defines interfaces for interacting with Ethereum.
Package ethereum defines interfaces for interacting with Ethereum.
accounts
Package accounts implements high level Ethereum account management.
Package accounts implements high level Ethereum account management.
accounts/abi
Package abi implements the Ethereum ABI (Application Binary Interface).
Package abi implements the Ethereum ABI (Application Binary Interface).
accounts/abi/bind
Package bind generates Ethereum contract Go bindings.
Package bind generates Ethereum contract Go bindings.
accounts/keystore
Package keystore implements encrypted storage of secp256k1 private keys.
Package keystore implements encrypted storage of secp256k1 private keys.
accounts/usbwallet
Package usbwallet implements support for USB hardware wallets.
Package usbwallet implements support for USB hardware wallets.
accounts/usbwallet/internal/trezor
Package trezor contains the wire protocol wrapper in Go.
Package trezor contains the wire protocol wrapper in Go.
cmd/bootnode
bootnode runs a bootstrap node for the Ethereum Discovery Protocol.
bootnode runs a bootstrap node for the Ethereum Discovery Protocol.
cmd/clef
signer is a utility that can be used so sign transactions and arbitrary data.
signer is a utility that can be used so sign transactions and arbitrary data.
cmd/evm
evm executes EVM code snippets.
evm executes EVM code snippets.
cmd/faucet
faucet is a Ether faucet backed by a light client.
faucet is a Ether faucet backed by a light client.
cmd/geth
geth is the official command-line client for Ethereum.
geth is the official command-line client for Ethereum.
cmd/internal/browser
Package browser provides utilities for interacting with users' browsers.
Package browser provides utilities for interacting with users' browsers.
cmd/p2psim
p2psim provides a command-line client for a simulation HTTP API.
p2psim provides a command-line client for a simulation HTTP API.
cmd/puppeth
puppeth is a command to assemble and maintain private networks.
puppeth is a command to assemble and maintain private networks.
cmd/rlpdump
rlpdump is a pretty-printer for RLP data.
rlpdump is a pretty-printer for RLP data.
cmd/utils
Package utils contains internal helper functions for go-ethereum commands.
Package utils contains internal helper functions for go-ethereum commands.
common
Package common contains various helper functions.
Package common contains various helper functions.
common/bitutil
Package bitutil implements fast bitwise operations.
Package bitutil implements fast bitwise operations.
common/compiler
Package compiler wraps the Solidity compiler executable (solc).
Package compiler wraps the Solidity compiler executable (solc).
common/hexutil
Package hexutil implements hex encoding with 0x prefix.
Package hexutil implements hex encoding with 0x prefix.
common/math
Package math provides integer math utilities.
Package math provides integer math utilities.
common/mclock
Package mclock is a wrapper for a monotonic clock source
Package mclock is a wrapper for a monotonic clock source
consensus
Package consensus implements different Ethereum consensus engines.
Package consensus implements different Ethereum consensus engines.
consensus/clique
Package clique implements the proof-of-authority consensus engine.
Package clique implements the proof-of-authority consensus engine.
consensus/ethash
Package ethash implements the ethash proof-of-work consensus engine.
Package ethash implements the ethash proof-of-work consensus engine.
contracts/chequebook
Package chequebook package wraps the 'chequebook' Ethereum smart contract.
Package chequebook package wraps the 'chequebook' Ethereum smart contract.
core
Package core implements the Ethereum consensus protocol.
Package core implements the Ethereum consensus protocol.
core/asm
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
core/bloombits
Package bloombits implements bloom filtering on batches of data.
Package bloombits implements bloom filtering on batches of data.
core/rawdb
Package rawdb contains a collection of low level database accessors.
Package rawdb contains a collection of low level database accessors.
core/state
Package state provides a caching layer atop the Ethereum state trie.
Package state provides a caching layer atop the Ethereum state trie.
core/types
Package types contains data types related to Ethereum consensus.
Package types contains data types related to Ethereum consensus.
core/vm
Package vm implements the Ethereum Virtual Machine.
Package vm implements the Ethereum Virtual Machine.
core/vm/runtime
Package runtime provides a basic execution model for executing EVM code.
Package runtime provides a basic execution model for executing EVM code.
crypto/bn256
Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
crypto/bn256/cloudflare
Package bn256 implements a particular bilinear group at the 128-bit security level.
Package bn256 implements a particular bilinear group at the 128-bit security level.
crypto/bn256/google
Package bn256 implements a particular bilinear group.
Package bn256 implements a particular bilinear group.
crypto/secp256k1
Package secp256k1 wraps the bitcoin secp256k1 C library.
Package secp256k1 wraps the bitcoin secp256k1 C library.
crypto/sha3
Package sha3 implements the SHA-3 fixed-output-length hash functions and the SHAKE variable-output-length hash functions defined by FIPS-202.
Package sha3 implements the SHA-3 fixed-output-length hash functions and the SHAKE variable-output-length hash functions defined by FIPS-202.
eth
Package eth implements the Ethereum protocol.
Package eth implements the Ethereum protocol.
eth/downloader
Package downloader contains the manual full chain synchronisation.
Package downloader contains the manual full chain synchronisation.
eth/fetcher
Package fetcher contains the block announcement based synchronisation.
Package fetcher contains the block announcement based synchronisation.
eth/filters
Package filters implements an ethereum filtering system for block, transactions and log events.
Package filters implements an ethereum filtering system for block, transactions and log events.
eth/tracers
Package tracers is a collection of JavaScript transaction tracers.
Package tracers is a collection of JavaScript transaction tracers.
eth/tracers/internal/tracers
Package tracers contains the actual JavaScript tracer assets.
Package tracers contains the actual JavaScript tracer assets.
ethclient
Package ethclient provides a client for the Ethereum RPC API.
Package ethclient provides a client for the Ethereum RPC API.
ethstats
Package ethstats implements the network stats reporting service.
Package ethstats implements the network stats reporting service.
event
Package event deals with subscriptions to real-time events.
Package event deals with subscriptions to real-time events.
event/filter
Package filter implements event filters.
Package filter implements event filters.
internal/debug
Package debug interfaces Go runtime debugging facilities.
Package debug interfaces Go runtime debugging facilities.
internal/ethapi
Package ethapi implements the general Ethereum API functions.
Package ethapi implements the general Ethereum API functions.
internal/guide
Package guide is a small test suite to ensure snippets in the dev guide work.
Package guide is a small test suite to ensure snippets in the dev guide work.
internal/jsre
Package jsre provides execution environment for JavaScript.
Package jsre provides execution environment for JavaScript.
internal/jsre/deps
Package deps contains the console JavaScript dependencies Go embedded.
Package deps contains the console JavaScript dependencies Go embedded.
internal/web3ext
package web3ext contains geth specific web3.js extensions.
package web3ext contains geth specific web3.js extensions.
les
Package les implements the Light Ethereum Subprotocol.
Package les implements the Light Ethereum Subprotocol.
les/flowcontrol
Package flowcontrol implements a client side flow control mechanism
Package flowcontrol implements a client side flow control mechanism
light
Package light implements on-demand retrieval capable state and chain objects for the Ethereum Light Client.
Package light implements on-demand retrieval capable state and chain objects for the Ethereum Light Client.
log
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
metrics
Go port of Coda Hale's Metrics library
Go port of Coda Hale's Metrics library
metrics/exp
Hook go-metrics into expvar on any /debug/metrics request, load all vars from the registry into expvar, and execute regular expvar handler
Hook go-metrics into expvar on any /debug/metrics request, load all vars from the registry into expvar, and execute regular expvar handler
miner
Package miner implements Ethereum block creation and mining.
Package miner implements Ethereum block creation and mining.
mobile
Package geth contains the simplified mobile APIs to go-ethereum.
Package geth contains the simplified mobile APIs to go-ethereum.
node
Package node sets up multi-protocol Ethereum nodes.
Package node sets up multi-protocol Ethereum nodes.
p2p
Package p2p implements the Ethereum p2p network protocols.
Package p2p implements the Ethereum p2p network protocols.
p2p/discover
Package discover implements the Node Discovery Protocol.
Package discover implements the Node Discovery Protocol.
p2p/discv5
Package discv5 implements the RLPx v5 Topic Discovery Protocol.
Package discv5 implements the RLPx v5 Topic Discovery Protocol.
p2p/enr
Package enr implements Ethereum Node Records as defined in EIP-778.
Package enr implements Ethereum Node Records as defined in EIP-778.
p2p/nat
Package nat provides access to common network port mapping protocols.
Package nat provides access to common network port mapping protocols.
p2p/netutil
Package netutil contains extensions to the net package.
Package netutil contains extensions to the net package.
p2p/protocols
Package protocols is an extension to p2p.
Package protocols is an extension to p2p.
p2p/simulations
Package simulations simulates p2p networks.
Package simulations simulates p2p networks.
rlp
Package rlp implements the RLP serialization format.
Package rlp implements the RLP serialization format.
rpc
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
signer/rules/deps
Package deps contains the console JavaScript dependencies Go embedded.
Package deps contains the console JavaScript dependencies Go embedded.
swarm/api/http
A simple http server interface to Swarm
A simple http server interface to Swarm
swarm/bmt
Package bmt provides a binary merkle tree implementation used for swarm chunk hash
Package bmt provides a binary merkle tree implementation used for swarm chunk hash
swarm/network/simulations
You can run this simulation using
You can run this simulation using
swarm/pot
Package pot see doc.go
Package pot see doc.go
swarm/pss
Pss provides devp2p functionality for swarm nodes without the need for a direct tcp connection between them.
Pss provides devp2p functionality for swarm nodes without the need for a direct tcp connection between them.
swarm/pss/client
simple abstraction for implementing pss functionality
simple abstraction for implementing pss functionality
swarm/storage/mock
Package mock defines types that are used by different implementations of mock storages.
Package mock defines types that are used by different implementations of mock storages.
swarm/storage/mock/db
Package db implements a mock store that keeps all chunk data in LevelDB database.
Package db implements a mock store that keeps all chunk data in LevelDB database.
swarm/storage/mock/mem
Package mem implements a mock store that keeps all chunk data in memory.
Package mem implements a mock store that keeps all chunk data in memory.
swarm/storage/mock/rpc
Package rpc implements an RPC client that connect to a centralized mock store.
Package rpc implements an RPC client that connect to a centralized mock store.
swarm/storage/mock/test
Package test provides functions that are used for testing GlobalStorer implementations.
Package test provides functions that are used for testing GlobalStorer implementations.
swarm/storage/mru
Package mru defines Mutable resource updates.
Package mru defines Mutable resource updates.
tests
Package tests implements execution of Ethereum JSON tests.
Package tests implements execution of Ethereum JSON tests.
trie
Package trie implements Merkle Patricia Tries.
Package trie implements Merkle Patricia Tries.
whisper/whisperv5
Package whisperv5 implements the Whisper protocol (version 5).
Package whisperv5 implements the Whisper protocol (version 5).

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL