题目
Return the number of permutations of 1 to n
so that prime numbers are at prime indices (1-indexed.)
(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
Since the answer may be large, return the answer modulo 10^9 + 7
.
Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
Example 2:
Input: n = 100
Output: 682289015
Constraints:
题目大意
请你帮忙给从 1 到 n 的数设计排列方案,使得所有的「质数」都应该被放在「质数索引」(索引从 1 开始)上;你需要返回可能的方案总数。让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。
提示:
解题思路
- 给出一个数 n,要求在 1-n 这 n 个数中,素数在素数索引下标位置上的全排列个数。
- 由于这一题的
n
小于 100,所以可以用打表法。先把小于 100 个素数都打表打出来。然后对小于 n 的素数进行全排列,即 n!,然后再对剩下来的非素数进行全排列,即 (n-c)!。两个的乘积即为最终答案。