题目
We have a list of bus routes. Each routes[i]
is a bus route that the i-th bus repeats forever. For example if routes[0] = [1, 5, 7]
, this means that the first bus (0-th indexed) travels in the sequence 1->5->7->1->5->7->1->... forever.
We start at bus stop S
(initially not on a bus), and we want to go to bus stop T
. Travelling by buses only, what is the least number of buses we must take to reach our destination? Return -1 if it is not possible.
Example:
Input:
routes = [[1, 2, 7], [3, 6, 7]]
S = 1
T = 6
Output: 2
Explanation:
The best strategy is take the first bus to the bus stop 7, then take the second bus to the bus stop 6.
Note:
1 <= routes.length <= 500
.
1 <= routes[i].length <= 500
.
0 <= routes[i][j] < 10 ^ 6
.
题目大意
我们有一系列公交路线。每一条路线 routes[i] 上都有一辆公交车在上面循环行驶。例如,有一条路线 routes[0] = [1, 5, 7],表示第一辆 (下标为0) 公交车会一直按照 1->5->7->1->5->7->1->... 的车站路线行驶。假设我们从 S 车站开始(初始时不在公交车上),要去往 T 站。 期间仅可乘坐公交车,求出最少乘坐的公交车数量。返回 -1 表示不可能到达终点车站。
说明:
- 1 <= routes.length <= 500.
- 1 <= routes[i].length <= 500.
- 0 <= routes[i][j] < 10 ^ 6.
解题思路
- 给出一些公交路线,公交路径代表经过的哪些站。现在给出起点和终点站,问最少需要换多少辆公交车才能从起点到终点?
- 这一题可以转换成图论的问题,将每个站台看成顶点,公交路径看成每个顶点的边。同一个公交的边染色相同。题目即可转化为从顶点 S 到顶点 T 需要经过最少多少条不同的染色边。用 BFS 即可轻松解决。从起点 S 开始,不断的扩展它能到达的站点。用 visited 数组防止放入已经可达的站点引起的环。用 map 存储站点和公交车的映射关系(即某个站点可以由哪些公交车到达),BFS 的过程中可以用这个映射关系,拿到公交车的其他站点信息,从而扩张队列里面的可达站点。一旦扩展出现了终点 T,就可以返回结果了。