题目
Given two integers L
and R
, find the count of numbers in the range [L, R]
(inclusive) having a prime number of set bits in their binary representation.
(Recall that the number of set bits an integer has is the number of 1
s present when written in binary. For example, 21
written in binary is 10101
which has 3 set bits. Also, 1 is not a prime.)
Example 1:
Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)
Example 2:
Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)
Note:
L, R
will be integers L <= R
in the range [1, 10^6]
.
R - L
will be at most 10000.
题目大意
给定两个整数 L 和 R ,找到闭区间 [L, R] 范围内,计算置位位数为质数的整数个数。(注意,计算置位代表二进制表示中1的个数。例如 21 的二进制表示 10101 有 3 个计算置位。还有,1 不是质数。)
注意:
- L, R 是 L <= R 且在 [1, 10^6] 中的整数。
- R - L 的最大值为 10000。
解题思路
- 题目给出
[L, R]
区间,在这个区间内的每个整数的二进制表示中 1 的个数如果是素数,那么最终结果就加一,问最终结果是多少?这一题是一个组合题,判断一个数的二进制位有多少位 1,是第 191 题。题目中限定了区间最大不超过 10^6 ,所以 1 的位数最大是 19 位,也就是说素数最大就是 19 。那么素数可以有限枚举出来。最后按照题目的意思累积结果就可以了。