题目
Your are given an array of integers prices
, for which the i
-th element is the price of a given stock on day i
; and a non-negative integer fee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1
Selling at prices[3] = 8
Buying at prices[4] = 4
Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
0 < prices.length <= 50000
.
0 < prices[i] < 50000
.
0 <= fee < 50000
.
题目大意
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。你可以无限次地完成交易,但是你每次交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。要求返回获得利润的最大值。
解题思路
- 给定一个数组,表示一支股票在每一天的价格。设计一个交易算法,在这些天进行自动交易,要求:每一天只能进行一次操作;在买完股票后,必须卖了股票,才能再次买入;每次卖了股票以后,需要缴纳一部分的手续费。问如何交易,能让利润最大?
- 这一题是第 121 题、第 122 题、第 309 题的变种题。
- 这一题的解题思路是 DP,需要维护买和卖的两种状态。
buy[i]
代表第 i
天买入的最大收益,sell[i]
代表第 i
天卖出的最大收益,状态转移方程是 buy[i] = max(buy[i-1], sell[i-1]-prices[i])
,sell[i] = max(sell[i-1], buy[i-1]+prices[i]-fee)
。