题目
You are given an integer array nums
of length n
.
Assume arrk
to be an array obtained by rotating nums
by k
positions clock-wise. We define the rotation function F
on nums
as follow:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]
.
Return the maximum value of F(0), F(1), ..., F(n-1)
.
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: nums = [4,3,2,6]
Output: 26
Explanation:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Example 2:
Input: nums = [100]
Output: 0
Constraints:
n == nums.length
1 <= n <= 105
-100 <= nums[i] <= 100
题目大意
给定一个长度为n
的整数数组nums
,设arrk
是数组nums
顺时针旋转k
个位置后的数组。
定义nums
的旋转函数F
为:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]
返回F(0), F(1), ..., F(n-1)
中的最大值。
解题思路
抽象化观察:
nums = [A0, A1, A2, A3]
sum = A0 + A1 + A2+ A3
F(0) = 0*A0 +0*A0 + 1*A1 + 2*A2 + 3*A3
F(1) = 0*A3 + 1*A0 + 2*A1 + 3*A2
= F(0) + (A0 + A1 + A2) - 3*A3
= F(0) + (sum-A3) - 3*A3
= F(0) + sum - 4*A3
F(2) = 0*A2 + 1*A3 + 2*A0 + 3*A1
= F(1) + A3 + A0 + A1 - 3*A2
= F(1) + sum - 4*A2
F(3) = 0*A1 + 1*A2 + 2*A3 + 3*A0
= F(2) + A2 + A3 + A0 - 3*A1
= F(2) + sum - 4*A1
// 记sum为nums数组中所有元素和
// 可以猜测当0 ≤ i < n时存在公式:
F(i) = F(i-1) + sum - n * A(n-i)
数学归纳法证明迭代公式:
根据题目中给定的旋转函数公式可得已知条件:
令数组nums
中所有元素和为sum
,用数学归纳法验证:当1 ≤ k < n
时,F(k) = F(k-1) + sum - n×nums[n-k]
成立。
归纳奠基:证明k=1
时命题成立。
F(1) = 1×nums[0] + 2×nums[1] + ... + 0×nums[n-1]
= F(0) + sum - n×nums[n-1]
归纳假设:假设F(k) = F(k-1) + sum - n×nums[n-k]
成立。
归纳递推:由归纳假设推出F(k+1) = F(k) + sum - n×nums[n-(k+1)]
成立,则假设的递推公式成立。
F(k+1) = (k+1)×nums[0] + k×nums[1] + ... + 0×nums[n-1]
= F(k) + sum - n×nums[n-(k+1)]
因此可以得到递推公式:
- 当
n = 0
时,F(0) = 0×nums[0] + 1×nums[1] + ... + (n−1)×nums[n−1]
- 当
1 ≤ k < n
时,F(k) = F(k-1) + sum - n×nums[n-k]
成立。
循环遍历0 ≤ k < n
,计算出不同的F(k)
并不断更新最大值,就能求出F(0), F(1), ..., F(n-1)
中的最大值。