题目
One way to serialize a binary tree is to use pre-order traversal. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as #.
_9_
/ \
3 2
/ \ / \
4 1 # 6
/ \ / \ / \
# # # # # #
For example, the above binary tree can be serialized to the string "9,3,4,#,#,1,#,#,2,#,6,#,#", where # represents a null node.
Given a string of comma separated values, verify whether it is a correct preorder traversal serialization of a binary tree. Find an algorithm without reconstructing the tree.
Each comma separated value in the string must be either an integer or a character '#' representing null pointer.
You may assume that the input format is always valid, for example it could never contain two consecutive commas such as "1,,3".
Example 1:
Input: "9,3,4,#,#,1,#,#,2,#,6,#,#"
Output: true
Example 2:
Input: "1,#"
Output: false
Example 3:
Input: "9,#,#,1"
Output: false
题目大意
给定一串以逗号分隔的序列,验证它是否是正确的二叉树的前序序列化。编写一个在不重构树的条件下的可行算法。
解题思路
这道题有些人用栈,有些用栈的深度求解。换个视角。如果叶子结点是 null,那么所有非 null 的结点(除了 root 结点)必然有 2 个出度,1 个入度(2 个孩子和 1 个父亲,孩子可能为空,但是这一题用 "#" 代替了,所以肯定有 2 个孩子);所有的 null 结点只有 0 个出度,1 个入度(0 个孩子和 1 个父亲)。
我们开始构建这颗树,在构建过程中,我们记录出度和度之间的差异 diff = outdegree - indegree
。当下一个节点到来时,我们将 diff 减 1,因为这个节点提供了一个度。如果这个节点不为 null,我们将 diff 增加 2,因为它提供两个出度。如果序列化是正确的,则 diff 应该永远不会为负,并且 diff 在完成时将为零。最后判断一下 diff 是不是为 0 即可判断它是否是正确的二叉树的前序序列化。