README ¶
1649. Create Sorted Array through Instructions
题目
Given an integer array instructions
, you are asked to create a sorted array from the elements in instructions
. You start with an empty container nums
. For each element from left to right in instructions
, insert it into nums
. The cost of each insertion is the minimum of the following:
- The number of elements currently in
nums
that are strictly less thaninstructions[i]
. - The number of elements currently in
nums
that are strictly greater thaninstructions[i]
.
For example, if inserting element 3
into nums = [1,2,3,5]
, the cost of insertion is min(2, 1)
(elements 1
and 2
are less than 3
, element 5
is greater than 3
) and nums
will become [1,2,3,3,5]
.
Return the total cost to insert all elements from instructions
into nums
. Since the answer may be large, return it modulo 10^9 + 7
Example 1:
Input: instructions = [1,5,6,2]
Output: 1
Explanation: Begin with nums = [].
Insert 1 with cost min(0, 0) = 0, now nums = [1].
Insert 5 with cost min(1, 0) = 0, now nums = [1,5].
Insert 6 with cost min(2, 0) = 0, now nums = [1,5,6].
Insert 2 with cost min(1, 2) = 1, now nums = [1,2,5,6].
The total cost is 0 + 0 + 0 + 1 = 1.
Example 2:
Input: instructions = [1,2,3,6,5,4]
Output: 3
Explanation: Begin with nums = [].
Insert 1 with cost min(0, 0) = 0, now nums = [1].
Insert 2 with cost min(1, 0) = 0, now nums = [1,2].
Insert 3 with cost min(2, 0) = 0, now nums = [1,2,3].
Insert 6 with cost min(3, 0) = 0, now nums = [1,2,3,6].
Insert 5 with cost min(3, 1) = 1, now nums = [1,2,3,5,6].
Insert 4 with cost min(3, 2) = 2, now nums = [1,2,3,4,5,6].
The total cost is 0 + 0 + 0 + 0 + 1 + 2 = 3.
Example 3:
Input: instructions = [1,3,3,3,2,4,2,1,2]
Output: 4
Explanation: Begin with nums = [].
Insert 1 with cost min(0, 0) = 0, now nums = [1].
Insert 3 with cost min(1, 0) = 0, now nums = [1,3].
Insert 3 with cost min(1, 0) = 0, now nums = [1,3,3].
Insert 3 with cost min(1, 0) = 0, now nums = [1,3,3,3].
Insert 2 with cost min(1, 3) = 1, now nums = [1,2,3,3,3].
Insert 4 with cost min(5, 0) = 0, now nums = [1,2,3,3,3,4].
Insert 2 with cost min(1, 4) = 1, now nums = [1,2,2,3,3,3,4].
Insert 1 with cost min(0, 6) = 0, now nums = [1,1,2,2,3,3,3,4].
Insert 2 with cost min(2, 4) = 2, now nums = [1,1,2,2,2,3,3,3,4].
The total cost is 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 2 = 4.
Constraints:
1 <= instructions.length <= 105
1 <= instructions[i] <= 105
题目大意
给你一个整数数组 instructions ,你需要根据 instructions 中的元素创建一个有序数组。一开始你有一个空的数组 nums ,你需要 从左到右 遍历 instructions 中的元素,将它们依次插入 nums 数组中。每一次插入操作的 代价 是以下两者的 较小值 :
- nums 中 严格小于 instructions[i] 的数字数目。
- nums 中 严格大于 instructions[i] 的数字数目。
比方说,如果要将 3 插入到 nums = [1,2,3,5] ,那么插入操作的 代价 为 min(2, 1) (元素 1 和 2 小于 3 ,元素 5 大于 3 ),插入后 nums 变成 [1,2,3,3,5] 。请你返回将 instructions 中所有元素依次插入 nums 后的 总最小代价 。由于答案会很大,请将它对 10^9 + 7 取余 后返回。
解题思路
- 给出一个数组,要求将其中的元素从头开始往另外一个空数组中插入,每次插入前,累加代价值 cost = min(strictly less than, strictly greater than)。最后输出累加值。
- 这一题虽然是 Hard 题,但是读完题以后就可以判定这是模板题了。可以用线段树和树状数组来解决。这里简单说说线段树的思路吧,先将待插入的数组排序,获得总的区间。每次循环做 4 步:2 次
query
分别得到strictlyLessThan
和strictlyGreaterThan
,再比较出两者中的最小值累加,最后一步就是update
。 - 由于题目给的数据比较大,所以建立线段树之前记得要先离散化。这一题核心代码不超过 10 行,其他的都是模板代码。具体实现见代码。
代码
package leetcode
import (
"sort"
"github.com/halfrost/LeetCode-Go/template"
)
// 解法一 树状数组 Binary Indexed Tree
func createSortedArray(instructions []int) int {
bit, res := template.BinaryIndexedTree{}, 0
bit.Init(100001)
for i, v := range instructions {
less := bit.Query(v - 1)
greater := i - bit.Query(v)
res = (res + min(less, greater)) % (1e9 + 7)
bit.Add(v, 1)
}
return res
}
// 解法二 线段树 SegmentTree
func createSortedArray1(instructions []int) int {
if len(instructions) == 0 {
return 0
}
st, res, mod := template.SegmentCountTree{}, 0, 1000000007
numsMap, numsArray, tmpArray := discretization1649(instructions)
// 初始化线段树,节点内的值都赋值为 0,即计数为 0
st.Init(tmpArray, func(i, j int) int {
return 0
})
for i := 0; i < len(instructions); i++ {
strictlyLessThan := st.Query(0, numsMap[instructions[i]]-1)
strictlyGreaterThan := st.Query(numsMap[instructions[i]]+1, numsArray[len(numsArray)-1])
res = (res + min(strictlyLessThan, strictlyGreaterThan)) % mod
st.UpdateCount(numsMap[instructions[i]])
}
return res
}
func discretization1649(instructions []int) (map[int]int, []int, []int) {
tmpArray, numsArray, numsMap := []int{}, []int{}, map[int]int{}
for i := 0; i < len(instructions); i++ {
numsMap[instructions[i]] = instructions[i]
}
for _, v := range numsMap {
numsArray = append(numsArray, v)
}
sort.Ints(numsArray)
for i, num := range numsArray {
numsMap[num] = i
}
for i := range numsArray {
tmpArray = append(tmpArray, i)
}
return numsMap, numsArray, tmpArray
}
func min(a int, b int) int {
if a > b {
return b
}
return a
}
Documentation ¶
There is no documentation for this package.