题目
A string is a valid parentheses string (denoted VPS) if it meets one of the following:
- It is an empty string
""
, or a single character not equal to "("
or ")"
,
- It can be written as
AB
(A
concatenated with B
), where A
and B
are VPS's, or
- It can be written as
(A)
, where A
is a VPS.
We can similarly define the nesting depth depth(S)
of any VPS S
as follows:
depth("") = 0
depth(C) = 0
, where C
is a string with a single character not equal to "("
or ")"
.
depth(A + B) = max(depth(A), depth(B))
, where A
and B
are VPS's.
depth("(" + A + ")") = 1 + depth(A)
, where A
is a VPS.
For example, ""
, "()()"
, and "()(()())"
are VPS's (with nesting depths 0, 1, and 2), and ")("
and "(()"
are not VPS's.
Given a VPS represented as string s
, return the nesting depth of s
.
Example 1:
Input: s = "(1+(2*3)+((8)/4))+1"
Output: 3
Explanation: Digit 8 is inside of 3 nested parentheses in the string.
Example 2:
Input: s = "(1)+((2))+(((3)))"
Output: 3
Example 3:
Input: s = "1+(2*3)/(2-1)"
Output: 1
Example 4:
Input: s = "1"
Output: 0
Constraints:
1 <= s.length <= 100
s
consists of digits 0-9
and characters '+'
, '-'
, '*'
, '/'
, '('
, and ')'
.
- It is guaranteed that parentheses expression
s
is a VPS.
题目大意
如果字符串满足以下条件之一,则可以称之为 有效括号字符串(valid parentheses string,可以简写为 VPS):
- 字符串是一个空字符串 "",或者是一个不为 "(" 或 ")" 的单字符。
- 字符串可以写为 AB(A 与 B 字符串连接),其中 A 和 B 都是 有效括号字符串 。
- 字符串可以写为 (A),其中 A 是一个 有效括号字符串 。
类似地,可以定义任何有效括号字符串 S 的 嵌套深度 depth(S):
- depth("") = 0
- depth(C) = 0,其中 C 是单个字符的字符串,且该字符不是 "(" 或者 ")"
- depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是 有效括号字符串
- depth("(" + A + ")") = 1 + depth(A),其中 A 是一个 有效括号字符串
例如:""、"()()"、"()(()())" 都是 有效括号字符串(嵌套深度分别为 0、1、2),而 ")(" 、"(()" 都不是 有效括号字符串 。给你一个 有效括号字符串 s,返回该字符串的 s 嵌套深度 。
解题思路
- 简单题。求一个括号字符串的嵌套深度。题目给的括号字符串都是有效的,所以不需要考虑非法的情况。扫描一遍括号字符串,遇到
(
可以无脑 ++,并动态维护最大值,遇到 )
可以无脑 - - 。最后输出最大值即可。
代码
package leetcode
func maxDepth(s string) int {
res, cur := 0, 0
for _, c := range s {
if c == '(' {
cur++
res = max(res, cur)
} else if c == ')' {
cur--
}
}
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}