openai

package module
v0.0.0-...-ee541bb Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Aug 2, 2023 License: Apache-2.0 Imports: 13 Imported by: 0

README

Go OpenAI

Go Reference Go Report Card codecov

This library provides unofficial Go clients for OpenAI API. We support:

  • ChatGPT
  • GPT-3, GPT-4
  • DALL·E 2
  • Whisper
Installation:
go get github.com/sashabaranov/go-openai

Currently, go-openai requires Go version 1.18 or greater.

ChatGPT example usage:
package main

import (
	"context"
	"fmt"
	openai "github.com/sashabaranov/go-openai"
)

func main() {
	client := openai.NewClient("your token")
	resp, err := client.CreateChatCompletion(
		context.Background(),
		openai.ChatCompletionRequest{
			Model: openai.GPT3Dot5Turbo,
			Messages: []openai.ChatCompletionMessage{
				{
					Role:    openai.ChatMessageRoleUser,
					Content: "Hello!",
				},
			},
		},
	)

	if err != nil {
		fmt.Printf("ChatCompletion error: %v\n", err)
		return
	}

	fmt.Println(resp.Choices[0].Message.Content)
}

Getting an OpenAI API Key:
  1. Visit the OpenAI website at https://platform.openai.com/account/api-keys.
  2. If you don't have an account, click on "Sign Up" to create one. If you do, click "Log In".
  3. Once logged in, navigate to your API key management page.
  4. Click on "Create new secret key".
  5. Enter a name for your new key, then click "Create secret key".
  6. Your new API key will be displayed. Use this key to interact with the OpenAI API.

Note: Your API key is sensitive information. Do not share it with anyone.

Other examples:
ChatGPT streaming completion
package main

import (
	"context"
	"errors"
	"fmt"
	"io"
	openai "github.com/sashabaranov/go-openai"
)

func main() {
	c := openai.NewClient("your token")
	ctx := context.Background()

	req := openai.ChatCompletionRequest{
		Model:     openai.GPT3Dot5Turbo,
		MaxTokens: 20,
		Messages: []openai.ChatCompletionMessage{
			{
				Role:    openai.ChatMessageRoleUser,
				Content: "Lorem ipsum",
			},
		},
		Stream: true,
	}
	stream, err := c.CreateChatCompletionStream(ctx, req)
	if err != nil {
		fmt.Printf("ChatCompletionStream error: %v\n", err)
		return
	}
	defer stream.Close()

	fmt.Printf("Stream response: ")
	for {
		response, err := stream.Recv()
		if errors.Is(err, io.EOF) {
			fmt.Println("\nStream finished")
			return
		}

		if err != nil {
			fmt.Printf("\nStream error: %v\n", err)
			return
		}

		fmt.Printf(response.Choices[0].Delta.Content)
	}
}
GPT-3 completion
package main

import (
	"context"
	"fmt"
	openai "github.com/sashabaranov/go-openai"
)

func main() {
	c := openai.NewClient("your token")
	ctx := context.Background()

	req := openai.CompletionRequest{
		Model:     openai.GPT3Ada,
		MaxTokens: 5,
		Prompt:    "Lorem ipsum",
	}
	resp, err := c.CreateCompletion(ctx, req)
	if err != nil {
		fmt.Printf("Completion error: %v\n", err)
		return
	}
	fmt.Println(resp.Choices[0].Text)
}
GPT-3 streaming completion
package main

import (
	"errors"
	"context"
	"fmt"
	"io"
	openai "github.com/sashabaranov/go-openai"
)

func main() {
	c := openai.NewClient("your token")
	ctx := context.Background()

	req := openai.CompletionRequest{
		Model:     openai.GPT3Ada,
		MaxTokens: 5,
		Prompt:    "Lorem ipsum",
		Stream:    true,
	}
	stream, err := c.CreateCompletionStream(ctx, req)
	if err != nil {
		fmt.Printf("CompletionStream error: %v\n", err)
		return
	}
	defer stream.Close()

	for {
		response, err := stream.Recv()
		if errors.Is(err, io.EOF) {
			fmt.Println("Stream finished")
			return
		}

		if err != nil {
			fmt.Printf("Stream error: %v\n", err)
			return
		}


		fmt.Printf("Stream response: %v\n", response)
	}
}
Audio Speech-To-Text
package main

import (
	"context"
	"fmt"

	openai "github.com/sashabaranov/go-openai"
)

func main() {
	c := openai.NewClient("your token")
	ctx := context.Background()

	req := openai.AudioRequest{
		Model:    openai.Whisper1,
		FilePath: "recording.mp3",
	}
	resp, err := c.CreateTranscription(ctx, req)
	if err != nil {
		fmt.Printf("Transcription error: %v\n", err)
		return
	}
	fmt.Println(resp.Text)
}
Audio Captions
package main

import (
	"context"
	"fmt"
	"os"

	openai "github.com/sashabaranov/go-openai"
)

func main() {
	c := openai.NewClient(os.Getenv("OPENAI_KEY"))

	req := openai.AudioRequest{
		Model:    openai.Whisper1,
		FilePath: os.Args[1],
		Format:   openai.AudioResponseFormatSRT,
	}
	resp, err := c.CreateTranscription(context.Background(), req)
	if err != nil {
		fmt.Printf("Transcription error: %v\n", err)
		return
	}
	f, err := os.Create(os.Args[1] + ".srt")
	if err != nil {
		fmt.Printf("Could not open file: %v\n", err)
		return
	}
	defer f.Close()
	if _, err := f.WriteString(resp.Text); err != nil {
		fmt.Printf("Error writing to file: %v\n", err)
		return
	}
}
DALL-E 2 image generation
package main

import (
	"bytes"
	"context"
	"encoding/base64"
	"fmt"
	openai "github.com/sashabaranov/go-openai"
	"image/png"
	"os"
)

func main() {
	c := openai.NewClient("your token")
	ctx := context.Background()

	// Sample image by link
	reqUrl := openai.ImageRequest{
		Prompt:         "Parrot on a skateboard performs a trick, cartoon style, natural light, high detail",
		Size:           openai.CreateImageSize256x256,
		ResponseFormat: openai.CreateImageResponseFormatURL,
		N:              1,
	}

	respUrl, err := c.CreateImage(ctx, reqUrl)
	if err != nil {
		fmt.Printf("Image creation error: %v\n", err)
		return
	}
	fmt.Println(respUrl.Data[0].URL)

	// Example image as base64
	reqBase64 := openai.ImageRequest{
		Prompt:         "Portrait of a humanoid parrot in a classic costume, high detail, realistic light, unreal engine",
		Size:           openai.CreateImageSize256x256,
		ResponseFormat: openai.CreateImageResponseFormatB64JSON,
		N:              1,
	}

	respBase64, err := c.CreateImage(ctx, reqBase64)
	if err != nil {
		fmt.Printf("Image creation error: %v\n", err)
		return
	}

	imgBytes, err := base64.StdEncoding.DecodeString(respBase64.Data[0].B64JSON)
	if err != nil {
		fmt.Printf("Base64 decode error: %v\n", err)
		return
	}

	r := bytes.NewReader(imgBytes)
	imgData, err := png.Decode(r)
	if err != nil {
		fmt.Printf("PNG decode error: %v\n", err)
		return
	}

	file, err := os.Create("example.png")
	if err != nil {
		fmt.Printf("File creation error: %v\n", err)
		return
	}
	defer file.Close()

	if err := png.Encode(file, imgData); err != nil {
		fmt.Printf("PNG encode error: %v\n", err)
		return
	}

	fmt.Println("The image was saved as example.png")
}

Configuring proxy
config := openai.DefaultConfig("token")
proxyUrl, err := url.Parse("http://localhost:{port}")
if err != nil {
	panic(err)
}
transport := &http.Transport{
	Proxy: http.ProxyURL(proxyUrl),
}
config.HTTPClient = &http.Client{
	Transport: transport,
}

c := openai.NewClientWithConfig(config)

See also: https://pkg.go.dev/github.com/sashabaranov/go-openai#ClientConfig

ChatGPT support context
package main

import (
	"bufio"
	"context"
	"fmt"
	"os"
	"strings"

	"github.com/sashabaranov/go-openai"
)

func main() {
	client := openai.NewClient("your token")
	messages := make([]openai.ChatCompletionMessage, 0)
	reader := bufio.NewReader(os.Stdin)
	fmt.Println("Conversation")
	fmt.Println("---------------------")

	for {
		fmt.Print("-> ")
		text, _ := reader.ReadString('\n')
		// convert CRLF to LF
		text = strings.Replace(text, "\n", "", -1)
		messages = append(messages, openai.ChatCompletionMessage{
			Role:    openai.ChatMessageRoleUser,
			Content: text,
		})

		resp, err := client.CreateChatCompletion(
			context.Background(),
			openai.ChatCompletionRequest{
				Model:    openai.GPT3Dot5Turbo,
				Messages: messages,
			},
		)

		if err != nil {
			fmt.Printf("ChatCompletion error: %v\n", err)
			continue
		}

		content := resp.Choices[0].Message.Content
		messages = append(messages, openai.ChatCompletionMessage{
			Role:    openai.ChatMessageRoleAssistant,
			Content: content,
		})
		fmt.Println(content)
	}
}
Azure OpenAI ChatGPT
package main

import (
	"context"
	"fmt"

	openai "github.com/sashabaranov/go-openai"
)

func main() {
	config := openai.DefaultAzureConfig("your Azure OpenAI Key", "https://your Azure OpenAI Endpoint")
	// If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function
	// config.AzureModelMapperFunc = func(model string) string {
	// 	azureModelMapping = map[string]string{
	// 		"gpt-3.5-turbo": "your gpt-3.5-turbo deployment name",
	// 	}
	// 	return azureModelMapping[model]
	// }

	client := openai.NewClientWithConfig(config)
	resp, err := client.CreateChatCompletion(
		context.Background(),
		openai.ChatCompletionRequest{
			Model: openai.GPT3Dot5Turbo,
			Messages: []openai.ChatCompletionMessage{
				{
					Role:    openai.ChatMessageRoleUser,
					Content: "Hello Azure OpenAI!",
				},
			},
		},
	)
	if err != nil {
		fmt.Printf("ChatCompletion error: %v\n", err)
		return
	}

	fmt.Println(resp.Choices[0].Message.Content)
}

Azure OpenAI Embeddings
package main

import (
	"context"
	"fmt"

	openai "github.com/sashabaranov/go-openai"
)

func main() {

	config := openai.DefaultAzureConfig("your Azure OpenAI Key", "https://your Azure OpenAI Endpoint")
	config.APIVersion = "2023-05-15" // optional update to latest API version

	//If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function
	//config.AzureModelMapperFunc = func(model string) string {
	//    azureModelMapping = map[string]string{
	//        "gpt-3.5-turbo":"your gpt-3.5-turbo deployment name",
	//    }
	//    return azureModelMapping[model]
	//}

	input := "Text to vectorize"

	client := openai.NewClientWithConfig(config)
	resp, err := client.CreateEmbeddings(
		context.Background(),
		openai.EmbeddingRequest{
			Input: []string{input},
			Model: openai.AdaEmbeddingV2,
		})

	if err != nil {
		fmt.Printf("CreateEmbeddings error: %v\n", err)
		return
	}

	vectors := resp.Data[0].Embedding // []float32 with 1536 dimensions

	fmt.Println(vectors[:10], "...", vectors[len(vectors)-10:])
}
JSON Schema for function calling

It is now possible for chat completion to choose to call a function for more information (see developer docs here).

In order to describe the type of functions that can be called, a JSON schema must be provided. Many JSON schema libraries exist and are more advanced than what we can offer in this library, however we have included a simple jsonschema package for those who want to use this feature without formatting their own JSON schema payload.

The developer documents give this JSON schema definition as an example:

{
  "name":"get_current_weather",
  "description":"Get the current weather in a given location",
  "parameters":{
    "type":"object",
    "properties":{
        "location":{
          "type":"string",
          "description":"The city and state, e.g. San Francisco, CA"
        },
        "unit":{
          "type":"string",
          "enum":[
              "celsius",
              "fahrenheit"
          ]
        }
    },
    "required":[
        "location"
    ]
  }
}

Using the jsonschema package, this schema could be created using structs as such:

FunctionDefinition{
  Name: "get_current_weather",
  Parameters: jsonschema.Definition{
    Type: jsonschema.Object,
    Properties: map[string]jsonschema.Definition{
      "location": {
        Type: jsonschema.String,
        Description: "The city and state, e.g. San Francisco, CA",
      },
      "unit": {
        Type: jsonschema.String,
        Enum: []string{"celcius", "fahrenheit"},
      },
    },
    Required: []string{"location"},
  },
}

The Parameters field of a FunctionDefinition can accept either of the above styles, or even a nested struct from another library (as long as it can be marshalled into JSON).

Error handling

Open-AI maintains clear documentation on how to handle API errors

example:

e := &openai.APIError{}
if errors.As(err, &e) {
  switch e.HTTPStatusCode {
    case 401:
      // invalid auth or key (do not retry)
    case 429:
      // rate limiting or engine overload (wait and retry) 
    case 500:
      // openai server error (retry)
    default:
      // unhandled
  }
}

Fine Tune Model
package main

import (
	"context"
	"fmt"
	"github.com/sashabaranov/go-openai"
)

func main() {
	client := openai.NewClient("your token")
	ctx := context.Background()

	// create a .jsonl file with your training data
	// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
	// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
	// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}

	// you can use openai cli tool to validate the data
	// For more info - https://platform.openai.com/docs/guides/fine-tuning

	file, err := client.CreateFile(ctx, openai.FileRequest{
		FilePath: "training_prepared.jsonl",
		Purpose:  "fine-tune",
	})
	if err != nil {
		fmt.Printf("Upload JSONL file error: %v\n", err)
		return
	}

	// create a fine tune job
	// Streams events until the job is done (this often takes minutes, but can take hours if there are many jobs in the queue or your dataset is large)
	// use below get method to know the status of your model
	tune, err := client.CreateFineTune(ctx, openai.FineTuneRequest{
		TrainingFile: file.ID,
		Model:        "ada", // babbage, curie, davinci, or a fine-tuned model created after 2022-04-21.
	})
	if err != nil {
		fmt.Printf("Creating new fine tune model error: %v\n", err)
		return
	}

	getTune, err := client.GetFineTune(ctx, tune.ID)
	if err != nil {
		fmt.Printf("Getting fine tune model error: %v\n", err)
		return
	}
	fmt.Println(getTune.FineTunedModel)

	// once the status of getTune is `succeeded`, you can use your fine tune model in Completion Request

	// resp, err := client.CreateCompletion(ctx, openai.CompletionRequest{
	//	 Model:  getTune.FineTunedModel,
	//	 Prompt: "your prompt",
	// })
	// if err != nil {
	//	 fmt.Printf("Create completion error %v\n", err)
	//	 return
	// }
	//
	// fmt.Println(resp.Choices[0].Text)
}
See the `examples/` folder for more.
Integration tests:

Integration tests are requested against the production version of the OpenAI API. These tests will verify that the library is properly coded against the actual behavior of the API, and will fail upon any incompatible change in the API.

Notes: These tests send real network traffic to the OpenAI API and may reach rate limits. Temporary network problems may also cause the test to fail.

Run tests using:

OPENAI_TOKEN=XXX go test -v -tags=integration ./api_integration_test.go

If the OPENAI_TOKEN environment variable is not available, integration tests will be skipped.

Frequently Asked Questions

Why don't we get the same answer when specifying a temperature field of 0 and asking the same question?

Even when specifying a temperature field of 0, it doesn't guarantee that you'll always get the same response. Several factors come into play.

  1. Go OpenAI Behavior: When you specify a temperature field of 0 in Go OpenAI, the omitempty tag causes that field to be removed from the request. Consequently, the OpenAI API applies the default value of 1.
  2. Token Count for Input/Output: If there's a large number of tokens in the input and output, setting the temperature to 0 can still result in non-deterministic behavior. In particular, when using around 32k tokens, the likelihood of non-deterministic behavior becomes highest even with a temperature of 0.

Due to the factors mentioned above, different answers may be returned even for the same question.

Workarounds:

  1. Using math.SmallestNonzeroFloat32: By specifying math.SmallestNonzeroFloat32 in the temperature field instead of 0, you can mimic the behavior of setting it to 0.
  2. Limiting Token Count: By limiting the number of tokens in the input and output and especially avoiding large requests close to 32k tokens, you can reduce the risk of non-deterministic behavior.

By adopting these strategies, you can expect more consistent results.

Related Issues:
omitempty option of request struct will generate incorrect request when parameter is 0.

Does Go OpenAI provide a method to count tokens?

No, Go OpenAI does not offer a feature to count tokens, and there are no plans to provide such a feature in the future. However, if there's a way to implement a token counting feature with zero dependencies, it might be possible to merge that feature into Go OpenAI. Otherwise, it would be more appropriate to implement it in a dedicated library or repository.

For counting tokens, you might find the following links helpful:

Related Issues:
Is it possible to join the implementation of GPT3 Tokenizer

Thank you

We want to take a moment to express our deepest gratitude to the contributors and sponsors of this project:

To all of you: thank you. You've helped us achieve more than we ever imagined possible. Can't wait to see where we go next, together!

Documentation

Overview

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))
resp, err := client.CreateChatCompletion(
	context.Background(),
	openai.ChatCompletionRequest{
		Model: openai.GPT3Dot5Turbo,
		Messages: []openai.ChatCompletionMessage{
			{
				Role:    openai.ChatMessageRoleUser,
				Content: "Hello!",
			},
		},
	},
)

if err != nil {
	fmt.Printf("ChatCompletion error: %v\n", err)
	return
}

fmt.Println(resp.Choices[0].Message.Content)
Output:

Example (Chatbot)
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))

req := openai.ChatCompletionRequest{
	Model: openai.GPT3Dot5Turbo,
	Messages: []openai.ChatCompletionMessage{
		{
			Role:    openai.ChatMessageRoleSystem,
			Content: "you are a helpful chatbot",
		},
	},
}
fmt.Println("Conversation")
fmt.Println("---------------------")
fmt.Print("> ")
s := bufio.NewScanner(os.Stdin)
for s.Scan() {
	req.Messages = append(req.Messages, openai.ChatCompletionMessage{
		Role:    openai.ChatMessageRoleUser,
		Content: s.Text(),
	})
	resp, err := client.CreateChatCompletion(context.Background(), req)
	if err != nil {
		fmt.Printf("ChatCompletion error: %v\n", err)
		continue
	}
	fmt.Printf("%s\n\n", resp.Choices[0].Message.Content)
	req.Messages = append(req.Messages, resp.Choices[0].Message)
	fmt.Print("> ")
}
Output:

Index

Examples

Constants

View Source
const (
	ChatMessageRoleSystem    = "system"
	ChatMessageRoleUser      = "user"
	ChatMessageRoleAssistant = "assistant"
	ChatMessageRoleFunction  = "function"
)

Chat message role defined by the OpenAI API.

View Source
const (
	GPT432K0613           = "gpt-4-32k-0613"
	GPT432K0314           = "gpt-4-32k-0314"
	GPT432K               = "gpt-4-32k"
	GPT40613              = "gpt-4-0613"
	GPT40314              = "gpt-4-0314"
	GPT4                  = "gpt-4"
	GPT3Dot5Turbo0613     = "gpt-3.5-turbo-0613"
	GPT3Dot5Turbo0301     = "gpt-3.5-turbo-0301"
	GPT3Dot5Turbo16K      = "gpt-3.5-turbo-16k"
	GPT3Dot5Turbo16K0613  = "gpt-3.5-turbo-16k-0613"
	GPT3Dot5Turbo         = "gpt-3.5-turbo"
	GPT3Dot5TurboInstruct = "gpt-3.5-turbo-instruct"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3TextDavinci003 = "text-davinci-003"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3TextDavinci002 = "text-davinci-002"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3TextCurie001 = "text-curie-001"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3TextBabbage001 = "text-babbage-001"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3TextAda001 = "text-ada-001"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3TextDavinci001 = "text-davinci-001"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3DavinciInstructBeta = "davinci-instruct-beta"
	GPT3Davinci             = "davinci"
	GPT3Davinci002          = "davinci-002"
	// Deprecated: Will be shut down on January 04, 2024. Use gpt-3.5-turbo-instruct instead.
	GPT3CurieInstructBeta = "curie-instruct-beta"
	GPT3Curie             = "curie"
	GPT3Curie002          = "curie-002"
	GPT3Ada               = "ada"
	GPT3Ada002            = "ada-002"
	GPT3Babbage           = "babbage"
	GPT3Babbage002        = "babbage-002"
)

GPT3 Defines the models provided by OpenAI to use when generating completions from OpenAI. GPT3 Models are designed for text-based tasks. For code-specific tasks, please refer to the Codex series of models.

View Source
const (
	CodexCodeDavinci002 = "code-davinci-002"
	CodexCodeCushman001 = "code-cushman-001"
	CodexCodeDavinci001 = "code-davinci-001"
)

Codex Defines the models provided by OpenAI. These models are designed for code-specific tasks, and use a different tokenizer which optimizes for whitespace.

View Source
const (
	CreateImageSize256x256   = "256x256"
	CreateImageSize512x512   = "512x512"
	CreateImageSize1024x1024 = "1024x1024"
)

Image sizes defined by the OpenAI API.

View Source
const (
	CreateImageResponseFormatURL     = "url"
	CreateImageResponseFormatB64JSON = "b64_json"
)
View Source
const (
	ModerationTextStable = "text-moderation-stable"
	ModerationTextLatest = "text-moderation-latest"
	// Deprecated: use ModerationTextStable and ModerationTextLatest instead.
	ModerationText001 = "text-moderation-001"
)

The default is text-moderation-latest which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use text-moderation-stable, we will provide advanced notice before updating the model. Accuracy of text-moderation-stable may be slightly lower than for text-moderation-latest.

View Source
const AzureAPIKeyHeader = "api-key"
View Source
const (
	Whisper1 = "whisper-1"
)

Whisper Defines the models provided by OpenAI to use when processing audio with OpenAI.

Variables

View Source
var (
	ErrChatCompletionInvalidModel       = errors.New("this model is not supported with this method, please use CreateCompletion client method instead") //nolint:lll
	ErrChatCompletionStreamNotSupported = errors.New("streaming is not supported with this method, please use CreateChatCompletionStream")              //nolint:lll
)
View Source
var (
	ErrCompletionUnsupportedModel              = errors.New("this model is not supported with this method, please use CreateChatCompletion client method instead") //nolint:lll
	ErrCompletionStreamNotSupported            = errors.New("streaming is not supported with this method, please use CreateCompletionStream")                      //nolint:lll
	ErrCompletionRequestPromptTypeNotSupported = errors.New("the type of CompletionRequest.Prompt only supports string and []string")                              //nolint:lll
)
View Source
var (
	ErrModerationInvalidModel = errors.New("this model is not supported with moderation, please use text-moderation-stable or text-moderation-latest instead") //nolint:lll
)
View Source
var (
	ErrTooManyEmptyStreamMessages = errors.New("stream has sent too many empty messages")
)

Functions

This section is empty.

Types

type APIError

type APIError struct {
	Code           any     `json:"code,omitempty"`
	Message        string  `json:"message"`
	Param          *string `json:"param,omitempty"`
	Type           string  `json:"type"`
	HTTPStatusCode int     `json:"-"`
}

APIError provides error information returned by the OpenAI API.

Example

Open-AI maintains clear documentation on how to handle API errors.

see: https://platform.openai.com/docs/guides/error-codes/api-errors

var err error // Assume this is the error you are checking.
e := &openai.APIError{}
if errors.As(err, &e) {
	switch e.HTTPStatusCode {
	case 401:
	// invalid auth or key (do not retry)
	case 429:
	// rate limiting or engine overload (wait and retry)
	case 500:
	// openai server error (retry)
	default:
		// unhandled
	}
}
Output:

func (*APIError) Error

func (e *APIError) Error() string

func (*APIError) UnmarshalJSON

func (e *APIError) UnmarshalJSON(data []byte) (err error)

type APIType

type APIType string
const (
	APITypeOpenAI  APIType = "OPEN_AI"
	APITypeAzure   APIType = "AZURE"
	APITypeAzureAD APIType = "AZURE_AD"
)

type AudioRequest

type AudioRequest struct {
	Model string

	// FilePath is either an existing file in your filesystem or a filename representing the contents of Reader.
	FilePath string

	// Reader is an optional io.Reader when you do not want to use an existing file.
	Reader io.Reader

	Prompt      string // For translation, it should be in English
	Temperature float32
	Language    string // For translation, just do not use it. It seems "en" works, not confirmed...
	Format      AudioResponseFormat
}

AudioRequest represents a request structure for audio API. ResponseFormat is not supported for now. We only return JSON text, which may be sufficient.

func (AudioRequest) HasJSONResponse

func (r AudioRequest) HasJSONResponse() bool

HasJSONResponse returns true if the response format is JSON.

type AudioResponse

type AudioResponse struct {
	Task     string  `json:"task"`
	Language string  `json:"language"`
	Duration float64 `json:"duration"`
	Segments []struct {
		ID               int     `json:"id"`
		Seek             int     `json:"seek"`
		Start            float64 `json:"start"`
		End              float64 `json:"end"`
		Text             string  `json:"text"`
		Tokens           []int   `json:"tokens"`
		Temperature      float64 `json:"temperature"`
		AvgLogprob       float64 `json:"avg_logprob"`
		CompressionRatio float64 `json:"compression_ratio"`
		NoSpeechProb     float64 `json:"no_speech_prob"`
		Transient        bool    `json:"transient"`
	} `json:"segments"`
	Text string `json:"text"`
}

AudioResponse represents a response structure for audio API.

type AudioResponseFormat

type AudioResponseFormat string

Response formats; Whisper uses AudioResponseFormatJSON by default.

const (
	AudioResponseFormatJSON        AudioResponseFormat = "json"
	AudioResponseFormatText        AudioResponseFormat = "text"
	AudioResponseFormatSRT         AudioResponseFormat = "srt"
	AudioResponseFormatVerboseJSON AudioResponseFormat = "verbose_json"
	AudioResponseFormatVTT         AudioResponseFormat = "vtt"
)

type ChatCompletionChoice

type ChatCompletionChoice struct {
	Index   int                   `json:"index"`
	Message ChatCompletionMessage `json:"message"`
	// FinishReason
	// stop: API returned complete message,
	// or a message terminated by one of the stop sequences provided via the stop parameter
	// length: Incomplete model output due to max_tokens parameter or token limit
	// function_call: The model decided to call a function
	// content_filter: Omitted content due to a flag from our content filters
	// null: API response still in progress or incomplete
	FinishReason FinishReason `json:"finish_reason"`
}

type ChatCompletionMessage

type ChatCompletionMessage struct {
	Role    string `json:"role"`
	Content string `json:"content"`

	// This property isn't in the official documentation, but it's in
	// the documentation for the official library for python:
	// - https://github.com/openai/openai-python/blob/main/chatml.md
	// - https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
	Name string `json:"name,omitempty"`

	FunctionCall *FunctionCall `json:"function_call,omitempty"`
}

type ChatCompletionRequest

type ChatCompletionRequest struct {
	Model            string                  `json:"model"`
	Messages         []ChatCompletionMessage `json:"messages"`
	MaxTokens        int                     `json:"max_tokens,omitempty"`
	Temperature      float32                 `json:"temperature,omitempty"`
	TopP             float32                 `json:"top_p,omitempty"`
	N                int                     `json:"n,omitempty"`
	Stream           bool                    `json:"stream,omitempty"`
	Stop             []string                `json:"stop,omitempty"`
	PresencePenalty  float32                 `json:"presence_penalty,omitempty"`
	FrequencyPenalty float32                 `json:"frequency_penalty,omitempty"`
	// LogitBias is must be a token id string (specified by their token ID in the tokenizer), not a word string.
	// incorrect: `"logit_bias":{"You": 6}`, correct: `"logit_bias":{"1639": 6}`
	// refs: https://platform.openai.com/docs/api-reference/chat/create#chat/create-logit_bias
	LogitBias    map[string]int       `json:"logit_bias,omitempty"`
	User         string               `json:"user,omitempty"`
	Functions    []FunctionDefinition `json:"functions,omitempty"`
	FunctionCall any                  `json:"function_call,omitempty"`
}

ChatCompletionRequest represents a request structure for chat completion API.

type ChatCompletionResponse

type ChatCompletionResponse struct {
	ID      string                 `json:"id"`
	Object  string                 `json:"object"`
	Created int64                  `json:"created"`
	Model   string                 `json:"model"`
	Choices []ChatCompletionChoice `json:"choices"`
	Usage   Usage                  `json:"usage"`
}

ChatCompletionResponse represents a response structure for chat completion API.

type ChatCompletionStream

type ChatCompletionStream struct {
	// contains filtered or unexported fields
}

ChatCompletionStream Note: Perhaps it is more elegant to abstract Stream using generics.

func (ChatCompletionStream) Close

func (stream ChatCompletionStream) Close()

func (ChatCompletionStream) Recv

func (stream ChatCompletionStream) Recv() (response T, err error)

type ChatCompletionStreamChoice

type ChatCompletionStreamChoice struct {
	Index                int                             `json:"index"`
	Delta                ChatCompletionStreamChoiceDelta `json:"delta"`
	FinishReason         FinishReason                    `json:"finish_reason"`
	ContentFilterResults ContentFilterResults            `json:"content_filter_results,omitempty"`
}

type ChatCompletionStreamChoiceDelta

type ChatCompletionStreamChoiceDelta struct {
	Content      string        `json:"content,omitempty"`
	Role         string        `json:"role,omitempty"`
	FunctionCall *FunctionCall `json:"function_call,omitempty"`
}

type ChatCompletionStreamResponse

type ChatCompletionStreamResponse struct {
	ID                string                       `json:"id"`
	Object            string                       `json:"object"`
	Created           int64                        `json:"created"`
	Model             string                       `json:"model"`
	Choices           []ChatCompletionStreamChoice `json:"choices"`
	PromptAnnotations []PromptAnnotation           `json:"prompt_annotations,omitempty"`
}

type Client

type Client struct {
	// contains filtered or unexported fields
}

Client is OpenAI GPT-3 API client.

func NewClient

func NewClient(authToken, base_url string) *Client

NewClient creates new OpenAI API client. NewClient creates new OpenAI API client.

func NewClientWithConfig

func NewClientWithConfig(config ClientConfig) *Client

NewClientWithConfig creates new OpenAI API client for specified config.

func NewOrgClient deprecated

func NewOrgClient(authToken, org string) *Client

NewOrgClient creates new OpenAI API client for specified Organization ID.

Deprecated: Please use NewClientWithConfig.

func (*Client) CancelFineTune

func (c *Client) CancelFineTune(ctx context.Context, fineTuneID string) (response FineTune, err error)

CancelFineTune cancel a fine-tune job.

func (*Client) CreateChatCompletion

func (c *Client) CreateChatCompletion(
	ctx context.Context,
	request ChatCompletionRequest,
) (response ChatCompletionResponse, err error)

CreateChatCompletion — API call to Create a completion for the chat message.

func (*Client) CreateChatCompletionStream

func (c *Client) CreateChatCompletionStream(
	ctx context.Context,
	request ChatCompletionRequest,
) (stream *ChatCompletionStream, err error)

CreateChatCompletionStream — API call to create a chat completion w/ streaming support. It sets whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message.

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))

stream, err := client.CreateChatCompletionStream(
	context.Background(),
	openai.ChatCompletionRequest{
		Model:     openai.GPT3Dot5Turbo,
		MaxTokens: 20,
		Messages: []openai.ChatCompletionMessage{
			{
				Role:    openai.ChatMessageRoleUser,
				Content: "Lorem ipsum",
			},
		},
		Stream: true,
	},
)
if err != nil {
	fmt.Printf("ChatCompletionStream error: %v\n", err)
	return
}
defer stream.Close()

fmt.Printf("Stream response: ")
for {
	var response openai.ChatCompletionStreamResponse
	response, err = stream.Recv()
	if errors.Is(err, io.EOF) {
		fmt.Println("\nStream finished")
		return
	}

	if err != nil {
		fmt.Printf("\nStream error: %v\n", err)
		return
	}

	fmt.Printf(response.Choices[0].Delta.Content)
}
Output:

func (*Client) CreateCompletion

func (c *Client) CreateCompletion(
	ctx context.Context,
	request CompletionRequest,
) (response CompletionResponse, err error)

CreateCompletion — API call to create a completion. This is the main endpoint of the API. Returns new text as well as, if requested, the probabilities over each alternative token at each position.

If using a fine-tuned model, simply provide the model's ID in the CompletionRequest object, and the server will use the model's parameters to generate the completion.

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))
resp, err := client.CreateCompletion(
	context.Background(),
	openai.CompletionRequest{
		Model:     openai.GPT3Ada,
		MaxTokens: 5,
		Prompt:    "Lorem ipsum",
	},
)
if err != nil {
	fmt.Printf("Completion error: %v\n", err)
	return
}
fmt.Println(resp.Choices[0].Text)
Output:

func (*Client) CreateCompletionStream

func (c *Client) CreateCompletionStream(
	ctx context.Context,
	request CompletionRequest,
) (stream *CompletionStream, err error)

CreateCompletionStream — API call to create a completion w/ streaming support. It sets whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message.

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))
stream, err := client.CreateCompletionStream(
	context.Background(),
	openai.CompletionRequest{
		Model:     openai.GPT3Ada,
		MaxTokens: 5,
		Prompt:    "Lorem ipsum",
		Stream:    true,
	},
)
if err != nil {
	fmt.Printf("CompletionStream error: %v\n", err)
	return
}
defer stream.Close()

for {
	var response openai.CompletionResponse
	response, err = stream.Recv()
	if errors.Is(err, io.EOF) {
		fmt.Println("Stream finished")
		return
	}

	if err != nil {
		fmt.Printf("Stream error: %v\n", err)
		return
	}

	fmt.Printf("Stream response: %#v\n", response)
}
Output:

func (*Client) CreateEditImage

func (c *Client) CreateEditImage(ctx context.Context, request ImageEditRequest) (response ImageResponse, err error)

CreateEditImage - API call to create an image. This is the main endpoint of the DALL-E API.

func (*Client) CreateEmbeddings

func (c *Client) CreateEmbeddings(ctx context.Context, conv EmbeddingRequestConverter) (res EmbeddingResponse, err error)

CreateEmbeddings returns an EmbeddingResponse which will contain an Embedding for every item in |body.Input|. https://beta.openai.com/docs/api-reference/embeddings/create

Body should be of type EmbeddingRequestStrings for embedding strings or EmbeddingRequestTokens for embedding groups of text already converted to tokens.

func (*Client) CreateFile

func (c *Client) CreateFile(ctx context.Context, request FileRequest) (file File, err error)

CreateFile uploads a jsonl file to GPT3 FilePath must be a local file path.

func (*Client) CreateFineTune

func (c *Client) CreateFineTune(ctx context.Context, request FineTuneRequest) (response FineTune, err error)

func (*Client) CreateImage

func (c *Client) CreateImage(ctx context.Context, request ImageRequest) (response ImageResponse, err error)

CreateImage - API call to create an image. This is the main endpoint of the DALL-E API.

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))

respURL, err := client.CreateImage(
	context.Background(),
	openai.ImageRequest{
		Prompt:         "Parrot on a skateboard performs a trick, cartoon style, natural light, high detail",
		Size:           openai.CreateImageSize256x256,
		ResponseFormat: openai.CreateImageResponseFormatURL,
		N:              1,
	},
)
if err != nil {
	fmt.Printf("Image creation error: %v\n", err)
	return
}
fmt.Println(respURL.Data[0].URL)
Output:

Example (Base64)
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))

resp, err := client.CreateImage(
	context.Background(),
	openai.ImageRequest{
		Prompt:         "Portrait of a humanoid parrot in a classic costume, high detail, realistic light, unreal engine",
		Size:           openai.CreateImageSize512x512,
		ResponseFormat: openai.CreateImageResponseFormatB64JSON,
		N:              1,
	},
)
if err != nil {
	fmt.Printf("Image creation error: %v\n", err)
	return
}

b, err := base64.StdEncoding.DecodeString(resp.Data[0].B64JSON)
if err != nil {
	fmt.Printf("Base64 decode error: %v\n", err)
	return
}

f, err := os.Create("example.png")
if err != nil {
	fmt.Printf("File creation error: %v\n", err)
	return
}
defer f.Close()

_, err = f.Write(b)
if err != nil {
	fmt.Printf("File write error: %v\n", err)
	return
}

fmt.Println("The image was saved as example.png")
Output:

func (*Client) CreateTranscription

func (c *Client) CreateTranscription(
	ctx context.Context,
	request AudioRequest,
) (response AudioResponse, err error)

CreateTranscription — API call to create a transcription. Returns transcribed text.

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))
resp, err := client.CreateTranscription(
	context.Background(),
	openai.AudioRequest{
		Model:    openai.Whisper1,
		FilePath: "recording.mp3",
	},
)
if err != nil {
	fmt.Printf("Transcription error: %v\n", err)
	return
}
fmt.Println(resp.Text)
Output:

Example (Captions)
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))

resp, err := client.CreateTranscription(
	context.Background(),
	openai.AudioRequest{
		Model:    openai.Whisper1,
		FilePath: os.Args[1],
		Format:   openai.AudioResponseFormatSRT,
	},
)
if err != nil {
	fmt.Printf("Transcription error: %v\n", err)
	return
}
f, err := os.Create(os.Args[1] + ".srt")
if err != nil {
	fmt.Printf("Could not open file: %v\n", err)
	return
}
defer f.Close()
if _, err = f.WriteString(resp.Text); err != nil {
	fmt.Printf("Error writing to file: %v\n", err)
	return
}
Output:

func (*Client) CreateTranslation

func (c *Client) CreateTranslation(
	ctx context.Context,
	request AudioRequest,
) (response AudioResponse, err error)

CreateTranslation — API call to translate audio into English.

Example
client := openai.NewClient(os.Getenv("OPENAI_API_KEY"))
resp, err := client.CreateTranslation(
	context.Background(),
	openai.AudioRequest{
		Model:    openai.Whisper1,
		FilePath: "recording.mp3",
	},
)
if err != nil {
	fmt.Printf("Translation error: %v\n", err)
	return
}
fmt.Println(resp.Text)
Output:

func (*Client) CreateVariImage

func (c *Client) CreateVariImage(ctx context.Context, request ImageVariRequest) (response ImageResponse, err error)

CreateVariImage - API call to create an image variation. This is the main endpoint of the DALL-E API. Use abbreviations(vari for variation) because ci-lint has a single-line length limit ...

func (*Client) DeleteFile

func (c *Client) DeleteFile(ctx context.Context, fileID string) (err error)

DeleteFile deletes an existing file.

func (*Client) DeleteFineTune

func (c *Client) DeleteFineTune(ctx context.Context, fineTuneID string) (response FineTuneDeleteResponse, err error)

func (*Client) Edits

func (c *Client) Edits(ctx context.Context, request EditsRequest) (response EditsResponse, err error)

Edits Perform an API call to the Edits endpoint.

Deprecated: Users of the Edits API and its associated models (e.g., text-davinci-edit-001 or code-davinci-edit-001)

will need to migrate to GPT-3.5 Turbo by January 4, 2024. You can use CreateChatCompletion or CreateChatCompletionStream instead.

func (*Client) GetEngine

func (c *Client) GetEngine(
	ctx context.Context,
	engineID string,
) (engine Engine, err error)

GetEngine Retrieves an engine instance, providing basic information about the engine such as the owner and availability.

func (*Client) GetFile

func (c *Client) GetFile(ctx context.Context, fileID string) (file File, err error)

GetFile Retrieves a file instance, providing basic information about the file such as the file name and purpose.

func (*Client) GetFileContent

func (c *Client) GetFileContent(ctx context.Context, fileID string) (content io.ReadCloser, err error)

func (*Client) GetFineTune

func (c *Client) GetFineTune(ctx context.Context, fineTuneID string) (response FineTune, err error)

func (*Client) GetModel

func (c *Client) GetModel(ctx context.Context, modelID string) (model Model, err error)

GetModel Retrieves a model instance, providing basic information about the model such as the owner and permissioning.

func (*Client) ListEngines

func (c *Client) ListEngines(ctx context.Context) (engines EnginesList, err error)

ListEngines Lists the currently available engines, and provides basic information about each option such as the owner and availability.

func (*Client) ListFiles

func (c *Client) ListFiles(ctx context.Context) (files FilesList, err error)

ListFiles Lists the currently available files, and provides basic information about each file such as the file name and purpose.

func (*Client) ListFineTuneEvents

func (c *Client) ListFineTuneEvents(ctx context.Context, fineTuneID string) (response FineTuneEventList, err error)

func (*Client) ListFineTunes

func (c *Client) ListFineTunes(ctx context.Context) (response FineTuneList, err error)

func (*Client) ListModels

func (c *Client) ListModels(ctx context.Context) (models ModelsList, err error)

ListModels Lists the currently available models, and provides basic information about each model such as the model id and parent.

func (*Client) Moderations

func (c *Client) Moderations(ctx context.Context, request ModerationRequest) (response ModerationResponse, err error)

Moderations — perform a moderation api call over a string. Input can be an array or slice but a string will reduce the complexity.

type ClientConfig

type ClientConfig struct {
	BaseURL              string
	OrgID                string
	APIType              APIType
	APIVersion           string                    // required when APIType is APITypeAzure or APITypeAzureAD
	AzureModelMapperFunc func(model string) string // replace model to azure deployment name func
	HTTPClient           *http.Client

	EmptyMessagesLimit uint
	// contains filtered or unexported fields
}

ClientConfig is a configuration of a client.

Example (ClientWithProxy)
config := openai.DefaultConfig(os.Getenv("OPENAI_API_KEY"))
port := os.Getenv("OPENAI_PROXY_PORT")
proxyURL, err := url.Parse(fmt.Sprintf("http://localhost:%s", port))
if err != nil {
	panic(err)
}
transport := &http.Transport{
	Proxy: http.ProxyURL(proxyURL),
}
config.HTTPClient = &http.Client{
	Transport: transport,
}

client := openai.NewClientWithConfig(config)

client.CreateChatCompletion( //nolint:errcheck // outside of the scope of this example.
	context.Background(),
	openai.ChatCompletionRequest{
		// etc...
	},
)
Output:

func DefaultAzureConfig

func DefaultAzureConfig(apiKey, baseURL string) ClientConfig
Example
azureKey := os.Getenv("AZURE_OPENAI_API_KEY")       // Your azure API key
azureEndpoint := os.Getenv("AZURE_OPENAI_ENDPOINT") // Your azure OpenAI endpoint
config := openai.DefaultAzureConfig(azureKey, azureEndpoint)
client := openai.NewClientWithConfig(config)
resp, err := client.CreateChatCompletion(
	context.Background(),
	openai.ChatCompletionRequest{
		Model: openai.GPT3Dot5Turbo,
		Messages: []openai.ChatCompletionMessage{
			{
				Role:    openai.ChatMessageRoleUser,
				Content: "Hello Azure OpenAI!",
			},
		},
	},
)

if err != nil {
	fmt.Printf("ChatCompletion error: %v\n", err)
	return
}

fmt.Println(resp.Choices[0].Message.Content)
Output:

func DefaultConfig

func DefaultConfig(authToken string) ClientConfig

func (ClientConfig) GetAzureDeploymentByModel

func (c ClientConfig) GetAzureDeploymentByModel(model string) string

func (ClientConfig) String

func (ClientConfig) String() string

type CompletionChoice

type CompletionChoice struct {
	Text         string        `json:"text"`
	Index        int           `json:"index"`
	FinishReason string        `json:"finish_reason"`
	LogProbs     LogprobResult `json:"logprobs"`
}

CompletionChoice represents one of possible completions.

type CompletionRequest

type CompletionRequest struct {
	Model            string   `json:"model"`
	Prompt           any      `json:"prompt,omitempty"`
	Suffix           string   `json:"suffix,omitempty"`
	MaxTokens        int      `json:"max_tokens,omitempty"`
	Temperature      float32  `json:"temperature,omitempty"`
	TopP             float32  `json:"top_p,omitempty"`
	N                int      `json:"n,omitempty"`
	Stream           bool     `json:"stream,omitempty"`
	LogProbs         int      `json:"logprobs,omitempty"`
	Echo             bool     `json:"echo,omitempty"`
	Stop             []string `json:"stop,omitempty"`
	PresencePenalty  float32  `json:"presence_penalty,omitempty"`
	FrequencyPenalty float32  `json:"frequency_penalty,omitempty"`
	BestOf           int      `json:"best_of,omitempty"`
	// LogitBias is must be a token id string (specified by their token ID in the tokenizer), not a word string.
	// incorrect: `"logit_bias":{"You": 6}`, correct: `"logit_bias":{"1639": 6}`
	// refs: https://platform.openai.com/docs/api-reference/completions/create#completions/create-logit_bias
	LogitBias map[string]int `json:"logit_bias,omitempty"`
	User      string         `json:"user,omitempty"`
}

CompletionRequest represents a request structure for completion API.

type CompletionResponse

type CompletionResponse struct {
	ID      string             `json:"id"`
	Object  string             `json:"object"`
	Created int64              `json:"created"`
	Model   string             `json:"model"`
	Choices []CompletionChoice `json:"choices"`
	Usage   Usage              `json:"usage"`
}

CompletionResponse represents a response structure for completion API.

type CompletionStream

type CompletionStream struct {
	// contains filtered or unexported fields
}

func (CompletionStream) Close

func (stream CompletionStream) Close()

func (CompletionStream) Recv

func (stream CompletionStream) Recv() (response T, err error)

type ContentFilterResults

type ContentFilterResults struct {
	Hate     Hate     `json:"hate,omitempty"`
	SelfHarm SelfHarm `json:"self_harm,omitempty"`
	Sexual   Sexual   `json:"sexual,omitempty"`
	Violence Violence `json:"violence,omitempty"`
}

type EditsChoice

type EditsChoice struct {
	Text  string `json:"text"`
	Index int    `json:"index"`
}

EditsChoice represents one of possible edits.

type EditsRequest

type EditsRequest struct {
	Model       *string `json:"model,omitempty"`
	Input       string  `json:"input,omitempty"`
	Instruction string  `json:"instruction,omitempty"`
	N           int     `json:"n,omitempty"`
	Temperature float32 `json:"temperature,omitempty"`
	TopP        float32 `json:"top_p,omitempty"`
}

EditsRequest represents a request structure for Edits API.

type EditsResponse

type EditsResponse struct {
	Object  string        `json:"object"`
	Created int64         `json:"created"`
	Usage   Usage         `json:"usage"`
	Choices []EditsChoice `json:"choices"`
}

EditsResponse represents a response structure for Edits API.

type Embedding

type Embedding struct {
	Object    string    `json:"object"`
	Embedding []float32 `json:"embedding"`
	Index     int       `json:"index"`
}

Embedding is a special format of data representation that can be easily utilized by machine learning models and algorithms. The embedding is an information dense representation of the semantic meaning of a piece of text. Each embedding is a vector of floating point numbers, such that the distance between two embeddings in the vector space is correlated with semantic similarity between two inputs in the original format. For example, if two texts are similar, then their vector representations should also be similar.

type EmbeddingModel

type EmbeddingModel int

EmbeddingModel enumerates the models which can be used to generate Embedding vectors.

const (
	Unknown EmbeddingModel = iota
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	AdaSimilarity
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	BabbageSimilarity
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	CurieSimilarity
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	DavinciSimilarity
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	AdaSearchDocument
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	AdaSearchQuery
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	BabbageSearchDocument
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	BabbageSearchQuery
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	CurieSearchDocument
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	CurieSearchQuery
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	DavinciSearchDocument
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	DavinciSearchQuery
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	AdaCodeSearchCode
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	AdaCodeSearchText
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	BabbageCodeSearchCode
	// Deprecated: Will be shut down on January 04, 2024. Use text-embedding-ada-002 instead.
	BabbageCodeSearchText
	AdaEmbeddingV2
)

func (EmbeddingModel) MarshalText

func (e EmbeddingModel) MarshalText() ([]byte, error)

MarshalText implements the encoding.TextMarshaler interface.

func (EmbeddingModel) String

func (e EmbeddingModel) String() string

String implements the fmt.Stringer interface.

func (*EmbeddingModel) UnmarshalText

func (e *EmbeddingModel) UnmarshalText(b []byte) error

UnmarshalText implements the encoding.TextUnmarshaler interface. On unrecognized value, it sets |e| to Unknown.

type EmbeddingRequest

type EmbeddingRequest struct {
	Input any            `json:"input"`
	Model EmbeddingModel `json:"model"`
	User  string         `json:"user"`
}

func (EmbeddingRequest) Convert

func (r EmbeddingRequest) Convert() EmbeddingRequest

type EmbeddingRequestConverter

type EmbeddingRequestConverter interface {
	// Needs to be of type EmbeddingRequestStrings or EmbeddingRequestTokens
	Convert() EmbeddingRequest
}

type EmbeddingRequestStrings

type EmbeddingRequestStrings struct {
	// Input is a slice of strings for which you want to generate an Embedding vector.
	// Each input must not exceed 8192 tokens in length.
	// OpenAPI suggests replacing newlines (\n) in your input with a single space, as they
	// have observed inferior results when newlines are present.
	// E.g.
	//	"The food was delicious and the waiter..."
	Input []string `json:"input"`
	// ID of the model to use. You can use the List models API to see all of your available models,
	// or see our Model overview for descriptions of them.
	Model EmbeddingModel `json:"model"`
	// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse.
	User string `json:"user"`
}

EmbeddingRequestStrings is the input to a create embeddings request with a slice of strings.

func (EmbeddingRequestStrings) Convert

type EmbeddingRequestTokens

type EmbeddingRequestTokens struct {
	// Input is a slice of slices of ints ([][]int) for which you want to generate an Embedding vector.
	// Each input must not exceed 8192 tokens in length.
	// OpenAPI suggests replacing newlines (\n) in your input with a single space, as they
	// have observed inferior results when newlines are present.
	// E.g.
	//	"The food was delicious and the waiter..."
	Input [][]int `json:"input"`
	// ID of the model to use. You can use the List models API to see all of your available models,
	// or see our Model overview for descriptions of them.
	Model EmbeddingModel `json:"model"`
	// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse.
	User string `json:"user"`
}

func (EmbeddingRequestTokens) Convert

type EmbeddingResponse

type EmbeddingResponse struct {
	Object string         `json:"object"`
	Data   []Embedding    `json:"data"`
	Model  EmbeddingModel `json:"model"`
	Usage  Usage          `json:"usage"`
}

EmbeddingResponse is the response from a Create embeddings request.

type Engine

type Engine struct {
	ID     string `json:"id"`
	Object string `json:"object"`
	Owner  string `json:"owner"`
	Ready  bool   `json:"ready"`
}

Engine struct represents engine from OpenAPI API.

type EnginesList

type EnginesList struct {
	Engines []Engine `json:"data"`
}

EnginesList is a list of engines.

type ErrorResponse

type ErrorResponse struct {
	Error *APIError `json:"error,omitempty"`
}

type File

type File struct {
	Bytes     int    `json:"bytes"`
	CreatedAt int64  `json:"created_at"`
	ID        string `json:"id"`
	FileName  string `json:"filename"`
	Object    string `json:"object"`
	Owner     string `json:"owner"`
	Purpose   string `json:"purpose"`
}

File struct represents an OpenAPI file.

type FileRequest

type FileRequest struct {
	FileName string `json:"file"`
	FilePath string `json:"-"`
	Purpose  string `json:"purpose"`
}

type FilesList

type FilesList struct {
	Files []File `json:"data"`
}

FilesList is a list of files that belong to the user or organization.

type FineTune

type FineTune struct {
	ID                string              `json:"id"`
	Object            string              `json:"object"`
	Model             string              `json:"model"`
	CreatedAt         int64               `json:"created_at"`
	FineTuneEventList []FineTuneEvent     `json:"events,omitempty"`
	FineTunedModel    string              `json:"fine_tuned_model"`
	HyperParams       FineTuneHyperParams `json:"hyperparams"`
	OrganizationID    string              `json:"organization_id"`
	ResultFiles       []File              `json:"result_files"`
	Status            string              `json:"status"`
	ValidationFiles   []File              `json:"validation_files"`
	TrainingFiles     []File              `json:"training_files"`
	UpdatedAt         int64               `json:"updated_at"`
}

type FineTuneDeleteResponse

type FineTuneDeleteResponse struct {
	ID      string `json:"id"`
	Object  string `json:"object"`
	Deleted bool   `json:"deleted"`
}

type FineTuneEvent

type FineTuneEvent struct {
	Object    string `json:"object"`
	CreatedAt int64  `json:"created_at"`
	Level     string `json:"level"`
	Message   string `json:"message"`
}

type FineTuneEventList

type FineTuneEventList struct {
	Object string          `json:"object"`
	Data   []FineTuneEvent `json:"data"`
}

type FineTuneHyperParams

type FineTuneHyperParams struct {
	BatchSize              int     `json:"batch_size"`
	LearningRateMultiplier float64 `json:"learning_rate_multiplier"`
	Epochs                 int     `json:"n_epochs"`
	PromptLossWeight       float64 `json:"prompt_loss_weight"`
}

type FineTuneList

type FineTuneList struct {
	Object string     `json:"object"`
	Data   []FineTune `json:"data"`
}

type FineTuneRequest

type FineTuneRequest struct {
	TrainingFile                 string    `json:"training_file"`
	ValidationFile               string    `json:"validation_file,omitempty"`
	Model                        string    `json:"model,omitempty"`
	Epochs                       int       `json:"n_epochs,omitempty"`
	BatchSize                    int       `json:"batch_size,omitempty"`
	LearningRateMultiplier       float32   `json:"learning_rate_multiplier,omitempty"`
	PromptLossRate               float32   `json:"prompt_loss_rate,omitempty"`
	ComputeClassificationMetrics bool      `json:"compute_classification_metrics,omitempty"`
	ClassificationClasses        int       `json:"classification_n_classes,omitempty"`
	ClassificationPositiveClass  string    `json:"classification_positive_class,omitempty"`
	ClassificationBetas          []float32 `json:"classification_betas,omitempty"`
	Suffix                       string    `json:"suffix,omitempty"`
}

type FinishReason

type FinishReason string
const (
	FinishReasonStop          FinishReason = "stop"
	FinishReasonLength        FinishReason = "length"
	FinishReasonFunctionCall  FinishReason = "function_call"
	FinishReasonContentFilter FinishReason = "content_filter"
	FinishReasonNull          FinishReason = "null"
)

func (FinishReason) MarshalJSON

func (r FinishReason) MarshalJSON() ([]byte, error)

type FunctionCall

type FunctionCall struct {
	Name string `json:"name,omitempty"`
	// call function with arguments in JSON format
	Arguments string `json:"arguments,omitempty"`
}

type FunctionDefine deprecated

type FunctionDefine = FunctionDefinition

Deprecated: use FunctionDefinition instead.

type FunctionDefinition

type FunctionDefinition struct {
	Name        string `json:"name"`
	Description string `json:"description,omitempty"`
	// Parameters is an object describing the function.
	// You can pass json.RawMessage to describe the schema,
	// or you can pass in a struct which serializes to the proper JSON schema.
	// The jsonschema package is provided for convenience, but you should
	// consider another specialized library if you require more complex schemas.
	Parameters any `json:"parameters"`
}

type Hate

type Hate struct {
	Filtered bool   `json:"filtered"`
	Severity string `json:"severity,omitempty"`
}

type ImageEditRequest

type ImageEditRequest struct {
	Image          *os.File `json:"image,omitempty"`
	Mask           *os.File `json:"mask,omitempty"`
	Prompt         string   `json:"prompt,omitempty"`
	N              int      `json:"n,omitempty"`
	Size           string   `json:"size,omitempty"`
	ResponseFormat string   `json:"response_format,omitempty"`
}

ImageEditRequest represents the request structure for the image API.

type ImageRequest

type ImageRequest struct {
	Prompt         string `json:"prompt,omitempty"`
	N              int    `json:"n,omitempty"`
	Size           string `json:"size,omitempty"`
	ResponseFormat string `json:"response_format,omitempty"`
	User           string `json:"user,omitempty"`
}

ImageRequest represents the request structure for the image API.

type ImageResponse

type ImageResponse struct {
	Created int64                    `json:"created,omitempty"`
	Data    []ImageResponseDataInner `json:"data,omitempty"`
}

ImageResponse represents a response structure for image API.

type ImageResponseDataInner

type ImageResponseDataInner struct {
	URL     string `json:"url,omitempty"`
	B64JSON string `json:"b64_json,omitempty"`
}

ImageResponseDataInner represents a response data structure for image API.

type ImageVariRequest

type ImageVariRequest struct {
	Image          *os.File `json:"image,omitempty"`
	N              int      `json:"n,omitempty"`
	Size           string   `json:"size,omitempty"`
	ResponseFormat string   `json:"response_format,omitempty"`
}

ImageVariRequest represents the request structure for the image API.

type LogprobResult

type LogprobResult struct {
	Tokens        []string             `json:"tokens"`
	TokenLogprobs []float32            `json:"token_logprobs"`
	TopLogprobs   []map[string]float32 `json:"top_logprobs"`
	TextOffset    []int                `json:"text_offset"`
}

LogprobResult represents logprob result of Choice.

type Model

type Model struct {
	CreatedAt  int64        `json:"created"`
	ID         string       `json:"id"`
	Object     string       `json:"object"`
	OwnedBy    string       `json:"owned_by"`
	Permission []Permission `json:"permission"`
	Root       string       `json:"root"`
	Parent     string       `json:"parent"`
}

Model struct represents an OpenAPI model.

type ModelsList

type ModelsList struct {
	Models []Model `json:"data"`
}

ModelsList is a list of models, including those that belong to the user or organization.

type ModerationRequest

type ModerationRequest struct {
	Input string `json:"input,omitempty"`
	Model string `json:"model,omitempty"`
}

ModerationRequest represents a request structure for moderation API.

type ModerationResponse

type ModerationResponse struct {
	ID      string   `json:"id"`
	Model   string   `json:"model"`
	Results []Result `json:"results"`
}

ModerationResponse represents a response structure for moderation API.

type Permission

type Permission struct {
	CreatedAt          int64       `json:"created"`
	ID                 string      `json:"id"`
	Object             string      `json:"object"`
	AllowCreateEngine  bool        `json:"allow_create_engine"`
	AllowSampling      bool        `json:"allow_sampling"`
	AllowLogprobs      bool        `json:"allow_logprobs"`
	AllowSearchIndices bool        `json:"allow_search_indices"`
	AllowView          bool        `json:"allow_view"`
	AllowFineTuning    bool        `json:"allow_fine_tuning"`
	Organization       string      `json:"organization"`
	Group              interface{} `json:"group"`
	IsBlocking         bool        `json:"is_blocking"`
}

Permission struct represents an OpenAPI permission.

type PromptAnnotation

type PromptAnnotation struct {
	PromptIndex          int                  `json:"prompt_index,omitempty"`
	ContentFilterResults ContentFilterResults `json:"content_filter_results,omitempty"`
}

type RequestError

type RequestError struct {
	HTTPStatusCode int
	Err            error
}

RequestError provides informations about generic request errors.

func (*RequestError) Error

func (e *RequestError) Error() string

func (*RequestError) Unwrap

func (e *RequestError) Unwrap() error

type Result

type Result struct {
	Categories     ResultCategories     `json:"categories"`
	CategoryScores ResultCategoryScores `json:"category_scores"`
	Flagged        bool                 `json:"flagged"`
}

Result represents one of possible moderation results.

type ResultCategories

type ResultCategories struct {
	Hate            bool `json:"hate"`
	HateThreatening bool `json:"hate/threatening"`
	SelfHarm        bool `json:"self-harm"`
	Sexual          bool `json:"sexual"`
	SexualMinors    bool `json:"sexual/minors"`
	Violence        bool `json:"violence"`
	ViolenceGraphic bool `json:"violence/graphic"`
}

ResultCategories represents Categories of Result.

type ResultCategoryScores

type ResultCategoryScores struct {
	Hate            float32 `json:"hate"`
	HateThreatening float32 `json:"hate/threatening"`
	SelfHarm        float32 `json:"self-harm"`
	Sexual          float32 `json:"sexual"`
	SexualMinors    float32 `json:"sexual/minors"`
	Violence        float32 `json:"violence"`
	ViolenceGraphic float32 `json:"violence/graphic"`
}

ResultCategoryScores represents CategoryScores of Result.

type SelfHarm

type SelfHarm struct {
	Filtered bool   `json:"filtered"`
	Severity string `json:"severity,omitempty"`
}

type Sexual

type Sexual struct {
	Filtered bool   `json:"filtered"`
	Severity string `json:"severity,omitempty"`
}

type Usage

type Usage struct {
	PromptTokens     int `json:"prompt_tokens"`
	CompletionTokens int `json:"completion_tokens"`
	TotalTokens      int `json:"total_tokens"`
}

Usage Represents the total token usage per request to OpenAI.

type Violence

type Violence struct {
	Filtered bool   `json:"filtered"`
	Severity string `json:"severity,omitempty"`
}

Directories

Path Synopsis
examples
Package jsonschema provides very simple functionality for representing a JSON schema as a (nested) struct.
Package jsonschema provides very simple functionality for representing a JSON schema as a (nested) struct.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL