The ed25519-donna commit hash is 8757bd4cd209cb032853ece0ce413f122eef212
ed25519 is an
Elliptic Curve Digital Signature Algortithm,
developed by Dan Bernstein,
Niels Duif,
Tanja Lange,
Peter Schwabe,
and Bo-Yin Yang.
This project provides performant, portable 32-bit & 64-bit implementations. All implementations are
of course constant time in regard to secret data.
SSE2 code and benches have not been updated yet. I will do those next.
Compilers versions are gcc 4.6.3, icc 13.1.1, clang 3.4-1~exp1.
Batch verification time (in parentheses) is the average time per 1 verification in a batch of 64 signatures. Counts are in thousands of cycles.
Note that SSE2 performance may be less impressive on AMD & older CPUs with slower SSE ops!
Visual Studio performance for ge25519_scalarmult_base_niels
will lag behind a bit until optimized assembler versions of ge25519_scalarmult_base_choose_niels
are made.
E5200 @ 2.5ghz, march=core2
Implementation | Sign | gcc | icc | clang | Verify | gcc | icc | clang |
ed25519-donna 64bit | | 100k | 110k | 137k | | 327k (144k) | 342k (163k) | 422k (194k) |
amd64-64-24k | | 102k | | | | 355k (158k) | | |
ed25519-donna-sse2 64bit | | 108k | 111k | 116k | | 353k (155k) | 345k (154k) | 360k (161k) |
amd64-51-32k | | 116k | | | | 380k (175k) | | |
ed25519-donna-sse2 32bit | | 147k | 147k | 156k | | 380k (178k) | 381k (173k) | 430k (192k) |
ed25519-donna 32bit | | 597k | 335k | 380k | | 1693k (720k) | 1052k (453k) | 1141k (493k) |
E3-1270 @ 3.4ghz, march=corei7-avx
Implementation | Sign | gcc | icc | clang | Verify | gcc | icc | clang |
amd64-64-24k | | 68k | | | | 225k (104k) | | |
ed25519-donna 64bit | | 71k | 75k | 90k | | 226k (105k) | 226k (112k) | 277k (125k) |
amd64-51-32k | | 72k | | | | 218k (107k) | | |
ed25519-donna-sse2 64bit | | 79k | 82k | 92k | | 252k (122k) | 259k (124k) | 282k (131k) |
ed25519-donna-sse2 32bit | | 94k | 95k | 103k | | 296k (146k) | 294k (137k) | 306k (147k) |
ed25519-donna 32bit | | 525k | 299k | 316k | | 1502k (645k) | 959k (418k) | 954k (416k) |
Compilation
No configuration is needed if you are compiling against OpenSSL.
Hash Options
If you are not compiling aginst OpenSSL, you will need a hash function.
To use a simple/slow implementation of SHA-512, use -DED25519_REFHASH
when compiling ed25519.c
.
This should never be used except to verify the code works when OpenSSL is not available.
To use a custom hash function, use -DED25519_CUSTOMHASH
when compiling ed25519.c
and put your
custom hash implementation in ed25519-hash-custom.h. The hash must have a 512bit digest and implement
struct ed25519_hash_context;
void ed25519_hash_init(ed25519_hash_context *ctx);
void ed25519_hash_update(ed25519_hash_context *ctx, const uint8_t *in, size_t inlen);
void ed25519_hash_final(ed25519_hash_context *ctx, uint8_t *hash);
void ed25519_hash(uint8_t *hash, const uint8_t *in, size_t inlen);
Random Options
If you are not compiling aginst OpenSSL, you will need a random function for batch verification.
To use a custom random function, use -DED25519_CUSTOMRANDOM
when compiling ed25519.c
and put your
custom hash implementation in ed25519-randombytes-custom.h. The random function must implement:
void ED25519_FN(ed25519_randombytes_unsafe) (void *p, size_t len);
Use -DED25519_TEST
when compiling ed25519.c
to use a deterministically seeded, non-thread safe CSPRNG
variant of Bob Jenkins ISAAC
Minor options
Use -DED25519_INLINE_ASM
to disable the use of custom assembler routines and instead rely on portable C.
Use -DED25519_FORCE_32BIT
to force the use of 32 bit routines even when compiling for 64 bit.
32-bit
gcc ed25519.c -m32 -O3 -c
64-bit
gcc ed25519.c -m64 -O3 -c
SSE2
gcc ed25519.c -m32 -O3 -c -DED25519_SSE2 -msse2
gcc ed25519.c -m64 -O3 -c -DED25519_SSE2
clang and icc are also supported
Usage
To use the code, link against ed25519.o -mbits
and:
#include "ed25519.h"
Add -lssl -lcrypto
when using OpenSSL (Some systems don't need -lcrypto? It might be trial and error).
To generate a private key, simply generate 32 bytes from a secure
cryptographic source:
ed25519_secret_key sk;
randombytes(sk, sizeof(ed25519_secret_key));
To generate a public key:
ed25519_public_key pk;
ed25519_publickey(sk, pk);
To sign a message:
ed25519_signature sig;
ed25519_sign(message, message_len, sk, pk, signature);
To verify a signature:
int valid = ed25519_sign_open(message, message_len, pk, signature) == 0;
To batch verify signatures:
const unsigned char *mp[num] = {message1, message2..}
size_t ml[num] = {message_len1, message_len2..}
const unsigned char *pkp[num] = {pk1, pk2..}
const unsigned char *sigp[num] = {signature1, signature2..}
int valid[num]
/* valid[i] will be set to 1 if the individual signature was valid, 0 otherwise */
int all_valid = ed25519_sign_open_batch(mp, ml, pkp, sigp, num, valid) == 0;
Note: Batch verification uses ed25519_randombytes_unsafe
, implemented in
ed25519-randombytes.h
, to generate random scalars for the verification code.
The default implementation now uses OpenSSLs RAND_bytes
.
Unlike the SUPERCOP version, signatures are
not appended to messages, and there is no need for padding in front of messages.
Additionally, the secret key does not contain a copy of the public key, so it is
32 bytes instead of 64 bytes, and the public key must be provided to the signing
function.
Curve25519
Curve25519 public keys can be generated thanks to
Adam Langley
leveraging Ed25519's precomputed basepoint scalar multiplication.
curved25519_key sk, pk;
randombytes(sk, sizeof(curved25519_key));
curved25519_scalarmult_basepoint(pk, sk);
Note the name is curved25519, a combination of curve and ed25519, to prevent
name clashes. Performance is slightly faster than short message ed25519
signing due to both using the same code for the scalar multiply.
Testing
Fuzzing against reference implemenations is now available. See fuzz/README.
Building ed25519.c
with -DED25519_TEST
and linking with test.c
will run basic sanity tests
and benchmark each function. test-batch.c
has been incorporated in to test.c
.
test-internals.c
is standalone and built the same way as ed25519.c
. It tests the math primitives
with extreme values to ensure they function correctly. SSE2 is now supported.
Papers
Available on the Ed25519 website