Documentation ¶
Overview ¶
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules.
Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route.
Skipper can load and update the route definitions from multiple data sources without being restarted.
It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For futher information read 'Extending Skipper'.
Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand.
Quickstart ¶
Skipper is 'go get' compatible. If needed, create a 'go workspace' first:
mkdir ws cd ws export GOPATH=$(pwd) export PATH=$PATH:$GOPATH/bin
Get the Skipper packages:
go get github.com/zalando/skipper/...
Create a file with a route:
echo 'hello: Path("/hello") -> "https://www.example.org"' > example.eskip
Optionally, verify the syntax of the file:
eskip check example.eskip
Start Skipper and make an HTTP request:
skipper -routes-file example.eskip & curl localhost:9090/hello
Routing Mechanism ¶
The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request.
Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. This is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt.
For further details, see the 'proxy' and 'filters' package documentation.
Matching Requests ¶
Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions:
- method
- path (optionally with wildcards)
- path regular expressions
- host regular expressions
- headers
- header regular expressions
It is also possible to create custom predicates with any other matching criteria.
The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route.
For further details, see the 'routing' package documentation.
Filters - Augmenting Requests ¶
Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route.
For further details, see the 'filters' package documentation.
Service Backends ¶
Each route has one of the following backends: HTTP endpoint or shunt.
Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.)
A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response.
Route Definitions ¶
Route definitions consist of the following:
- request matching conditions (predicates)
- filter chain (optional)
- backend (either an HTTP endpoint or a shunt)
The eskip package implements the in-memory and text representations of route definitions, including a parser.
(Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.)
For further details, see the 'eskip' package documentation
Data Sources ¶
Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients:
- Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper.
- etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package.
- static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates.
Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package.
Running Skipper ¶
Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package.
Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter:
skipper -help
An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line:
eskip -help
Extending Skipper ¶
Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources.
Custom Predicates ¶
To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments.
Example, randompredicate.go:
package main import ( "github.com/zalando/skipper/routing" "math/rand" "net/http" ) type randomSpec struct {} type randomPredicate struct { chance float64 } func (s *randomSpec) Name() string { return "Random" } func (s *randomSpec) Create(args []interface{}) routing.Predicate { p := &randomPredicate{.5} if len(args) > 0 { if c, ok := args[0].(float64); ok { p.chance = c } } return p } func (p *randomPredicate) Match(_ *http.Request) bool { return rand.Float64() < p.chance }
In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random':
Random(.33) -> "https://test.example.org"; * -> "https://www.example.org"
Custom Filters ¶
To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed.
Example, hellofilter.go:
package main import ( "fmt" "github.com/zalando/skipper/filters" ) type helloSpec struct {} type helloFilter struct { who string } func (s *helloSpec) Name() string { return "hello" } func (s *helloSpec) CreateFilter(config []interface{}) (filters.Filter, error) { if len(config) == 0 { return nil, filters.ErrInvalidFilterParameters } if who, ok := config[0].(string); ok { return &helloFilter{who}, nil } else { return nil, filters.ErrInvalidFilterParameters } } func (f *helloFilter) Request(ctx filters.FilterContext) {} func (f *helloFilter) Response(ctx filters.FilterContext) { ctx.Response().Header.Set("X-Hello", fmt.Sprintf("Hello, %s!", f.who)) }
The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as:
- -> hello("world") -> "https://www.example.org"
Custom Build ¶
The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command.
Example, hello.go:
package main import ( "github.com/zalando/skipper" "github.com/zalando/skipper/filters" "log" ) func main() { log.Fatal(skipper.Run(skipper.Options{ Address: ":9090", RoutesFile: "routes.eskip", CustomPredicates: []routing.PredicateSpec{&randomSpec{}}, CustomFilters: []filters.Spec{&helloSpec{}}})) }
A file containing the routes, routes.eskip:
Random(.05) -> hello("fish?") -> "https://fish.example.org"; * -> hello("world") -> "https://www.example.org"
Start the custom router:
go run hello.go
Proxy Package Used Individually ¶
The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing.
Logging and Metrics ¶
Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots.
For details, see the 'logging' and 'metrics' packages documentation.
Performance Considerations ¶
The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure.
Benchmarks for the tree lookup can be run by:
go test github.com/zalando/skipper/routing -bench=Tree
In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
Types ¶
type Options ¶
type Options struct { // Network address that skipper should listen on. Address string // List of custom filter specifications. CustomFilters []filters.Spec // Urls of nodes in an etcd cluster, storing route definitions. EtcdUrls []string // Path prefix for skipper related data in the etcd storage. EtcdPrefix string // Timeout used for a single request when querying for updates // in etcd. This is independent of, and an addition to, // SourcePollTimeout. When not set, the internally defined 1s // is used. EtcdWaitTimeout time.Duration // Skip TLS certificate check for etcd connections. EtcdInsecure bool // If set enables skipper to generate based on ingress resources in kubernetes cluster Kubernetes bool // If set makes skipper authenticate with the kubernetes API server with service account assigned to the // skipper POD. // If omitted skipper will rely on kubectl proxy to authenticate with API server KubernetesInCluster bool // Kubernetes API base URL. Only makes sense if KubernetesInCluster is set to false. If omitted and // skipper is not running in-cluster, the default API URL will be used. KubernetesURL string // KubernetesHealthcheck, when Kubernetes ingress is set, indicates // whether an automatic healthcheck route should be generated. The // generated route will report healthyness when the Kubernetes API // calls are successful. The healthcheck endpoint is accessible from // internal IPs, with the path /kube-system/healthz. KubernetesHealthcheck bool // KubernetesHTTPSRedirect, when Kubernetes ingress is set, indicates // whether an automatic redirect route should be generated to redirect // HTTP requests to their HTTPS equivalent. The generated route will // match requests with the X-Forwarded-Proto and X-Forwarded-Port, // expected to be set by the load-balancer. KubernetesHTTPSRedirect bool // API endpoint of the Innkeeper service, storing route definitions. InnkeeperUrl string // Fixed token for innkeeper authentication. (Used mainly in // development environments.) InnkeeperAuthToken string // Filters to be prepended to each route loaded from Innkeeper. InnkeeperPreRouteFilters string // Filters to be appended to each route loaded from Innkeeper. InnkeeperPostRouteFilters string // Skip TLS certificate check for Innkeeper connections. InnkeeperInsecure bool // OAuth2 URL for Innkeeper authentication. OAuthUrl string // Directory where oauth credentials are stored, with file names: // client.json and user.json. OAuthCredentialsDir string // The whitespace separated list of OAuth2 scopes. OAuthScope string // File containing static route definitions. RoutesFile string // Polling timeout of the routing data sources. SourcePollTimeout time.Duration // Deprecated. See ProxyFlags. When used together with ProxyFlags, // the values will be combined with |. ProxyOptions proxy.Options // Flags controlling the proxy behavior. ProxyFlags proxy.Flags // Tells the proxy maximum how many idle connections can it keep // alive. IdleConnectionsPerHost int // Defines the time period of how often the idle connections maintained // by the proxy are closed. CloseIdleConnsPeriod time.Duration // Flag indicating to ignore trailing slashes in paths during route // lookup. IgnoreTrailingSlash bool // Priority routes that are matched against the requests before // the standard routes from the data clients. PriorityRoutes []proxy.PriorityRoute // Specifications of custom, user defined predicates. CustomPredicates []routing.PredicateSpec // Custom data clients to be used together with the default etcd and Innkeeper. CustomDataClients []routing.DataClient // Dev mode. Currently this flag disables prioritization of the // consumer side over the feeding side during the routing updates to // populate the updated routes faster. DevMode bool // Network address for the /metrics endpoint MetricsListener string // Skipper provides a set of metrics with different keys which are exposed via HTTP in JSON // You can customize those key names with your own prefix MetricsPrefix string // EnableProfile exposes profiling information on /profile of the // metrics listener. EnableProfile bool // Flag that enables reporting of the Go garbage collector statistics exported in debug.GCStats EnableDebugGcMetrics bool // Flag that enables reporting of the Go runtime statistics exported in runtime and specifically runtime.MemStats EnableRuntimeMetrics bool // If set, detailed response time metrics will be collected // for each route, additionally grouped by status and method. EnableServeRouteMetrics bool // If set, detailed response time metrics will be collected // for each host, additionally grouped by status and method. EnableServeHostMetrics bool // If set, detailed response time metrics will be collected // for each backend host EnableBackendHostMetrics bool // Output file for the application log. Default value: /dev/stderr. // // When /dev/stderr or /dev/stdout is passed in, it will be resolved // to os.Stderr or os.Stdout. // // Warning: passing an arbitrary file will try to open it append // on start and use it, or fail on start, but the current // implementation doesn't support any more proper handling // of temporary failures or log-rolling. ApplicationLogOutput string // Application log prefix. Default value: "[APP]". ApplicationLogPrefix string // Output file for the access log. Default value: /dev/stderr. // // When /dev/stderr or /dev/stdout is passed in, it will be resolved // to os.Stderr or os.Stdout. // // Warning: passing an arbitrary file will try to open for append // it on start and use it, or fail on start, but the current // implementation doesn't support any more proper handling // of temporary failures or log-rolling. AccessLogOutput string // Disables the access log. AccessLogDisabled bool DebugListener string //Path of certificate when using TLS CertPathTLS string //Path of key when using TLS KeyPathTLS string // Flush interval for upgraded Proxy connections BackendFlushInterval time.Duration // Experimental feature to handle protocol Upgrades for Websockets, SPDY, etc. ExperimentalUpgrade bool }
Options to start skipper.
Directories ¶
Path | Synopsis |
---|---|
cmd
|
|
eskip
This utility can be used to verify, print, update or delete eskip formatted routes from and to different data sources.
|
This utility can be used to verify, print, update or delete eskip formatted routes from and to different data sources. |
skipper
This command provides an executable version of skipper with the default set of filters.
|
This command provides an executable version of skipper with the default set of filters. |
dataclients
|
|
kubernetes
Package kubernetes implements Kubernetes Ingress support for Skipper.
|
Package kubernetes implements Kubernetes Ingress support for Skipper. |
Package eskip implements an in-memory representation of Skipper routes and a DSL for describing Skipper route expressions, route definitions and complete routing tables.
|
Package eskip implements an in-memory representation of Skipper routes and a DSL for describing Skipper route expressions, route definitions and complete routing tables. |
Package eskipfile implements a DataClient for reading the skipper route definitions from an eskip formatted file when opened.
|
Package eskipfile implements a DataClient for reading the skipper route definitions from an eskip formatted file when opened. |
Package etcd implements a DataClient for reading the skipper route definitions from an etcd service.
|
Package etcd implements a DataClient for reading the skipper route definitions from an etcd service. |
etcdtest
Package etcdtest implements an easy startup script to start a local etcd instance for testing purpose.
|
Package etcdtest implements an easy startup script to start a local etcd instance for testing purpose. |
Package filters contains definitions for skipper filtering and a default, built-in set of filters.
|
Package filters contains definitions for skipper filtering and a default, built-in set of filters. |
auth
Package auth implements the basic auth for headers based on "https://github.com/abbot/go-http-auth".
|
Package auth implements the basic auth for headers based on "https://github.com/abbot/go-http-auth". |
builtin
Package builtin provides a small, generic set of filters.
|
Package builtin provides a small, generic set of filters. |
cookie
Package cookie implements filters to append to requests or responses.
|
Package cookie implements filters to append to requests or responses. |
diag
Package diag provides a set of network throttling filters for diagnostic purpose.
|
Package diag provides a set of network throttling filters for diagnostic purpose. |
filtertest
Package filtertest implements mock versions of the Filter, Spec and FilterContext interfaces used during tests.
|
Package filtertest implements mock versions of the Filter, Spec and FilterContext interfaces used during tests. |
flowid
Package flowid implements a filter used for identifying incoming requests through their complete lifecycle for logging and monitoring or else.
|
Package flowid implements a filter used for identifying incoming requests through their complete lifecycle for logging and monitoring or else. |
serve
Package serve provides a wrapper of net/http.Handler to be used as a filter.
|
Package serve provides a wrapper of net/http.Handler to be used as a filter. |
tee
Package tee provides a unix-like tee feature for routing.
|
Package tee provides a unix-like tee feature for routing. |
Package innkeeper implements a DataClient for reading skipper route definitions from an Innkeeper service.
|
Package innkeeper implements a DataClient for reading skipper route definitions from an Innkeeper service. |
Package logging implements application log instrumentation and Apache combined access log.
|
Package logging implements application log instrumentation and Apache combined access log. |
Package metrics implements collection of common performance metrics.
|
Package metrics implements collection of common performance metrics. |
Package oauth implements an authentication client to be used with OAuth2 authentication services.
|
Package oauth implements an authentication client to be used with OAuth2 authentication services. |
packaging
|
|
cookie
Package cookie implements prediate to check parsed cookie headers by name and value.
|
Package cookie implements prediate to check parsed cookie headers by name and value. |
interval
Package interval implements custom predicates to match routes only during some period of time.
|
Package interval implements custom predicates to match routes only during some period of time. |
query
Package source implements a custom predicate to match routes based on the Query Params in URL It supports checking existence of query params and also checking whether query params value match to a given regular exp Examples: // Checking existence of a query param // matches http://example.org?bb=a&query=withvalue example1: QueryParam("query") -> "http://example.org"; // Even a query param without a value // matches http://example.org?bb=a&query= example1: QueryParam("query") -> "http://example.org"; // matches with regexp // matches http://example.org?bb=a&query=example example1: QueryParam("query", "^example$") -> "http://example.org"; // matches with regexp and multiple values of query param // matches http://example.org?bb=a&query=testing&query=example example1: QueryParam("query", "^example$") -> "http://example.org";
|
Package source implements a custom predicate to match routes based on the Query Params in URL It supports checking existence of query params and also checking whether query params value match to a given regular exp Examples: // Checking existence of a query param // matches http://example.org?bb=a&query=withvalue example1: QueryParam("query") -> "http://example.org"; // Even a query param without a value // matches http://example.org?bb=a&query= example1: QueryParam("query") -> "http://example.org"; // matches with regexp // matches http://example.org?bb=a&query=example example1: QueryParam("query", "^example$") -> "http://example.org"; // matches with regexp and multiple values of query param // matches http://example.org?bb=a&query=testing&query=example example1: QueryParam("query", "^example$") -> "http://example.org"; |
source
Package source implements a custom predicate to match routes based on the source IP of a request.
|
Package source implements a custom predicate to match routes based on the source IP of a request. |
traffic
Package traffic implements a predicate to control the matching probability for a given route by setting its weight.
|
Package traffic implements a predicate to control the matching probability for a given route by setting its weight. |
Package proxy implements an HTTP reverse proxy based on continuously updated skipper routing rules.
|
Package proxy implements an HTTP reverse proxy based on continuously updated skipper routing rules. |
Package routing implements matching of http requests to a continuously updatable set of skipper routes.
|
Package routing implements matching of http requests to a continuously updatable set of skipper routes. |
testdataclient
Package testdataclient provides a test implementation for the DataClient interface of the skipper/routing package.
|
Package testdataclient provides a test implementation for the DataClient interface of the skipper/routing package. |