script

package
v0.11.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 17, 2024 License: Apache-2.0 Imports: 12 Imported by: 0

README

script

script processor will run the user specified script to transform each asset that is emitted by the extractor. Currently, Tengo is the only supported script engine.

Refer Tengo documentation for script language syntax and supported functionality - https://github.com/d5/tengo/tree/v2.13.0#references . Tengo standard library modules can also be imported and used if required.

Usage

processors:
  - name: script
    config:
      engine: tengo
      script: |
        asset.owners = append(asset.owners || [], { name: "Big Mom", email: "big.mom@wholecakeisland.com" })

Inputs

Key Value Example Description Required?
engine string "tengo" Script engine. Only "tengo" is supported currently
script string asset.labels = merge({script_engine: "tengo"}, asset.labels) Tengo script.
Notes
  • Tengo is the only supported script engine.
  • Tengo's os stdlib module cannot be imported and used in the script.
Script Globals
asset

The asset record emitted by the extractor is made available in the script environment as asset. Any changes made to the asset will be reflected in the record that will be output from the script processor. The field names will be as per the Asset proto definition. Furthermore, the data structure for asset.data will be one of the following:

The data type for asset.data depends on the specific type of extractor.

Worked Example

Consider a FeatureTable asset with the following data:

{
  "urn": "urn:caramlstore:test-caramlstore:feature_table:avg_dispatch_arrival_time_10_mins",
  "name": "avg_dispatch_arrival_time_10_mins",
  "service": "caramlstore",
  "type": "feature_table",
  "data": {
    "@type": "type.googleapis.com/gotocompany.assets.v1beta2.FeatureTable",
    "namespace": "sauron",
    "entities": [
      {
        "name": "merchant_uuid",
        "labels": {"description": "merchant uuid", "value_type": "STRING"}
      }
    ],
    "features": [
      {
        "name": "ongoing_placed_and_waiting_acceptance_orders",
        "data_type": "INT64"
      },
      {"name": "ongoing_orders", "data_type": "INT64"},
      {"name": "merchant_avg_dispatch_arrival_time_10m", "data_type": "FLOAT"},
      {"name": "ongoing_accepted_orders", "data_type": "INT64"}
    ],
    "create_time": "2022-09-19T22:42:04Z",
    "update_time": "2022-09-21T13:23:02Z"
  },
  "lineage": {
    "upstreams": [
      {
        "urn": "urn:kafka:int-dagstream-kafka.yonkou.io:topic:GO_FOOD-delay-allocation-merchant-feature-10m-log",
        "service": "kafka",
        "type": "topic"
      }
    ]
  }
}

With the following contrived requirements to transform the asset:

  • Add a label to the asset - "script_engine": "tengo.
  • Add a label to each entity. Ex: "catch_phrase": "You talkin' to me?".
  • Set an EntityName for each feature based on the following mapping:
    • ongoing_placed_and_waiting_acceptance_orders: customer_orders
    • ongoing_orders: customer_orders
    • merchant_avg_dispatch_arrival_time_10m: merchant_driver
    • ongoing_accepted_orders: merchant_orders
  • Set the owner as {Name: Big Mom, Email: big.mom@wholecakeisland.com}.
  • For each lineage upstream, if the service is Kafka, apply a string replace op on the URN - {.yonkou.io => }.
  • Add 1 day to the update_time timestamp present under asset.data.

The script to apply the transformations above:

text := import("text")
times := import("times")

merge := func(m1, m2) {
    for k, v in m2 {
        m1[k] = v
    }
    return m1
}

asset.labels = merge({script_engine: "tengo"}, asset.labels)

for e in asset.data.entities {
    e.labels = merge({catch_phrase: "You talkin' to me?"}, e.labels)
}

for f in asset.data.features {
    if f.name == "ongoing_placed_and_waiting_acceptance_orders" || f.name == "ongoing_orders" {
        f.entity_name = "customer_orders"
    } else if f.name == "merchant_avg_dispatch_arrival_time_10m" {
        f.entity_name = "merchant_driver"
    } else if f.name == "ongoing_accepted_orders" {
        f.entity_name = "merchant_orders"
    }
}

asset.owners = append(asset.owners || [], { name: "Big Mom", email: "big.mom@wholecakeisland.com" })

for u in asset.lineage.upstreams {
    u.urn = u.service != "kafka" ? u.urn : text.replace(u.urn, ".yonkou.io", "", -1)
}

update_time := times.parse("2006-01-02T15:04:05Z07:00", asset.data.update_time)
asset.data.update_time = times.add_date(update_time, 0, 0, 1)

With this script, the output from the processor would have the following asset:

{
  "urn": "urn:caramlstore:test-caramlstore:feature_table:avg_dispatch_arrival_time_10_mins",
  "name": "avg_dispatch_arrival_time_10_mins",
  "service": "caramlstore",
  "type": "feature_table",
  "data": {
    "@type": "type.googleapis.com/gotocompany.assets.v1beta2.FeatureTable",
    "namespace": "sauron",
    "entities": [
      {
        "name": "merchant_uuid",
        "labels": {
          "catch_phrase": "You talkin' to me?",
          "description": "merchant uuid",
          "value_type": "STRING"
        }
      }
    ],
    "features": [
      {
        "name": "ongoing_placed_and_waiting_acceptance_orders",
        "data_type": "INT64",
        "entity_name": "customer_orders"
      },
      {
        "name": "ongoing_orders",
        "data_type": "INT64",
        "entity_name": "customer_orders"
      },
      {
        "name": "merchant_avg_dispatch_arrival_time_10m",
        "data_type": "FLOAT",
        "entity_name": "merchant_driver"
      },
      {
        "name": "ongoing_accepted_orders",
        "data_type": "INT64",
        "entity_name": "merchant_orders"
      }
    ],
    "create_time": "2022-09-19T22:42:04Z",
    "update_time": "2022-09-22T13:23:02Z"
  },
  "owners": [
    {"name": "Big Mom", "email": "big.mom@wholecakeisland.com"}
  ],
  "lineage": {
    "upstreams": [
      {
        "urn": "urn:kafka:int-dagstream-kafka:topic:GO_FOOD-delay-allocation-merchant-feature-10m-log",
        "service": "kafka",
        "type": "topic"
      }
    ]
  },
  "labels": {"script_engine": "tengo"}
}

Contributing

Refer to the contribution guidelines for information on contributing to this module.

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type Config

type Config struct {
	Engine string `mapstructure:"engine" validate:"required,oneof=tengo"`
	Script string `mapstructure:"script" validate:"required"`
}

type Processor

type Processor struct {
	plugins.BasePlugin
	// contains filtered or unexported fields
}

Processor executes the configured Tengo script to transform the given asset record.

func New

func New(logger log.Logger) *Processor

New create a new processor

func (*Processor) Init

func (p *Processor) Init(ctx context.Context, config plugins.Config) error

func (*Processor) Process

func (p *Processor) Process(ctx context.Context, src models.Record) (models.Record, error)

Process processes the data

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL