atomic

package
v0.0.0-...-1092257 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 9, 2015 License: BSD-3-Clause Imports: 1 Imported by: 0

Documentation

Overview

Package atomic provides low-level atomic memory primitives useful for implementing synchronization algorithms.

These functions require great care to be used correctly. Except for special, low-level applications, synchronization is better done with channels or the facilities of the sync package. Share memory by communicating; don't communicate by sharing memory.

The swap operation, implemented by the SwapT functions, is the atomic equivalent of:

old = *addr
*addr = new
return old

The compare-and-swap operation, implemented by the CompareAndSwapT functions, is the atomic equivalent of:

if *addr == old {
	*addr = new
	return true
}
return false

The add operation, implemented by the AddT functions, is the atomic equivalent of:

*addr += delta
return *addr

The load and store operations, implemented by the LoadT and StoreT functions, are the atomic equivalents of "return *addr" and "*addr = val".

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

func AddInt32

func AddInt32(addr *int32, delta int32) (new int32)

AddInt32 atomically adds delta to *addr and returns the new value.

func AddInt64

func AddInt64(addr *int64, delta int64) (new int64)

AddInt64 atomically adds delta to *addr and returns the new value.

func AddUint32

func AddUint32(addr *uint32, delta uint32) (new uint32)

AddUint32 atomically adds delta to *addr and returns the new value. To subtract a signed positive constant value c from x, do AddUint32(&x, ^uint32(c-1)). In particular, to decrement x, do AddUint32(&x, ^uint32(0)).

func AddUint64

func AddUint64(addr *uint64, delta uint64) (new uint64)

AddUint64 atomically adds delta to *addr and returns the new value. To subtract a signed positive constant value c from x, do AddUint64(&x, ^uint64(c-1)). In particular, to decrement x, do AddUint64(&x, ^uint64(0)).

func AddUintptr

func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)

AddUintptr atomically adds delta to *addr and returns the new value.

func CompareAndSwapInt32

func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)

CompareAndSwapInt32 executes the compare-and-swap operation for an int32 value.

func CompareAndSwapInt64

func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)

CompareAndSwapInt64 executes the compare-and-swap operation for an int64 value.

func CompareAndSwapPointer

func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)

CompareAndSwapPointer executes the compare-and-swap operation for a unsafe.Pointer value.

func CompareAndSwapUint32

func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)

CompareAndSwapUint32 executes the compare-and-swap operation for a uint32 value.

func CompareAndSwapUint64

func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)

CompareAndSwapUint64 executes the compare-and-swap operation for a uint64 value.

func CompareAndSwapUintptr

func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)

CompareAndSwapUintptr executes the compare-and-swap operation for a uintptr value.

func LoadInt32

func LoadInt32(addr *int32) (val int32)

LoadInt32 atomically loads *addr.

func LoadInt64

func LoadInt64(addr *int64) (val int64)

LoadInt64 atomically loads *addr.

func LoadPointer

func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)

LoadPointer atomically loads *addr.

func LoadUint32

func LoadUint32(addr *uint32) (val uint32)

LoadUint32 atomically loads *addr.

func LoadUint64

func LoadUint64(addr *uint64) (val uint64)

LoadUint64 atomically loads *addr.

func LoadUintptr

func LoadUintptr(addr *uintptr) (val uintptr)

LoadUintptr atomically loads *addr.

func StoreInt32

func StoreInt32(addr *int32, val int32)

StoreInt32 atomically stores val into *addr.

func StoreInt64

func StoreInt64(addr *int64, val int64)

StoreInt64 atomically stores val into *addr.

func StorePointer

func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)

StorePointer atomically stores val into *addr.

func StoreUint32

func StoreUint32(addr *uint32, val uint32)

StoreUint32 atomically stores val into *addr.

func StoreUint64

func StoreUint64(addr *uint64, val uint64)

StoreUint64 atomically stores val into *addr.

func StoreUintptr

func StoreUintptr(addr *uintptr, val uintptr)

StoreUintptr atomically stores val into *addr.

func SwapInt32

func SwapInt32(addr *int32, new int32) (old int32)

SwapInt32 atomically stores new into *addr and returns the previous *addr value.

func SwapInt64

func SwapInt64(addr *int64, new int64) (old int64)

SwapInt64 atomically stores new into *addr and returns the previous *addr value.

func SwapPointer

func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)

SwapPointer atomically stores new into *addr and returns the previous *addr value.

func SwapUint32

func SwapUint32(addr *uint32, new uint32) (old uint32)

SwapUint32 atomically stores new into *addr and returns the previous *addr value.

func SwapUint64

func SwapUint64(addr *uint64, new uint64) (old uint64)

SwapUint64 atomically stores new into *addr and returns the previous *addr value.

func SwapUintptr

func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)

SwapUintptr atomically stores new into *addr and returns the previous *addr value.

Types

type Value

type Value struct {
	// contains filtered or unexported fields
}

A Value provides an atomic load and store of a consistently typed value. Values can be created as part of other data structures. The zero value for a Value returns nil from Load. Once Store has been called, a Value must not be copied.

Example (Config)

The following example shows how to use Value for periodic program config updates and propagation of the changes to worker goroutines.

var config Value // holds current server configuration
// Create initial config value and store into config.
config.Store(loadConfig())
go func() {
	// Reload config every 10 seconds
	// and update config value with the new version.
	for {
		time.Sleep(10 * time.Second)
		config.Store(loadConfig())
	}
}()
// Create worker goroutines that handle incoming requests
// using the latest config value.
for i := 0; i < 10; i++ {
	go func() {
		for r := range requests() {
			c := config.Load()
			// Handle request r using config c.
			_, _ = r, c
		}
	}()
}
Output:

Example (ReadMostly)

The following example shows how to maintain a scalable frequently read, but infrequently updated data structure using copy-on-write idiom.

type Map map[string]string
var m Value
m.Store(make(Map))
var mu sync.Mutex // used only by writers
// read function can be used to read the data without further synchronization
read := func(key string) (val string) {
	m1 := m.Load().(Map)
	return m1[key]
}
// insert function can be used to update the data without further synchronization
insert := func(key, val string) {
	mu.Lock() // synchronize with other potential writers
	defer mu.Unlock()
	m1 := m.Load().(Map) // load current value of the data structure
	m2 := make(Map)      // create a new value
	for k, v := range m1 {
		m2[k] = v // copy all data from the current object to the new one
	}
	m2[key] = val // do the update that we need
	m.Store(m2)   // atomically replace the current object with the new one
	// At this point all new readers start working with the new version.
	// The old version will be garbage collected once the existing readers
	// (if any) are done with it.
}
_, _ = read, insert
Output:

func (*Value) Load

func (v *Value) Load() (x interface{})

Load returns the value set by the most recent Store. It returns nil if there has been no call to Store for this Value.

func (*Value) Store

func (v *Value) Store(x interface{})

Store sets the value of the Value to x. All calls to Store for a given Value must use values of the same concrete type. Store of an inconsistent type panics, as does Store(nil).

Notes

Bugs

  • On x86-32, the 64-bit functions use instructions unavailable before the Pentium MMX.

    On non-Linux ARM, the 64-bit functions use instructions unavailable before the ARMv6k core.

    On both ARM and x86-32, it is the caller's responsibility to arrange for 64-bit alignment of 64-bit words accessed atomically. The first word in a global variable or in an allocated struct or slice can be relied upon to be 64-bit aligned.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL