Documentation ¶
Overview ¶
Package cel defines the top-level interface for the Common Expression Language (CEL).
CEL is a non-Turing complete expression language designed to parse, check, and evaluate expressions against user-defined environments.
Example ¶
// Create the CEL environment with declarations for the input attributes and // the desired extension functions. In many cases the desired functionality will // be present in a built-in function. decls := Declarations( // Identifiers used within this expression. decls.NewVar("i", decls.String), decls.NewVar("you", decls.String), // Function to generate a greeting from one person to another. // i.greet(you) decls.NewFunction("greet", decls.NewInstanceOverload("string_greet_string", []*exprpb.Type{decls.String, decls.String}, decls.String))) e, err := NewEnv(decls) if err != nil { log.Fatalf("environment creation error: %s\n", err) } // Compile the expression. ast, iss := e.Compile("i.greet(you)") if iss.Err() != nil { log.Fatalln(iss.Err()) } // Create the program. funcs := Functions( &functions.Overload{ Operator: "string_greet_string", Binary: func(lhs ref.Val, rhs ref.Val) ref.Val { return types.String( fmt.Sprintf("Hello %s! Nice to meet you, I'm %s.\n", rhs, lhs)) }}) prg, err := e.Program(ast, funcs) if err != nil { log.Fatalf("program creation error: %s\n", err) } // Evaluate the program against some inputs. Note: the details return is not used. out, _, err := prg.Eval(map[string]interface{}{ // Native values are converted to CEL values under the covers. "i": "CEL", // Values may also be lazily supplied. "you": func() ref.Val { return types.String("world") }, }) if err != nil { log.Fatalf("runtime error: %s\n", err) } fmt.Println(out)
Output: Hello world! Nice to meet you, I'm CEL.
Example (GlobalOverload) ¶
ExampleGlobalOverload demonstrates how to define global overload function.
// Create the CEL environment with declarations for the input attributes and // the desired extension functions. In many cases the desired functionality will // be present in a built-in function. decls := Declarations( // Identifiers used within this expression. decls.NewVar("i", decls.String), decls.NewVar("you", decls.String), // Function to generate shake_hands between two people. // shake_hands(i,you) decls.NewFunction("shake_hands", decls.NewOverload("shake_hands_string_string", []*exprpb.Type{decls.String, decls.String}, decls.String))) e, err := NewEnv(decls) if err != nil { log.Fatalf("environment creation error: %s\n", err) } // Compile the expression. ast, iss := e.Compile(`shake_hands(i,you)`) if iss.Err() != nil { log.Fatalln(iss.Err()) } // Create the program. funcs := Functions( &functions.Overload{ Operator: "shake_hands_string_string", Binary: func(lhs ref.Val, rhs ref.Val) ref.Val { s1, ok := lhs.(types.String) if !ok { return types.ValOrErr(lhs, "unexpected type '%v' passed to shake_hands", lhs.Type()) } s2, ok := rhs.(types.String) if !ok { return types.ValOrErr(rhs, "unexpected type '%v' passed to shake_hands", rhs.Type()) } return types.String( fmt.Sprintf("%s and %s are shaking hands.\n", s1, s2)) }}) prg, err := e.Program(ast, funcs) if err != nil { log.Fatalf("program creation error: %s\n", err) } // Evaluate the program against some inputs. Note: the details return is not used. out, _, err := prg.Eval(map[string]interface{}{ "i": "CEL", "you": func() ref.Val { return types.String("world") }, }) if err != nil { log.Fatalf("runtime error: %s\n", err) } fmt.Println(out)
Output: CEL and world are shaking hands.
Index ¶
- func AstToCheckedExpr(a *Ast) (*exprpb.CheckedExpr, error)
- func AstToParsedExpr(a *Ast) (*exprpb.ParsedExpr, error)
- func AstToString(a *Ast) (string, error)
- func AttributePattern(varName string) *interpreter.AttributePattern
- func EstimateCost(p Program) (min, max int64)
- func FormatType(t *exprpb.Type) string
- func NoVars() interpreter.Activation
- func PartialVars(vars interface{}, unknowns ...*interpreter.AttributePattern) (interpreter.PartialActivation, error)
- func RefValueToValue(res ref.Val) (*exprpb.Value, error)
- func ValueToRefValue(adapter ref.TypeAdapter, v *exprpb.Value) (ref.Val, error)
- type Ast
- type Env
- func (e *Env) Check(ast *Ast) (*Ast, *Issues)
- func (e *Env) Compile(txt string) (*Ast, *Issues)
- func (e *Env) CompileSource(src common.Source) (*Ast, *Issues)
- func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator) (checker.CostEstimate, error)
- func (e *Env) Extend(opts ...EnvOption) (*Env, error)
- func (e *Env) HasFeature(flag int) bool
- func (e *Env) Parse(txt string) (*Ast, *Issues)
- func (e *Env) ParseSource(src common.Source) (*Ast, *Issues)
- func (e *Env) Program(ast *Ast, opts ...ProgramOption) (Program, error)
- func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error)
- func (e *Env) TypeAdapter() ref.TypeAdapter
- func (e *Env) TypeProvider() ref.TypeProvider
- func (e *Env) UnknownVars() interpreter.PartialActivation
- type EnvOption
- func Abbrevs(qualifiedNames ...string) EnvOption
- func ClearMacros() EnvOption
- func Container(name string) EnvOption
- func CrossTypeNumericComparisons(enabled bool) EnvOption
- func CustomTypeAdapter(adapter ref.TypeAdapter) EnvOption
- func CustomTypeProvider(provider ref.TypeProvider) EnvOption
- func Declarations(decls ...*exprpb.Decl) EnvOption
- func DeclareContextProto(descriptor protoreflect.MessageDescriptor) EnvOption
- func EnableMacroCallTracking() EnvOption
- func HomogeneousAggregateLiterals() EnvOption
- func Lib(l Library) EnvOption
- func Macros(macros ...parser.Macro) EnvOption
- func StdLib() EnvOption
- func TypeDescs(descs ...interface{}) EnvOption
- func Types(addTypes ...interface{}) EnvOption
- type EvalDetails
- type EvalOption
- type Issues
- type Library
- type Program
- type ProgramOption
- func CostLimit(costLimit uint64) ProgramOption
- func CostTracking(costEstimator interpreter.ActualCostEstimator) ProgramOption
- func CustomDecorator(dec interpreter.InterpretableDecorator) ProgramOption
- func EvalOptions(opts ...EvalOption) ProgramOption
- func Functions(funcs ...*functions.Overload) ProgramOption
- func Globals(vars interface{}) ProgramOption
- func InterruptCheckFrequency(checkFrequency uint) ProgramOption
- func OptimizeRegex(regexOptimizations ...*interpreter.RegexOptimization) ProgramOption
- type Source
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func AstToCheckedExpr ¶
func AstToCheckedExpr(a *Ast) (*exprpb.CheckedExpr, error)
AstToCheckedExpr converts an Ast to an protobuf CheckedExpr value.
If the Ast.IsChecked() returns false, this conversion method will return an error.
func AstToParsedExpr ¶
func AstToParsedExpr(a *Ast) (*exprpb.ParsedExpr, error)
AstToParsedExpr converts an Ast to an protobuf ParsedExpr value.
func AstToString ¶ added in v0.3.0
AstToString converts an Ast back to a string if possible.
Note, the conversion may not be an exact replica of the original expression, but will produce a string that is semantically equivalent and whose textual representation is stable.
func AttributePattern ¶ added in v0.4.0
func AttributePattern(varName string) *interpreter.AttributePattern
AttributePattern returns an AttributePattern that matches a top-level variable. The pattern is mutable, and its methods support the specification of one or more qualifier patterns.
For example, the AttributePattern(`a`).QualString(`b`) represents a variable access `a` with a string field or index qualification `b`. This pattern will match Attributes `a`, and `a.b`, but not `a.c`.
When using a CEL expression within a container, e.g. a package or namespace, the variable name in the pattern must match the qualified name produced during the variable namespace resolution. For example, when variable `a` is declared within an expression whose container is `ns.app`, the fully qualified variable name may be `ns.app.a`, `ns.a`, or `a` per the CEL namespace resolution rules. Pick the fully qualified variable name that makes sense within the container as the AttributePattern `varName` argument.
See the interpreter.AttributePattern and interpreter.AttributeQualifierPattern for more info about how to create and manipulate AttributePattern values.
func EstimateCost ¶ added in v0.6.0
EstimateCost returns the heuristic cost interval for the program.
func FormatType ¶ added in v0.7.1
FormatType converts a type message into a string representation.
func PartialVars ¶ added in v0.4.0
func PartialVars(vars interface{}, unknowns ...*interpreter.AttributePattern) (interpreter.PartialActivation, error)
PartialVars returns a PartialActivation which contains variables and a set of AttributePattern values that indicate variables or parts of variables whose value are not yet known.
The `vars` value may either be an interpreter.Activation or any valid input to the interpreter.NewActivation call.
func RefValueToValue ¶ added in v0.10.0
RefValueToValue converts between ref.Val and api.expr.Value. The result Value is the serialized proto form. The ref.Val must not be error or unknown.
func ValueToRefValue ¶ added in v0.10.0
ValueToRefValue converts between exprpb.Value and ref.Val.
Types ¶
type Ast ¶
type Ast struct {
// contains filtered or unexported fields
}
Ast representing the checked or unchecked expression, its source, and related metadata such as source position information.
func CheckedExprToAst ¶
func CheckedExprToAst(checkedExpr *exprpb.CheckedExpr) *Ast
CheckedExprToAst converts a checked expression proto message to an Ast.
func CheckedExprToAstWithSource ¶ added in v0.9.0
func CheckedExprToAstWithSource(checkedExpr *exprpb.CheckedExpr, src common.Source) *Ast
CheckedExprToAstWithSource converts a checked expression proto message to an Ast, using the provided Source as the textual contents.
In general the source is not necessary unless the AST has been modified between the `Parse` and `Check` calls as an `Ast` created from the `Parse` step will carry the source through future calls.
Prefer CheckedExprToAst if loading expressions from storage.
func ParsedExprToAst ¶
func ParsedExprToAst(parsedExpr *exprpb.ParsedExpr) *Ast
ParsedExprToAst converts a parsed expression proto message to an Ast.
func ParsedExprToAstWithSource ¶ added in v0.9.0
func ParsedExprToAstWithSource(parsedExpr *exprpb.ParsedExpr, src common.Source) *Ast
ParsedExprToAstWithSource converts a parsed expression proto message to an Ast, using the provided Source as the textual contents.
In general you only need this if you need to recheck a previously checked expression, or if you need to separately check a subset of an expression.
Prefer ParsedExprToAst if loading expressions from storage.
func (*Ast) ResultType ¶
ResultType returns the output type of the expression if the Ast has been type-checked, else returns decls.Dyn as the parse step cannot infer the type.
func (*Ast) Source ¶
Source returns a view of the input used to create the Ast. This source may be complete or constructed from the SourceInfo.
func (*Ast) SourceInfo ¶
func (ast *Ast) SourceInfo() *exprpb.SourceInfo
SourceInfo returns character offset and newling position information about expression elements.
type Env ¶
type Env struct { Container *containers.Container // contains filtered or unexported fields }
Env encapsulates the context necessary to perform parsing, type checking, or generation of evaluable programs for different expressions.
func NewCustomEnv ¶ added in v0.4.0
NewCustomEnv creates a custom program environment which is not automatically configured with the standard library of functions and macros documented in the CEL spec.
The purpose for using a custom environment might be for subsetting the standard library produced by the cel.StdLib() function. Subsetting CEL is a core aspect of its design that allows users to limit the compute and memory impact of a CEL program by controlling the functions and macros that may appear in a given expression.
See the EnvOption helper functions for the options that can be used to configure the environment.
func NewEnv ¶
NewEnv creates a program environment configured with the standard library of CEL functions and macros. The Env value returned can parse and check any CEL program which builds upon the core features documented in the CEL specification.
See the EnvOption helper functions for the options that can be used to configure the environment.
func (*Env) Check ¶
Check performs type-checking on the input Ast and yields a checked Ast and/or set of Issues.
Checking has failed if the returned Issues value and its Issues.Err() value are non-nil. Issues should be inspected if they are non-nil, but may not represent a fatal error.
It is possible to have both non-nil Ast and Issues values returned from this call: however, the mere presence of an Ast does not imply that it is valid for use.
func (*Env) Compile ¶ added in v0.4.0
Compile combines the Parse and Check phases CEL program compilation to produce an Ast and associated issues.
If an error is encountered during parsing the Compile step will not continue with the Check phase. If non-error issues are encountered during Parse, they may be combined with any issues discovered during Check.
Note, for parse-only uses of CEL use Parse.
func (*Env) CompileSource ¶ added in v0.4.0
CompileSource combines the Parse and Check phases CEL program compilation to produce an Ast and associated issues.
If an error is encountered during parsing the CompileSource step will not continue with the Check phase. If non-error issues are encountered during Parse, they may be combined with any issues discovered during Check.
Note, for parse-only uses of CEL use Parse.
func (*Env) EstimateCost ¶ added in v0.10.0
func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator) (checker.CostEstimate, error)
EstimateCost estimates the cost of a type checked CEL expression using the length estimates of input data and extension functions provided by estimator.
func (*Env) Extend ¶ added in v0.3.2
Extend the current environment with additional options to produce a new Env.
Note, the extended Env value should not share memory with the original. It is possible, however, that a CustomTypeAdapter or CustomTypeProvider options could provide values which are mutable. To ensure separation of state between extended environments either make sure the TypeAdapter and TypeProvider are immutable, or that their underlying implementations are based on the ref.TypeRegistry which provides a Copy method which will be invoked by this method.
func (*Env) HasFeature ¶ added in v0.5.1
HasFeature checks whether the environment enables the given feature flag, as enumerated in options.go.
func (*Env) Parse ¶
Parse parses the input expression value `txt` to a Ast and/or a set of Issues.
This form of Parse creates a common.Source value for the input `txt` and forwards to the ParseSource method.
func (*Env) ParseSource ¶ added in v0.4.0
ParseSource parses the input source to an Ast and/or set of Issues.
Parsing has failed if the returned Issues value and its Issues.Err() value is non-nil. Issues should be inspected if they are non-nil, but may not represent a fatal error.
It is possible to have both non-nil Ast and Issues values returned from this call; however, the mere presence of an Ast does not imply that it is valid for use.
func (*Env) Program ¶
func (e *Env) Program(ast *Ast, opts ...ProgramOption) (Program, error)
Program generates an evaluable instance of the Ast within the environment (Env).
func (*Env) ResidualAst ¶ added in v0.4.0
func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error)
ResidualAst takes an Ast and its EvalDetails to produce a new Ast which only contains the attribute references which are unknown.
Residual expressions are beneficial in a few scenarios:
- Optimizing constant expression evaluations away. - Indexing and pruning expressions based on known input arguments. - Surfacing additional requirements that are needed in order to complete an evaluation. - Sharing the evaluation of an expression across multiple machines/nodes.
For example, if an expression targets a 'resource' and 'request' attribute and the possible values for the resource are known, a PartialActivation could mark the 'request' as an unknown interpreter.AttributePattern and the resulting ResidualAst would be reduced to only the parts of the expression that reference the 'request'.
Note, the expression ids within the residual AST generated through this method have no correlation to the expression ids of the original AST.
See the PartialVars helper for how to construct a PartialActivation.
TODO: Consider adding an option to generate a Program.Residual to avoid round-tripping to an Ast format and then Program again.
func (*Env) TypeAdapter ¶ added in v0.2.0
func (e *Env) TypeAdapter() ref.TypeAdapter
TypeAdapter returns the `ref.TypeAdapter` configured for the environment.
func (*Env) TypeProvider ¶ added in v0.2.0
func (e *Env) TypeProvider() ref.TypeProvider
TypeProvider returns the `ref.TypeProvider` configured for the environment.
func (*Env) UnknownVars ¶ added in v0.4.0
func (e *Env) UnknownVars() interpreter.PartialActivation
UnknownVars returns an interpreter.PartialActivation which marks all variables declared in the Env as unknown AttributePattern values.
Note, the UnknownVars will behave the same as an interpreter.EmptyActivation unless the PartialAttributes option is provided as a ProgramOption.
type EnvOption ¶
EnvOption is a functional interface for configuring the environment.
func Abbrevs ¶ added in v0.6.0
Abbrevs configures a set of simple names as abbreviations for fully-qualified names.
An abbreviation (abbrev for short) is a simple name that expands to a fully-qualified name. Abbreviations can be useful when working with variables, functions, and especially types from multiple namespaces:
// CEL object construction qual.pkg.version.ObjTypeName{ field: alt.container.ver.FieldTypeName{value: ...} }
Only one the qualified names above may be used as the CEL container, so at least one of these references must be a long qualified name within an otherwise short CEL program. Using the following abbreviations, the program becomes much simpler:
// CEL Go option Abbrevs("qual.pkg.version.ObjTypeName", "alt.container.ver.FieldTypeName") // Simplified Object construction ObjTypeName{field: FieldTypeName{value: ...}}
There are a few rules for the qualified names and the simple abbreviations generated from them: - Qualified names must be dot-delimited, e.g. `package.subpkg.name`. - The last element in the qualified name is the abbreviation. - Abbreviations must not collide with each other. - The abbreviation must not collide with unqualified names in use.
Abbreviations are distinct from container-based references in the following important ways:
- Abbreviations must expand to a fully-qualified name.
- Expanded abbreviations do not participate in namespace resolution.
- Abbreviation expansion is done instead of the container search for a matching identifier.
- Containers follow C++ namespace resolution rules with searches from the most qualified name to the least qualified name.
- Container references within the CEL program may be relative, and are resolved to fully qualified names at either type-check time or program plan time, whichever comes first.
If there is ever a case where an identifier could be in both the container and as an abbreviation, the abbreviation wins as this will ensure that the meaning of a program is preserved between compilations even as the container evolves.
func ClearMacros ¶
func ClearMacros() EnvOption
ClearMacros options clears all parser macros.
Clearing macros will ensure CEL expressions can only contain linear evaluation paths, as comprehensions such as `all` and `exists` are enabled only via macros.
func Container ¶
Container sets the container for resolving variable names. Defaults to an empty container.
If all references within an expression are relative to a protocol buffer package, then specifying a container of `google.type` would make it possible to write expressions such as `Expr{expression: 'a < b'}` instead of having to write `google.type.Expr{...}`.
func CrossTypeNumericComparisons ¶ added in v0.10.0
CrossTypeNumericComparisons makes it possible to compare across numeric types, e.g. double < int
func CustomTypeAdapter ¶ added in v0.2.0
func CustomTypeAdapter(adapter ref.TypeAdapter) EnvOption
CustomTypeAdapter swaps the default ref.TypeAdapter implementation with a custom one.
Note: This option must be specified before the Types and TypeDescs options when used together.
func CustomTypeProvider ¶
func CustomTypeProvider(provider ref.TypeProvider) EnvOption
CustomTypeProvider swaps the default ref.TypeProvider implementation with a custom one.
Note: This option must be specified before the Types and TypeDescs options when used together.
func Declarations ¶
Declarations option extends the declaration set configured in the environment.
Note: Declarations will by default be appended to the pre-existing declaration set configured for the environment. The NewEnv call builds on top of the standard CEL declarations. For a purely custom set of declarations use NewCustomEnv.
func DeclareContextProto ¶ added in v0.8.0
func DeclareContextProto(descriptor protoreflect.MessageDescriptor) EnvOption
DeclareContextProto returns an option to extend CEL environment with declarations from the given context proto. Each field of the proto defines a variable of the same name in the environment. https://github.com/google/cel-spec/blob/master/doc/langdef.md#evaluation-environment
func EnableMacroCallTracking ¶ added in v0.10.0
func EnableMacroCallTracking() EnvOption
EnableMacroCallTracking ensures that call expressions which are replaced by macros are tracked in the `SourceInfo` of parsed and checked expressions.
func HomogeneousAggregateLiterals ¶ added in v0.2.0
func HomogeneousAggregateLiterals() EnvOption
HomogeneousAggregateLiterals option ensures that list and map literal entry types must agree during type-checking.
Note, it is still possible to have heterogeneous aggregates when provided as variables to the expression, as well as via conversion of well-known dynamic types, or with unchecked expressions.
func Lib ¶ added in v0.4.0
Lib creates an EnvOption out of a Library, allowing libraries to be provided as functional args, and to be linked to each other.
func Macros ¶
Macros option extends the macro set configured in the environment.
Note: This option must be specified after ClearMacros if used together.
func StdLib ¶ added in v0.4.0
func StdLib() EnvOption
StdLib returns an EnvOption for the standard library of CEL functions and macros.
func TypeDescs ¶ added in v0.2.0
func TypeDescs(descs ...interface{}) EnvOption
TypeDescs adds type declarations from any protoreflect.FileDescriptor, protoregistry.Files, google.protobuf.FileDescriptorProto or google.protobuf.FileDescriptorSet provided.
Note that messages instantiated from these descriptors will be *dynamicpb.Message values rather than the concrete message type.
TypeDescs are hermetic to a single Env object, but may be copied to other Env values via extension or by re-using the same EnvOption with another NewEnv() call.
func Types ¶
func Types(addTypes ...interface{}) EnvOption
Types adds one or more type declarations to the environment, allowing for construction of type-literals whose definitions are included in the common expression built-in set.
The input types may either be instances of `proto.Message` or `ref.Type`. Any other type provided to this option will result in an error.
Well-known protobuf types within the `google.protobuf.*` package are included in the standard environment by default.
Note: This option must be specified after the CustomTypeProvider option when used together.
type EvalDetails ¶
type EvalDetails struct {
// contains filtered or unexported fields
}
EvalDetails holds additional information observed during the Eval() call.
func (*EvalDetails) ActualCost ¶ added in v0.10.0
func (ed *EvalDetails) ActualCost() *uint64
ActualCost returns the tracked cost through the course of execution when `CostTracking` is enabled. Otherwise, returns nil if the cost was not enabled.
func (*EvalDetails) State ¶
func (ed *EvalDetails) State() interpreter.EvalState
State of the evaluation, non-nil if the OptTrackState or OptExhaustiveEval is specified within EvalOptions.
type EvalOption ¶
type EvalOption int
EvalOption indicates an evaluation option that may affect the evaluation behavior or information in the output result.
const ( // OptTrackState will cause the runtime to return an immutable EvalState value in the Result. OptTrackState EvalOption = 1 << iota // OptExhaustiveEval causes the runtime to disable short-circuits and track state. OptExhaustiveEval EvalOption = 1<<iota | OptTrackState // OptOptimize precomputes functions and operators with constants as arguments at program // creation time. It also pre-compiles regex pattern constants passed to 'matches', reports any compilation errors // at program creation and uses the compiled regex pattern for all 'matches' function invocations. // This flag is useful when the expression will be evaluated repeatedly against // a series of different inputs. OptOptimize EvalOption = 1 << iota // OptPartialEval enables the evaluation of a partial state where the input data that may be // known to be missing, either as top-level variables, or somewhere within a variable's object // member graph. // // By itself, OptPartialEval does not change evaluation behavior unless the input to the // Program Eval() call is created via PartialVars(). OptPartialEval EvalOption = 1 << iota // OptTrackCost enables the runtime cost calculation while validation and return cost within evalDetails // cost calculation is available via func ActualCost() OptTrackCost EvalOption = 1 << iota )
type Issues ¶
type Issues struct {
// contains filtered or unexported fields
}
Issues defines methods for inspecting the error details of parse and check calls.
Note: in the future, non-fatal warnings and notices may be inspectable via the Issues struct.
func (*Issues) Append ¶ added in v0.4.0
Append collects the issues from another Issues struct into a new Issues object.
type Library ¶ added in v0.4.0
type Library interface { // CompileOptions returns a collection of funcitional options for configuring the Parse / Check // environment. CompileOptions() []EnvOption // ProgramOptions returns a collection of functional options which should be included in every // Program generated from the Env.Program() call. ProgramOptions() []ProgramOption }
Library provides a collection of EnvOption and ProgramOption values used to confiugre a CEL environment for a particular use case or with a related set of functionality.
Note, the ProgramOption values provided by a library are expected to be static and not vary between calls to Env.Program(). If there is a need for such dynamic configuration, prefer to configure these options outside the Library and within the Env.Program() call directly.
type Program ¶
type Program interface { // Eval returns the result of an evaluation of the Ast and environment against the input vars. // // The vars value may either be an `interpreter.Activation` or a `map[string]interface{}`. // // If the `OptTrackState`, `OptTrackCost` or `OptExhaustiveEval` flags are used, the `details` response will // be non-nil. Given this caveat on `details`, the return state from evaluation will be: // // * `val`, `details`, `nil` - Successful evaluation of a non-error result. // * `val`, `details`, `err` - Successful evaluation to an error result. // * `nil`, `details`, `err` - Unsuccessful evaluation. // // An unsuccessful evaluation is typically the result of a series of incompatible `EnvOption` // or `ProgramOption` values used in the creation of the evaluation environment or executable // program. Eval(interface{}) (ref.Val, *EvalDetails, error) // ContextEval evaluates the program with a set of input variables and a context object in order // to support cancellation and timeouts. This method must be used in conjunction with the // InterruptCheckFrequency() option for cancellation interrupts to be impact evaluation. // // The vars value may eitehr be an `interpreter.Activation` or `map[string]interface{}`. // // The output contract for `ContextEval` is otherwise identical to the `Eval` method. ContextEval(context.Context, interface{}) (ref.Val, *EvalDetails, error) }
Program is an evaluable view of an Ast.
type ProgramOption ¶
type ProgramOption func(p *prog) (*prog, error)
ProgramOption is a functional interface for configuring evaluation bindings and behaviors.
func CostLimit ¶ added in v0.10.0
func CostLimit(costLimit uint64) ProgramOption
CostLimit enables cost tracking and sets configures program evaluation to exit early with a "runtime cost limit exceeded" error if the runtime cost exceeds the costLimit. The CostLimit is a metric that corresponds to the number and estimated expense of operations performed while evaluating an expression. It is indicative of CPU usage, not memory usage.
func CostTracking ¶ added in v0.10.0
func CostTracking(costEstimator interpreter.ActualCostEstimator) ProgramOption
CostTracking enables cost tracking and registers a ActualCostEstimator that can optionally provide a runtime cost estimate for any function calls.
func CustomDecorator ¶ added in v0.6.0
func CustomDecorator(dec interpreter.InterpretableDecorator) ProgramOption
CustomDecorator appends an InterpreterDecorator to the program.
InterpretableDecorators can be used to inspect, alter, or replace the Program plan.
func EvalOptions ¶
func EvalOptions(opts ...EvalOption) ProgramOption
EvalOptions sets one or more evaluation options which may affect the evaluation or Result.
func Functions ¶
func Functions(funcs ...*functions.Overload) ProgramOption
Functions adds function overloads that extend or override the set of CEL built-ins.
func Globals ¶
func Globals(vars interface{}) ProgramOption
Globals sets the global variable values for a given program. These values may be shadowed by variables with the same name provided to the Eval() call.
The vars value may either be an `interpreter.Activation` instance or a `map[string]interface{}`.
func InterruptCheckFrequency ¶ added in v0.10.0
func InterruptCheckFrequency(checkFrequency uint) ProgramOption
InterruptCheckFrequency configures the number of iterations within a comprehension to evaluate before checking whether the function evaluation has been interrupted.
func OptimizeRegex ¶ added in v0.10.0
func OptimizeRegex(regexOptimizations ...*interpreter.RegexOptimization) ProgramOption
OptimizeRegex provides a way to replace the InterpretableCall for regex functions. This can be used to compile regex string constants at program creation time and report any errors and then use the compiled regex for all regex function invocations.