Documentation ¶
Overview ¶
Package ppc64 implements a PPC64 assembler that assembles Go asm into the corresponding PPC64 instructions as defined by the Power ISA 3.0B.
This document provides information on how to write code in Go assembler for PPC64, focusing on the differences between Go and PPC64 assembly language. It assumes some knowledge of PPC64 assembler. The original implementation of PPC64 in Go defined many opcodes that are different from PPC64 opcodes, but updates to the Go assembly language used mnemonics that are mostly similar if not identical to the PPC64 mneumonics, such as VMX and VSX instructions. Not all detail is included here; refer to the Power ISA document if interested in more detail.
Starting with Go 1.15 the Go objdump supports the -gnu option, which provides a side by side view of the Go assembler and the PPC64 assembler output. This is extremely helpful in determining what final PPC64 assembly is generated from the corresponding Go assembly.
In the examples below, the Go assembly is on the left, PPC64 assembly on the right.
1. Operand ordering
In Go asm, the last operand (right) is the target operand, but with PPC64 asm, the first operand (left) is the target. The order of the remaining operands is not consistent: in general opcodes with 3 operands that perform math or logical operations have their operands in reverse order. Opcodes for vector instructions and those with more than 3 operands usually have operands in the same order except for the target operand, which is first in PPC64 asm and last in Go asm.
Example:
ADD R3, R4, R5 <=> add r5, r4, r3
2. Constant operands
In Go asm, an operand that starts with '$' indicates a constant value. If the instruction using the constant has an immediate version of the opcode, then an immediate value is used with the opcode if possible.
Example:
ADD $1, R3, R4 <=> addi r4, r3, 1
3. Opcodes setting condition codes
In PPC64 asm, some instructions other than compares have variations that can set the condition code where meaningful. This is indicated by adding '.' to the end of the PPC64 instruction. In Go asm, these instructions have 'CC' at the end of the opcode. The possible settings of the condition code depend on the instruction. CR0 is the default for fixed-point instructions; CR1 for floating point; CR6 for vector instructions.
Example:
ANDCC R3, R4, R5 <=> and. r5, r3, r4 (set CR0)
4. Loads and stores from memory
In Go asm, opcodes starting with 'MOV' indicate a load or store. When the target is a memory reference, then it is a store; when the target is a register and the source is a memory reference, then it is a load.
MOV{B,H,W,D} variations identify the size as byte, halfword, word, doubleword.
Adding 'Z' to the opcode for a load indicates zero extend; if omitted it is sign extend. Adding 'U' to a load or store indicates an update of the base register with the offset. Adding 'BR' to an opcode indicates byte-reversed load or store, or the order opposite of the expected endian order. If 'BR' is used then zero extend is assumed.
Memory references n(Ra) indicate the address in Ra + n. When used with an update form of an opcode, the value in Ra is incremented by n.
Memory references (Ra+Rb) or (Ra)(Rb) indicate the address Ra + Rb, used by indexed loads or stores. Both forms are accepted. When used with an update then the base register is updated by the value in the index register.
Examples:
MOVD (R3), R4 <=> ld r4,0(r3) MOVW (R3), R4 <=> lwa r4,0(r3) MOVWZU 4(R3), R4 <=> lwzu r4,4(r3) MOVWZ (R3+R5), R4 <=> lwzx r4,r3,r5 MOVHZ (R3), R4 <=> lhz r4,0(r3) MOVHU 2(R3), R4 <=> lhau r4,2(r3) MOVBZ (R3), R4 <=> lbz r4,0(r3) MOVD R4,(R3) <=> std r4,0(r3) MOVW R4,(R3) <=> stw r4,0(r3) MOVW R4,(R3+R5) <=> stwx r4,r3,r5 MOVWU R4,4(R3) <=> stwu r4,4(r3) MOVH R4,2(R3) <=> sth r4,2(r3) MOVBU R4,(R3)(R5) <=> stbux r4,r3,r5
4. Compares
When an instruction does a compare or other operation that might result in a condition code, then the resulting condition is set in a field of the condition register. The condition register consists of 8 4-bit fields named CR0 - CR7. When a compare instruction identifies a CR then the resulting condition is set in that field to be read by a later branch or isel instruction. Within these fields, bits are set to indicate less than, greater than, or equal conditions.
Once an instruction sets a condition, then a subsequent branch, isel or other instruction can read the condition field and operate based on the bit settings.
Examples:
CMP R3, R4 <=> cmp r3, r4 (CR0 assumed) CMP R3, R4, CR1 <=> cmp cr1, r3, r4
Note that the condition register is the target operand of compare opcodes, so the remaining operands are in the same order for Go asm and PPC64 asm. When CR0 is used then it is implicit and does not need to be specified.
5. Branches
Many branches are represented as a form of the BC instruction. There are other extended opcodes to make it easier to see what type of branch is being used.
The following is a brief description of the BC instruction and its commonly used operands.
BC op1, op2, op3
op1: type of branch 16 -> bctr (branch on ctr) 12 -> bcr (branch if cr bit is set) 8 -> bcr+bctr (branch on ctr and cr values) 4 -> bcr != 0 (branch if specified cr bit is not set) There are more combinations but these are the most common. op2: condition register field and condition bit This contains an immediate value indicating which condition field to read and what bits to test. Each field is 4 bits long with CR0 at bit 0, CR1 at bit 4, etc. The value is computed as 4*CR+condition with these condition values: 0 -> LT 1 -> GT 2 -> EQ 3 -> OVG Thus 0 means test CR0 for LT, 5 means CR1 for GT, 30 means CR7 for EQ. op3: branch target
Examples:
BC 12, 0, target <=> blt cr0, target BC 12, 2, target <=> beq cr0, target BC 12, 5, target <=> bgt cr1, target BC 12, 30, target <=> beq cr7, target BC 4, 6, target <=> bne cr1, target BC 4, 1, target <=> ble cr1, target The following extended opcodes are available for ease of use and readability: BNE CR2, target <=> bne cr2, target BEQ CR4, target <=> beq cr4, target BLT target <=> blt target (cr0 default) BGE CR7, target <=> bge cr7, target
Refer to the ISA for more information on additional values for the BC instruction, how to handle OVG information, and much more.
5. Align directive
Starting with Go 1.12, Go asm supports the PCALIGN directive, which indicates that the next instruction should be aligned to the specified value. Currently 8 and 16 are the only supported values, and a maximum of 2 NOPs will be added to align the code. That means in the case where the code is aligned to 4 but PCALIGN $16 is at that location, the code will only be aligned to 8 to avoid adding 3 NOPs.
The purpose of this directive is to improve performance for cases like loops where better alignment (8 or 16 instead of 4) might be helpful. This directive exists in PPC64 assembler and is frequently used by PPC64 assembler writers.
PCALIGN $16 PCALIGN $8
By default, functions in Go are aligned to 16 bytes, as is the case in all other compilers for PPC64. If there is a PCALIGN directive requesting alignment greater than 16, then the alignment of the containing function must be promoted to that same alignment or greater.
The behavior of PCALIGN is changed in Go 1.21 to be more straightforward to ensure the alignment required for some instructions in power10. The acceptable values are 8, 16, 32 and 64, and the use of those values will always provide the specified alignment.
6. Shift instructions
The simple scalar shifts on PPC64 expect a shift count that fits in 5 bits for 32-bit values or 6 bit for 64-bit values. If the shift count is a constant value greater than the max then the assembler sets it to the max for that size (31 for 32 bit values, 63 for 64 bit values). If the shift count is in a register, then only the low 5 or 6 bits of the register will be used as the shift count. The Go compiler will add appropriate code to compare the shift value to achieve the correct result, and the assembler does not add extra checking.
Examples:
SRAD $8,R3,R4 => sradi r4,r3,8 SRD $8,R3,R4 => rldicl r4,r3,56,8 SLD $8,R3,R4 => rldicr r4,r3,8,55 SRAW $16,R4,R5 => srawi r5,r4,16 SRW $40,R4,R5 => rlwinm r5,r4,0,0,31 SLW $12,R4,R5 => rlwinm r5,r4,12,0,19
Some non-simple shifts have operands in the Go assembly which don't map directly onto operands in the PPC64 assembly. When an operand in a shift instruction in the Go assembly is a bit mask, that mask is represented as a start and end bit in the PPC64 assembly instead of a mask. See the ISA for more detail on these types of shifts. Here are a few examples:
RLWMI $7,R3,$65535,R6 => rlwimi r6,r3,7,16,31 RLDMI $0,R4,$7,R6 => rldimi r6,r4,0,61
More recently, Go opcodes were added which map directly onto the PPC64 opcodes. It is recommended to use the newer opcodes to avoid confusion.
RLDICL $0,R4,$15,R6 => rldicl r6,r4,0,15 RLDICR $0,R4,$15,R6 => rldicr r6.r4,0,15
Register naming ¶
1. Special register usage in Go asm
The following registers should not be modified by user Go assembler code.
R0: Go code expects this register to contain the value 0. R1: Stack pointer R2: TOC pointer when compiled with -shared or -dynlink (a.k.a position independent code) R13: TLS pointer R30: g (goroutine)
Register names:
Rn is used for general purpose registers. (0-31) Fn is used for floating point registers. (0-31) Vn is used for vector registers. Slot 0 of Vn overlaps with Fn. (0-31) VSn is used for vector-scalar registers. V0-V31 overlap with VS32-VS63. (0-63) CTR represents the count register. LR represents the link register. CR represents the condition register CRn represents a condition register field. (0-7) CRnLT represents CR bit 0 of CR field n. (0-7) CRnGT represents CR bit 1 of CR field n. (0-7) CRnEQ represents CR bit 2 of CR field n. (0-7) CRnSO represents CR bit 3 of CR field n. (0-7)
GOPPC64 >= power10 and its effects on Go asm ¶
When GOPPC64=power10 is used to compile a Go program for ppc64le/linux, MOV*, FMOV*, and ADD opcodes which would require 2 or more machine instructions to emulate a 32 bit constant, or symbolic reference are implemented using prefixed instructions.
A user who wishes granular control over the generated machine code is advised to use Go asm opcodes which explicitly translate to one PPC64 machine instruction. Most common opcodes are supported.
Some examples of how pseudo-op assembly changes with GOPPC64:
Go asm GOPPC64 <= power9 GOPPC64 >= power10 MOVD mypackage·foo(SB), R3 addis r2, r3, ... pld r3, ... ld r3, r3, ... MOVD 131072(R3), R4 addis r31, r4, 2 pld r4, 131072(r3) ld r4, 0(R3) ADD $131073, R3 lis r31, 2 paddi r3, r3, 131073 addi r31, 1 add r3,r31,r3 MOVD $131073, R3 lis r3, 2 pli r3, 131073 addi r3, 1 MOVD $mypackage·foo(SB), R3 addis r2, r3, ... pla r3, ... addi r3, r3, ...
Index ¶
- Constants
- Variables
- func AOP_DQ(op uint32, xt uint32, a uint32, b uint32) uint32
- func AOP_EXTSWSLI(op uint32, a uint32, s uint32, sh uint32) uint32
- func AOP_IIRR(op uint32, d uint32, a uint32, sbit uint32, simm uint32) uint32
- func AOP_IR(op uint32, d uint32, simm uint32) uint32
- func AOP_IRR(op uint32, d uint32, a uint32, simm uint32) uint32
- func AOP_IRRR(op uint32, d uint32, a uint32, b uint32, simm uint32) uint32
- func AOP_ISEL(op uint32, t uint32, a uint32, b uint32, bc uint32) uint32
- func AOP_PFX_00_8LS(r, ie uint32) uint32
- func AOP_PFX_10_MLS(r, ie uint32) uint32
- func AOP_RLDIC(op uint32, a uint32, s uint32, sh uint32, m uint32) uint32
- func AOP_RR(op uint32, d uint32, a uint32) uint32
- func AOP_RRR(op uint32, d uint32, a uint32, b uint32) uint32
- func AOP_RRRI(op uint32, d uint32, a uint32, b uint32, c uint32) uint32
- func AOP_RRRR(op uint32, d uint32, a uint32, b uint32, c uint32) uint32
- func AOP_VIRR(op uint32, d uint32, a uint32, simm uint32) uint32
- func AOP_XX1(op uint32, r uint32, a uint32, b uint32) uint32
- func AOP_XX2(op uint32, xt uint32, a uint32, xb uint32) uint32
- func AOP_XX3(op uint32, xt uint32, xa uint32, xb uint32) uint32
- func AOP_XX3I(op uint32, xt uint32, xa uint32, xb uint32, c uint32) uint32
- func AOP_XX4(op uint32, xt uint32, xa uint32, xb uint32, xc uint32) uint32
- func AOP_Z23I(op uint32, d uint32, a uint32, b uint32, c uint32) uint32
- func ConstantToCRbit(c int64) (int16, bool)
- func DRconv(a int) string
- func LOP_IRR(op uint32, a uint32, s uint32, uimm uint32) uint32
- func LOP_RRR(op uint32, a uint32, s uint32, b uint32) uint32
- func NeedTOCpointer(ctxt *obj.Link) bool
- func OPCC(o uint32, xo uint32, rc uint32) uint32
- func OPDQ(o uint32, xo uint32, oe uint32) uint32
- func OPMD(o, xo, rc uint32) uint32
- func OPVC(o uint32, xo uint32, oe uint32, rc uint32) uint32
- func OPVCC(o uint32, xo uint32, oe uint32, rc uint32) uint32
- func OPVX(o uint32, xo uint32, oe uint32, rc uint32) uint32
- func OPVXX1(o uint32, xo uint32, oe uint32) uint32
- func OPVXX2(o uint32, xo uint32, oe uint32) uint32
- func OPVXX2VA(o uint32, xo uint32, oe uint32) uint32
- func OPVXX3(o uint32, xo uint32, oe uint32) uint32
- func OPVXX4(o uint32, xo uint32, oe uint32) uint32
- func OP_BC(op uint32, bo uint32, bi uint32, bd uint32, aa uint32) uint32
- func OP_BCR(op uint32, bo uint32, bi uint32) uint32
- func OP_BR(op uint32, li uint32, aa uint32) uint32
- func OP_RLW(op uint32, a uint32, s uint32, sh uint32, mb uint32, me uint32) uint32
- type Optab
- type PrefixableOptab
Constants ¶
const ( NSNAME = 8 NSYM = 50 NREG = 32 /* number of general registers */ NFREG = 32 /* number of floating point registers */ )
* powerpc 64
const ( /* RBasePPC64 = 4096 */ /* R0=4096 ... R31=4127 */ REG_R0 = obj.RBasePPC64 + iota REG_R1 REG_R2 REG_R3 REG_R4 REG_R5 REG_R6 REG_R7 REG_R8 REG_R9 REG_R10 REG_R11 REG_R12 REG_R13 REG_R14 REG_R15 REG_R16 REG_R17 REG_R18 REG_R19 REG_R20 REG_R21 REG_R22 REG_R23 REG_R24 REG_R25 REG_R26 REG_R27 REG_R28 REG_R29 REG_R30 REG_R31 // CR bits. Use Book 1, chapter 2 naming for bits. Keep aligned to 32 REG_CR0LT REG_CR0GT REG_CR0EQ REG_CR0SO REG_CR1LT REG_CR1GT REG_CR1EQ REG_CR1SO REG_CR2LT REG_CR2GT REG_CR2EQ REG_CR2SO REG_CR3LT REG_CR3GT REG_CR3EQ REG_CR3SO REG_CR4LT REG_CR4GT REG_CR4EQ REG_CR4SO REG_CR5LT REG_CR5GT REG_CR5EQ REG_CR5SO REG_CR6LT REG_CR6GT REG_CR6EQ REG_CR6SO REG_CR7LT REG_CR7GT REG_CR7EQ REG_CR7SO /* Align FPR and VSR vectors such that when masked with 0x3F they produce an equivalent VSX register. */ /* F0=4160 ... F31=4191 */ REG_F0 REG_F1 REG_F2 REG_F3 REG_F4 REG_F5 REG_F6 REG_F7 REG_F8 REG_F9 REG_F10 REG_F11 REG_F12 REG_F13 REG_F14 REG_F15 REG_F16 REG_F17 REG_F18 REG_F19 REG_F20 REG_F21 REG_F22 REG_F23 REG_F24 REG_F25 REG_F26 REG_F27 REG_F28 REG_F29 REG_F30 REG_F31 /* V0=4192 ... V31=4223 */ REG_V0 REG_V1 REG_V2 REG_V3 REG_V4 REG_V5 REG_V6 REG_V7 REG_V8 REG_V9 REG_V10 REG_V11 REG_V12 REG_V13 REG_V14 REG_V15 REG_V16 REG_V17 REG_V18 REG_V19 REG_V20 REG_V21 REG_V22 REG_V23 REG_V24 REG_V25 REG_V26 REG_V27 REG_V28 REG_V29 REG_V30 REG_V31 /* VS0=4224 ... VS63=4287 */ REG_VS0 REG_VS1 REG_VS2 REG_VS3 REG_VS4 REG_VS5 REG_VS6 REG_VS7 REG_VS8 REG_VS9 REG_VS10 REG_VS11 REG_VS12 REG_VS13 REG_VS14 REG_VS15 REG_VS16 REG_VS17 REG_VS18 REG_VS19 REG_VS20 REG_VS21 REG_VS22 REG_VS23 REG_VS24 REG_VS25 REG_VS26 REG_VS27 REG_VS28 REG_VS29 REG_VS30 REG_VS31 REG_VS32 REG_VS33 REG_VS34 REG_VS35 REG_VS36 REG_VS37 REG_VS38 REG_VS39 REG_VS40 REG_VS41 REG_VS42 REG_VS43 REG_VS44 REG_VS45 REG_VS46 REG_VS47 REG_VS48 REG_VS49 REG_VS50 REG_VS51 REG_VS52 REG_VS53 REG_VS54 REG_VS55 REG_VS56 REG_VS57 REG_VS58 REG_VS59 REG_VS60 REG_VS61 REG_VS62 REG_VS63 REG_CR0 REG_CR1 REG_CR2 REG_CR3 REG_CR4 REG_CR5 REG_CR6 REG_CR7 // MMA accumulator registers, these shadow VSR 0-31 // e.g MMAx shadows VSRx*4-VSRx*4+3 or // MMA0 shadows VSR0-VSR3 REG_A0 REG_A1 REG_A2 REG_A3 REG_A4 REG_A5 REG_A6 REG_A7 REG_MSR REG_FPSCR REG_CR REG_SPECIAL = REG_CR0 REG_CRBIT0 = REG_CR0LT // An alias for a Condition Register bit 0 REG_SPR0 = obj.RBasePPC64 + 1024 // first of 1024 registers REG_XER = REG_SPR0 + 1 REG_LR = REG_SPR0 + 8 REG_CTR = REG_SPR0 + 9 REGZERO = REG_R0 /* set to zero */ REGSP = REG_R1 REGSB = REG_R2 REGRET = REG_R3 REGARG = -1 /* -1 disables passing the first argument in register */ REGRT1 = REG_R20 /* reserved for runtime, duffzero and duffcopy */ REGRT2 = REG_R21 /* reserved for runtime, duffcopy */ REGMIN = REG_R7 /* register variables allocated from here to REGMAX */ REGCTXT = REG_R11 /* context for closures */ REGTLS = REG_R13 /* C ABI TLS base pointer */ REGMAX = REG_R27 REGEXT = REG_R30 /* external registers allocated from here down */ REGG = REG_R30 /* G */ REGTMP = REG_R31 /* used by the linker */ FREGRET = REG_F0 FREGMIN = REG_F17 /* first register variable */ FREGMAX = REG_F26 /* last register variable for 9g only */ FREGEXT = REG_F26 /* first external register */ )
const ( /* mark flags */ LABEL = 1 << 0 LEAF = 1 << 1 FLOAT = 1 << 2 BRANCH = 1 << 3 LOAD = 1 << 4 FCMP = 1 << 5 SYNC = 1 << 6 LIST = 1 << 7 FOLL = 1 << 8 NOSCHED = 1 << 9 PFX_X64B = 1 << 10 // A prefixed instruction crossing a 64B boundary )
const ( BI_CR0 = 0 BI_CR1 = 4 BI_CR2 = 8 BI_CR3 = 12 BI_CR4 = 16 BI_CR5 = 20 BI_CR6 = 24 BI_CR7 = 28 BI_LT = 0 BI_GT = 1 BI_EQ = 2 BI_FU = 3 )
const ( BO_ALWAYS = 20 // branch unconditionally BO_BCTR = 16 // decrement ctr, branch on ctr != 0 BO_NOTBCTR = 18 // decrement ctr, branch on ctr == 0 BO_BCR = 12 // branch on cr value BO_BCRBCTR = 8 // decrement ctr, branch on ctr != 0 and cr value BO_NOTBCR = 4 // branch on not cr value )
const ( C_COND_LT = iota // 0 result is negative C_COND_GT // 1 result is positive C_COND_EQ // 2 result is zero C_COND_SO // 3 summary overflow or FP compare w/ NaN )
const ( C_NONE = iota C_REGP /* An even numbered gpr which can be used a gpr pair argument */ C_REG /* Any gpr register */ C_FREGP /* An even numbered fpr which can be used a fpr pair argument */ C_FREG /* Any fpr register */ C_VREG /* Any vector register */ C_VSREGP /* An even numbered vsx register which can be used as a vsx register pair argument */ C_VSREG /* Any vector-scalar register */ C_CREG /* The condition registor (CR) */ C_CRBIT /* A single bit of the CR register (0-31) */ C_SPR /* special processor register */ C_AREG /* MMA accumulator register */ C_ZCON /* The constant zero */ C_U1CON /* 1 bit unsigned constant */ C_U2CON /* 2 bit unsigned constant */ C_U3CON /* 3 bit unsigned constant */ C_U4CON /* 4 bit unsigned constant */ C_U5CON /* 5 bit unsigned constant */ C_U8CON /* 8 bit unsigned constant */ C_U15CON /* 15 bit unsigned constant */ C_S16CON /* 16 bit signed constant */ C_U16CON /* 16 bit unsigned constant */ C_32S16CON /* Any 32 bit constant of the form 0x....0000, signed or unsigned */ C_32CON /* Any constant which fits into 32 bits. Can be signed or unsigned */ C_S34CON /* 34 bit signed constant */ C_64CON /* Any constant which fits into 64 bits. Can be signed or unsigned */ C_SACON /* $n(REG) where n <= int16 */ C_LACON /* $n(REG) where n <= int32 */ C_DACON /* $n(REG) where n <= int64 */ C_SBRA /* A short offset argument to a branching instruction */ C_LBRA /* A long offset argument to a branching instruction */ C_LBRAPIC /* Like C_LBRA, but requires an extra NOP for potential TOC restore by the linker. */ C_ZOREG /* An $0+reg memory op */ C_SOREG /* An $n+reg memory arg where n is a 16 bit signed offset */ C_LOREG /* An $n+reg memory arg where n is a 32 bit signed offset */ C_XOREG /* An reg+reg memory arg */ C_FPSCR /* The fpscr register */ C_XER /* The xer, holds the carry bit */ C_LR /* The link register */ C_CTR /* The count register */ C_ANY /* Any argument */ C_GOK /* A non-matched argument */ C_ADDR /* A symbolic memory location */ C_TLS_LE /* A thread local, local-exec, type memory arg */ C_TLS_IE /* A thread local, initial-exec, type memory arg */ C_TEXTSIZE /* An argument with Type obj.TYPE_TEXTSIZE */ C_NCLASS /* must be the last */ /* Aliased names which should be cleaned up, or integrated. */ C_SCON = C_U15CON C_UCON = C_32S16CON C_ADDCON = C_S16CON C_ANDCON = C_U16CON C_LCON = C_32CON /* Aliased names which may be generated by ppc64map for the optab. */ C_S3216CON = C_32S16CON // TODO: these should be treated differently (e.g xoris vs addis) C_U3216CON = C_32S16CON C_S32CON = C_32CON C_U32CON = C_32CON )
const ( AADD = obj.ABasePPC64 + obj.A_ARCHSPECIFIC + iota AADDCC AADDIS AADDV AADDVCC AADDC AADDCCC AADDCV AADDCVCC AADDME AADDMECC AADDMEVCC AADDMEV AADDE AADDECC AADDEVCC AADDEV AADDZE AADDZECC AADDZEVCC AADDZEV AADDEX AAND AANDCC AANDN AANDNCC AANDISCC ABC ABCL ABEQ ABGE // not LT = G/E/U ABGT ABLE // not GT = L/E/U ABLT ABNE // not EQ = L/G/U ABVC // Branch if float not unordered (also branch on not summary overflow) ABVS // Branch if float unordered (also branch on summary overflow) ABDNZ // Decrement CTR, and branch if CTR != 0 ABDZ // Decrement CTR, and branch if CTR == 0 ACMP ACMPU ACMPEQB ACNTLZW ACNTLZWCC ACRAND ACRANDN ACREQV ACRNAND ACRNOR ACROR ACRORN ACRXOR ADIVW ADIVWCC ADIVWVCC ADIVWV ADIVWU ADIVWUCC ADIVWUVCC ADIVWUV AMODUD AMODUW AMODSD AMODSW AEQV AEQVCC AEXTSB AEXTSBCC AEXTSH AEXTSHCC AFABS AFABSCC AFADD AFADDCC AFADDS AFADDSCC AFCMPO AFCMPU AFCTIW AFCTIWCC AFCTIWZ AFCTIWZCC AFDIV AFDIVCC AFDIVS AFDIVSCC AFMADD AFMADDCC AFMADDS AFMADDSCC AFMOVD AFMOVDCC AFMOVDU AFMOVS AFMOVSU AFMOVSX AFMOVSZ AFMSUB AFMSUBCC AFMSUBS AFMSUBSCC AFMUL AFMULCC AFMULS AFMULSCC AFNABS AFNABSCC AFNEG AFNEGCC AFNMADD AFNMADDCC AFNMADDS AFNMADDSCC AFNMSUB AFNMSUBCC AFNMSUBS AFNMSUBSCC AFRSP AFRSPCC AFSUB AFSUBCC AFSUBS AFSUBSCC AISEL AMOVMW ALBAR ALHAR ALSW ALWAR ALWSYNC AMOVDBR AMOVWBR AMOVB AMOVBU AMOVBZ AMOVBZU AMOVH AMOVHBR AMOVHU AMOVHZ AMOVHZU AMOVW AMOVWU AMOVFL AMOVCRFS AMTFSB0 AMTFSB0CC AMTFSB1 AMTFSB1CC AMULHW AMULHWCC AMULHWU AMULHWUCC AMULLW AMULLWCC AMULLWVCC AMULLWV ANAND ANANDCC ANEG ANEGCC ANEGVCC ANEGV ANOR ANORCC AOR AORCC AORN AORNCC AORIS AREM AREMU ARFI ARLWMI ARLWMICC ARLWNM ARLWNMCC ACLRLSLWI ASLW ASLWCC ASRW ASRAW ASRAWCC ASRWCC ASTBCCC ASTHCCC ASTSW ASTWCCC ASUB ASUBCC ASUBVCC ASUBC ASUBCCC ASUBCV ASUBCVCC ASUBME ASUBMECC ASUBMEVCC ASUBMEV ASUBV ASUBE ASUBECC ASUBEV ASUBEVCC ASUBZE ASUBZECC ASUBZEVCC ASUBZEV ASYNC AXOR AXORCC AXORIS ADCBF ADCBI ADCBST ADCBT ADCBTST ADCBZ AEIEIO AICBI AISYNC APTESYNC ATLBIE ATLBIEL ATLBSYNC ATW ASYSCALL AWORD ARFCI AFCPSGN AFCPSGNCC /* optional on 32-bit */ AFRES AFRESCC AFRIM AFRIMCC AFRIP AFRIPCC AFRIZ AFRIZCC AFRIN AFRINCC AFRSQRTE AFRSQRTECC AFSEL AFSELCC AFSQRT AFSQRTCC AFSQRTS AFSQRTSCC ACNTLZD ACNTLZDCC ACMPW /* CMP with L=0 */ ACMPWU ACMPB AFTDIV AFTSQRT ADIVD ADIVDCC ADIVDE ADIVDECC ADIVDEU ADIVDEUCC ADIVDVCC ADIVDV ADIVDU ADIVDUCC ADIVDUVCC ADIVDUV AEXTSW AEXTSWCC /* AFCFIW; AFCFIWCC */ AFCFID AFCFIDCC AFCFIDU AFCFIDUCC AFCFIDS AFCFIDSCC AFCTID AFCTIDCC AFCTIDZ AFCTIDZCC ALDAR AMOVD AMOVDU AMOVWZ AMOVWZU AMULHD AMULHDCC AMULHDU AMULHDUCC AMULLD AMULLDCC AMULLDVCC AMULLDV ARFID ARLDMI ARLDMICC ARLDIMI ARLDIMICC ARLDC ARLDCCC ARLDCR ARLDCRCC ARLDICR ARLDICRCC ARLDCL ARLDCLCC ARLDICL ARLDICLCC ARLDIC ARLDICCC ACLRLSLDI AROTL AROTLW ASLBIA ASLBIE ASLBMFEE ASLBMFEV ASLBMTE ASLD ASLDCC ASRD ASRAD ASRADCC ASRDCC AEXTSWSLI AEXTSWSLICC ASTDCCC ATD ASETB /* 64-bit pseudo operation */ ADWORD AREMD AREMDU /* more 64-bit operations */ AHRFID APOPCNTD APOPCNTW APOPCNTB ACNTTZW ACNTTZWCC ACNTTZD ACNTTZDCC ACOPY APASTECC ADARN AMADDHD AMADDHDU AMADDLD /* Vector */ ALVEBX ALVEHX ALVEWX ALVX ALVXL ALVSL ALVSR ASTVEBX ASTVEHX ASTVEWX ASTVX ASTVXL AVAND AVANDC AVNAND AVOR AVORC AVNOR AVXOR AVEQV AVADDUM AVADDUBM AVADDUHM AVADDUWM AVADDUDM AVADDUQM AVADDCU AVADDCUQ AVADDCUW AVADDUS AVADDUBS AVADDUHS AVADDUWS AVADDSS AVADDSBS AVADDSHS AVADDSWS AVADDE AVADDEUQM AVADDECUQ AVSUBUM AVSUBUBM AVSUBUHM AVSUBUWM AVSUBUDM AVSUBUQM AVSUBCU AVSUBCUQ AVSUBCUW AVSUBUS AVSUBUBS AVSUBUHS AVSUBUWS AVSUBSS AVSUBSBS AVSUBSHS AVSUBSWS AVSUBE AVSUBEUQM AVSUBECUQ AVMULESB AVMULOSB AVMULEUB AVMULOUB AVMULESH AVMULOSH AVMULEUH AVMULOUH AVMULESW AVMULOSW AVMULEUW AVMULOUW AVMULUWM AVPMSUM AVPMSUMB AVPMSUMH AVPMSUMW AVPMSUMD AVMSUMUDM AVR AVRLB AVRLH AVRLW AVRLD AVS AVSLB AVSLH AVSLW AVSL AVSLO AVSRB AVSRH AVSRW AVSR AVSRO AVSLD AVSRD AVSA AVSRAB AVSRAH AVSRAW AVSRAD AVSOI AVSLDOI AVCLZ AVCLZB AVCLZH AVCLZW AVCLZD AVPOPCNT AVPOPCNTB AVPOPCNTH AVPOPCNTW AVPOPCNTD AVCMPEQ AVCMPEQUB AVCMPEQUBCC AVCMPEQUH AVCMPEQUHCC AVCMPEQUW AVCMPEQUWCC AVCMPEQUD AVCMPEQUDCC AVCMPGT AVCMPGTUB AVCMPGTUBCC AVCMPGTUH AVCMPGTUHCC AVCMPGTUW AVCMPGTUWCC AVCMPGTUD AVCMPGTUDCC AVCMPGTSB AVCMPGTSBCC AVCMPGTSH AVCMPGTSHCC AVCMPGTSW AVCMPGTSWCC AVCMPGTSD AVCMPGTSDCC AVCMPNEZB AVCMPNEZBCC AVCMPNEB AVCMPNEBCC AVCMPNEH AVCMPNEHCC AVCMPNEW AVCMPNEWCC AVPERM AVPERMXOR AVPERMR AVBPERMQ AVBPERMD AVSEL AVSPLTB AVSPLTH AVSPLTW AVSPLTISB AVSPLTISH AVSPLTISW AVCIPH AVCIPHER AVCIPHERLAST AVNCIPH AVNCIPHER AVNCIPHERLAST AVSBOX AVSHASIGMA AVSHASIGMAW AVSHASIGMAD AVMRGEW AVMRGOW AVCLZLSBB AVCTZLSBB /* VSX */ ALXV ALXVL ALXVLL ALXVD2X ALXVW4X ALXVH8X ALXVB16X ALXVX ALXVDSX ASTXV ASTXVL ASTXVLL ASTXVD2X ASTXVW4X ASTXVH8X ASTXVB16X ASTXVX ALXSDX ASTXSDX ALXSIWAX ALXSIWZX ASTXSIWX AMFVSRD AMFFPRD AMFVRD AMFVSRWZ AMFVSRLD AMTVSRD AMTFPRD AMTVRD AMTVSRWA AMTVSRWZ AMTVSRDD AMTVSRWS AXXLAND AXXLANDC AXXLEQV AXXLNAND AXXLOR AXXLORC AXXLNOR AXXLORQ AXXLXOR AXXSEL AXXMRGHW AXXMRGLW AXXSPLTW AXXSPLTIB AXXPERM AXXPERMDI AXXSLDWI AXXBRQ AXXBRD AXXBRW AXXBRH AXSCVDPSP AXSCVSPDP AXSCVDPSPN AXSCVSPDPN AXVCVDPSP AXVCVSPDP AXSCVDPSXDS AXSCVDPSXWS AXSCVDPUXDS AXSCVDPUXWS AXSCVSXDDP AXSCVUXDDP AXSCVSXDSP AXSCVUXDSP AXVCVDPSXDS AXVCVDPSXWS AXVCVDPUXDS AXVCVDPUXWS AXVCVSPSXDS AXVCVSPSXWS AXVCVSPUXDS AXVCVSPUXWS AXVCVSXDDP AXVCVSXWDP AXVCVUXDDP AXVCVUXWDP AXVCVSXDSP AXVCVSXWSP AXVCVUXDSP AXVCVUXWSP ALASTAOUT // The last instruction in this list. Also the first opcode generated by ppc64map. // aliases ABR = obj.AJMP ABL = obj.ACALL ALAST = ALASTGEN // The final enumerated instruction value + 1. This is used to size the oprange table. )
const ( // R bit option in prefixed load/store/add D-form operations PFX_R_ABS = 0 // Offset is absolute PFX_R_PCREL = 1 // Offset is relative to PC, RA should be 0 )
const ( /* each rhs is OPVCC(_, _, _, _) */ OP_ADD = 31<<26 | 266<<1 | 0<<10 | 0 OP_ADDI = 14<<26 | 0<<1 | 0<<10 | 0 OP_ADDIS = 15<<26 | 0<<1 | 0<<10 | 0 OP_ANDI = 28<<26 | 0<<1 | 0<<10 | 0 OP_EXTSB = 31<<26 | 954<<1 | 0<<10 | 0 OP_EXTSH = 31<<26 | 922<<1 | 0<<10 | 0 OP_EXTSW = 31<<26 | 986<<1 | 0<<10 | 0 OP_ISEL = 31<<26 | 15<<1 | 0<<10 | 0 OP_MCRF = 19<<26 | 0<<1 | 0<<10 | 0 OP_MCRFS = 63<<26 | 64<<1 | 0<<10 | 0 OP_MCRXR = 31<<26 | 512<<1 | 0<<10 | 0 OP_MFCR = 31<<26 | 19<<1 | 0<<10 | 0 OP_MFFS = 63<<26 | 583<<1 | 0<<10 | 0 OP_MFSPR = 31<<26 | 339<<1 | 0<<10 | 0 OP_MFSR = 31<<26 | 595<<1 | 0<<10 | 0 OP_MFSRIN = 31<<26 | 659<<1 | 0<<10 | 0 OP_MTCRF = 31<<26 | 144<<1 | 0<<10 | 0 OP_MTFSF = 63<<26 | 711<<1 | 0<<10 | 0 OP_MTFSFI = 63<<26 | 134<<1 | 0<<10 | 0 OP_MTSPR = 31<<26 | 467<<1 | 0<<10 | 0 OP_MTSR = 31<<26 | 210<<1 | 0<<10 | 0 OP_MTSRIN = 31<<26 | 242<<1 | 0<<10 | 0 OP_MULLW = 31<<26 | 235<<1 | 0<<10 | 0 OP_MULLD = 31<<26 | 233<<1 | 0<<10 | 0 OP_OR = 31<<26 | 444<<1 | 0<<10 | 0 OP_ORI = 24<<26 | 0<<1 | 0<<10 | 0 OP_ORIS = 25<<26 | 0<<1 | 0<<10 | 0 OP_RLWINM = 21<<26 | 0<<1 | 0<<10 | 0 OP_RLWNM = 23<<26 | 0<<1 | 0<<10 | 0 OP_SUBF = 31<<26 | 40<<1 | 0<<10 | 0 OP_RLDIC = 30<<26 | 4<<1 | 0<<10 | 0 OP_RLDICR = 30<<26 | 2<<1 | 0<<10 | 0 OP_RLDICL = 30<<26 | 0<<1 | 0<<10 | 0 OP_RLDCL = 30<<26 | 8<<1 | 0<<10 | 0 OP_EXTSWSLI = 31<<26 | 445<<2 OP_SETB = 31<<26 | 128<<1 )
const ( D_FORM = iota DS_FORM )
const ( AXXSETACCZ = ALASTAOUT + iota AXXMTACC AXXMFACC AXXGENPCVWM AXXGENPCVHM AXXGENPCVDM AXXGENPCVBM AXVTLSBB AXVI8GER4SPP AXVI8GER4PP AXVI8GER4 AXVI4GER8PP AXVI4GER8 AXVI16GER2SPP AXVI16GER2S AXVI16GER2PP AXVI16GER2 AXVF64GERPP AXVF64GERPN AXVF64GERNP AXVF64GERNN AXVF64GER AXVF32GERPP AXVF32GERPN AXVF32GERNP AXVF32GERNN AXVF32GER AXVF16GER2PP AXVF16GER2PN AXVF16GER2NP AXVF16GER2NN AXVF16GER2 AXVCVSPBF16 AXVCVBF16SPN AXVBF16GER2PP AXVBF16GER2PN AXVBF16GER2NP AXVBF16GER2NN AXVBF16GER2 AXSMINCQP AXSMAXCQP AXSCVUQQP AXSCVSQQP AXSCVQPUQZ AXSCVQPSQZ AXSCMPGTQP AXSCMPGEQP AXSCMPEQQP AVSTRIHRCC AVSTRIHR AVSTRIHLCC AVSTRIHL AVSTRIBRCC AVSTRIBR AVSTRIBLCC AVSTRIBL AVSRQ AVSRDBI AVSRAQ AVSLQ AVSLDBI AVRLQNM AVRLQMI AVRLQ AVPEXTD AVPDEPD AVMULOUD AVMULOSD AVMULLD AVMULHUW AVMULHUD AVMULHSW AVMULHSD AVMULEUD AVMULESD AVMSUMCUD AVMODUW AVMODUQ AVMODUD AVMODSW AVMODSQ AVMODSD AVINSWVRX AVINSWVLX AVINSWRX AVINSWLX AVINSW AVINSHVRX AVINSHVLX AVINSHRX AVINSHLX AVINSDRX AVINSDLX AVINSD AVINSBVRX AVINSBVLX AVINSBRX AVINSBLX AVGNB AVEXTSD2Q AVEXTRACTWM AVEXTRACTQM AVEXTRACTHM AVEXTRACTDM AVEXTRACTBM AVEXTDUWVRX AVEXTDUWVLX AVEXTDUHVRX AVEXTDUHVLX AVEXTDUBVRX AVEXTDUBVLX AVEXTDDVRX AVEXTDDVLX AVEXPANDWM AVEXPANDQM AVEXPANDHM AVEXPANDDM AVEXPANDBM AVDIVUW AVDIVUQ AVDIVUD AVDIVSW AVDIVSQ AVDIVSD AVDIVEUW AVDIVEUQ AVDIVEUD AVDIVESW AVDIVESQ AVDIVESD AVCTZDM AVCNTMBW AVCNTMBH AVCNTMBD AVCNTMBB AVCMPUQ AVCMPSQ AVCMPGTUQCC AVCMPGTUQ AVCMPGTSQCC AVCMPGTSQ AVCMPEQUQCC AVCMPEQUQ AVCLZDM AVCLRRB AVCLRLB AVCFUGED ASTXVRWX ASTXVRHX ASTXVRDX ASTXVRBX ASTXVPX ASTXVP ASETNBCR ASETNBC ASETBCR ASETBC APEXTD APDEPD AMTVSRWM AMTVSRQM AMTVSRHM AMTVSRDM AMTVSRBMI AMTVSRBM ALXVRWX ALXVRHX ALXVRDX ALXVRBX ALXVPX ALXVP ALXVKQ ADCTFIXQQ ADCFFIXQQ ACNTTZDM ACNTLZDM ACFUGED ABRW ABRH ABRD AHASHSTP AHASHST AHASHCHKP AHASHCHK AXXSPLTIW AXXSPLTIDP AXXSPLTI32DX AXXPERMX AXXEVAL AXXBLENDVW AXXBLENDVH AXXBLENDVD AXXBLENDVB APSTXVP APSTXV APSTXSSP APSTXSD APSTW APSTQ APSTH APSTFS APSTFD APSTD APSTB APNOP APMXVI8GER4SPP APMXVI8GER4PP APMXVI8GER4 APMXVI4GER8PP APMXVI4GER8 APMXVI16GER2SPP APMXVI16GER2S APMXVI16GER2PP APMXVI16GER2 APMXVF64GERPP APMXVF64GERPN APMXVF64GERNP APMXVF64GERNN APMXVF64GER APMXVF32GERPP APMXVF32GERPN APMXVF32GERNP APMXVF32GERNN APMXVF32GER APMXVF16GER2PP APMXVF16GER2PN APMXVF16GER2NP APMXVF16GER2NN APMXVF16GER2 APMXVBF16GER2PP APMXVBF16GER2PN APMXVBF16GER2NP APMXVBF16GER2NN APMXVBF16GER2 APLXVP APLXV APLXSSP APLXSD APLWZ APLWA APLQ APLHZ APLHA APLFS APLFD APLD APLBZ APADDI ALASTGEN AFIRSTGEN = AXXSETACCZ )
const (
BIG = 32768 - 8
)
* GENERAL: * * compiler allocates R3 up as temps * compiler allocates register variables R7-R27 * compiler allocates external registers R30 down * * compiler allocates register variables F17-F26 * compiler allocates external registers F26 down
Variables ¶
var Anames = []string{}/* 606 elements not displayed */
var GenAnames = []string{}/* 248 elements not displayed */
var GenOpcodes = [...]uint32{}/* 248 elements not displayed */
var GenPfxOpcodes = [...]uint32{
0x05000000,
0x05000000,
0x05000000,
0x05000000,
0x05000000,
0x05000000,
0x05000000,
0x05000000,
0x05000000,
0x04000000,
0x04000000,
0x04000000,
0x04000000,
0x06000000,
0x04000000,
0x06000000,
0x06000000,
0x06000000,
0x04000000,
0x06000000,
0x07000000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x07900000,
0x04000000,
0x04000000,
0x04000000,
0x04000000,
0x06000000,
0x04000000,
0x04000000,
0x06000000,
0x06000000,
0x06000000,
0x06000000,
0x04000000,
0x06000000,
0x06000000,
}
var Linkppc64 = obj.LinkArch{ Arch: sys.ArchPPC64, Init: buildop, Preprocess: preprocess, Assemble: span9, Progedit: progedit, UnaryDst: unaryDst, DWARFRegisters: PPC64DWARFRegisters, }
var Linkppc64le = obj.LinkArch{ Arch: sys.ArchPPC64LE, Init: buildop, Preprocess: preprocess, Assemble: span9, Progedit: progedit, UnaryDst: unaryDst, DWARFRegisters: PPC64DWARFRegisters, }
var PPC64DWARFRegisters = map[int16]int16{}
OpenPOWER ABI for Linux Supplement Power Architecture 64-Bit ELF V2 ABI https://openpowerfoundation.org/?resource_lib=64-bit-elf-v2-abi-specification-power-architecture
Functions ¶
func AOP_PFX_00_8LS ¶ added in v1.21.0
func AOP_PFX_10_MLS ¶ added in v1.21.0
func ConstantToCRbit ¶ added in v1.19.1
func NeedTOCpointer ¶ added in v1.21.0
Determine if the build configuration requires a TOC pointer. It is assumed this always called after buildop.
Types ¶
type PrefixableOptab ¶ added in v1.21.0
type PrefixableOptab struct { Optab // contains filtered or unexported fields }
These are opcodes above which may generate different sequences depending on whether prefix opcode support is available