gnparser

package module
v1.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jan 19, 2021 License: MIT Imports: 10 Imported by: 4

README

Global Names Parser: GNparser written in Go

Try GNparser online.

IMPORTANT: We are releasing gnparser v1.0.0, it means that from v1.x forward gnparser command line app, functions and output format will be stable and backward compatible for several years. There are several backward incompatible changes with versions v0.x that are documented at this wiki page

GNparser splits scientific names into their semantic elements with an associated meta information. Parsing is indispensable for matching names from different data sources, because it can normalize different lexical variants of names to the same canonical form.

This parser, written in Go, is the 3rd iteration of the project. The first, biodiversity, had been written in Ruby, the second, also gnparser, had been written in Scala. This project is now a substitution for the other two. Scala project is in an archived state, biodiversity now uses Go code for parsing. All three projects were developed as a part of Global Names Architecture Project.

To use GNparser as a command line tool under Windows, Mac or Linux, download the latest release, uncompress it, and copy gnparser binary somewhere in your PATH.

tar xvf gnparser-v1.0.0-linux.tar.gz
sudo cp gnparser /usr/local/bin
# for CSV output
gnparser "Homo sapiens Linnaeus"
# for JSON output
gnparser -f compact "Homo sapiens Linnaeus"
# or
gnparser -f pretty "Homo sapiens Linnaeus"
gnparser -h

Introduction

Global Names Parser or gnparser is a program written in Go for breaking up scientific names into their elements. It uses peg -- a Parsing Expression Grammar (PEG) tool.

Many other parsing algorithms for scientific names use regular expressions. This approach works well for extracting canonical forms in simple cases. However, for complex scientific names and to parse scientific names into all semantic elements, regular expressions often fail, unable to overcome the recursive nature of data embedded in names. By contrast, gnparser is able to deal with the most complex scientific name-strings.

gnparser takes a name-string like Drosophila (Sophophora) melanogaster Meigen, 1830 and returns parsed components in CSV or JSON format. The parsing of scientific names might become surprisingly complex and the GNparser's test file is a good source of information about the parser's capabilities, its input and output.

Speed

Number of names parsed per hour on a i7-8750H CPU (6 cores, 12 threads, at 2.20 GHz), parser v1.0.0:

Threads names/hr
1 51,000,000
2 86,000,000
4 128,000,000
8 180,000,000
16 211,000,000
100 240,000,000

For simplest output Go gnparser is roughly 2 times faster than Scala gnparser and about 100 times faster than pure Ruby implementation. For JSON formats the parser is approximately 8 times faster than Scala one, due to more efficient JSON conversion.

Features

  • Fastest parser ever.
  • Very easy to install, just placing executable somewhere in the PATH is sufficient.
  • Extracts all elements from a name, not only canonical forms.
  • Works with very complex scientific names, including hybrid formulas.
  • Includes RESTful service and interactive web interface.
  • Can run as a command line application.
  • Can be used as a library in Go projects.
  • Can be scaled to many CPUs and computers (if 250 millions names an hour is not enough).
  • Calculates a stable UUID version 5 ID from the content of a string.
  • Provides C-binding to incorporate parser to other languages.

Use Cases

Getting the simplest possible canonical form

Canonical forms of a scientific name are the latinized components without annotations, authors or dates. They are great for matching lexical variants of names. Three versions of canonical forms are included:

The canonicalName -> full is good for presentation, as it keeps more details.

The canonicalName -> simple field is good for matching names from different sources, because sometimes dataset curators omit hybrid sign in named hybrids, or remove ranks for infraspecific epithets.

The canonicalName -> stem field normalizes simple canonical form even further. The normalization is done according to stemming rules for Latin language described in Schinke R et al (1996). For example letters j are converted to i, letters v are converted to u, and suffixes are removed from the specific and infraspecific epithets.

If you only care about canonical form of a name you can use default --format csv flag with command line tool.

CSV output has the following fields:

Field Meaning
Id UUID v5 generated out of Verbatim
Verbatim Input name-string without any changes
Cardinality 0 - N/A, 1 - Uninomial, 2 - Binomial etc.
CanonicalStem Simplest canonical form with removed suffixes
CanonicalSimple Simplest canonical form
CanonicalFull Canonical form with hybrid sign and ranks
Authors Authorship of a name
Year Year of the name (if given)
Quality Parsing quality
Quickly partition names by the type

Usually scientific names can be broken into groups according to the number of elements:

  • Uninomial
  • Binomial
  • Trinomial
  • Quadrinomial

The output of gnparser contains a Cardinality field that tells, when possible, how many elements are detected in the name.

Cardinality Name Type
0 Undetermined
1 Uninomial
2 Binomial
3 Trinomial
4 Quadrinomial

For hybrid formulas, "approximate" names (with "sp.", "spp." etc.), unparsed names, as well as names from BOLD project cardinality is 0 (Undetermined)

Normalizing name-strings

There are many inconsistencies in how scientific names may be written. Use normalized field to bring them all to a common form (spelling, spacing, ranks).

Removing authorship from the middle of the name

Often data administrators spit name-strings into "name part" and "authorship part". This practice misses some information when dealing with names like "Prosthechea cochleata (L.) W.E.Higgins var. grandiflora (Mutel) Christenson". However, if this is the use case, a combination of canonicalName -> full with the authorship from the lowest taxon will do the job. You can also use the default --format csv flag for gnparser command line tool.

Figuring out if names are well-formed

If there are problems with parsing a name, parser generates qualityWarnings messages and lowers parsing quality of the name. Quality values mean the following:

  • "quality": 1 - No problems were detected.
  • "quality": 2 - There were small problems, normalized result should still be good.
  • "quality": 3 - There are some significant problems with parsing.
  • "quality": 4 - There were serious problems with the name, and the final result is rather doubtful.
  • "quality": 0 - A string could not be recognized as a scientific name and parsing failed.
Creating stable GUIDs for name-strings

gnparser uses UUID version 5 to generate its id field. There is algorithmic 1:1 relationship between the name-string and the UUID. Moreover the same algorithm can be used in any popular language to generate the same UUID. Such IDs can be used to globally connect information about name-strings or information associated with name-strings.

More information about UUID version 5 can be found in the Global Names blog

Assembling canonical forms etc. from original spelling

gnparser tries to correct problems with spelling, but sometimes it is important to keep original spelling of the canonical forms or authorship. The words field attaches semantic meaning to every word in the original name-string and allows users to create canonical forms or other combinations using the original verbatim spelling of the words. Each element in words contains 3 parts:

  1. verbatim value of a word
  2. semantic meaning of the word
  3. start position of the word
  4. end position of the word

The words section belongs to additional details. To use it enable --details flag for the command line application.

gnparser -d "Pardosa moesta Banks, 1892"

Tutorial

Robert Mesibov published an advanced tutorial on using gnparser together with awk and pipes in Unix-like environments.

Installation

Compiled programs in Go are self-sufficient and small (gnparser is only a few megabytes). As a result the binary file of gnparser is all you need to make it work. You can install it by downloading the latest version of the binary for your operating system, and placing it in your PATH.

Linux or OS X

Move gnparser executable somewhere in your PATH (for example /usr/local/bin)

sudo mv path_to/gnparser /usr/local/bin
Windows

One possible way would be to create a default folder for executables and place gnparser there.

Use Windows+R keys combination and type "cmd". In the appeared terminal window type:

mkdir C:\bin
copy path_to\gnparser.exe C:\bin

Add C:\bin directory to your PATH environment variable.

It is also possible to install Windows Subsystem for Linux on Windows 10, and use gnparser as a Linux executable.

Install with Go

If you have Go installed on your computer use

go get -u github.com/gnames/gnparser/gnparser

You do need your PATH to include $HOME/go/bin

Usage

Command Line
gnparser -f pretty "Quadrella steyermarkii (Standl.) Iltis & Cornejo"

Relevant flags:

--help -h : help information about flags.

--batch_size b : Sets a maximum number of names collected into a batch before processing. This flag is ignored if parsing mode is set to streaming with -s flag.

--details -d : Return more details for a parsed name. This flag is ignored for CSV formatting.

--format -f : output format. Can be compact, pretty, csv. Default is csv.

CSV format returns a header row and the CSV-compatible parsed result.

--jobs -j : number of jobs running concurrently.

--ignore_tags -i : keeps HTML entities and tags if they are present in a name-string. If your data is clean from HTML tags or entities, you can use this flag to increase performance.

--port -p : set a port to run web-interface and RESTful API.

--stream -s : gnparser can be used from any language using pipe-in/pipe-out of the command line application. This approach requires sending 1 name at a time to gnparser instead of sending names in batches. Streaming allows to achieve that.

--version -V : shows the version number of gnparser.

To parse one name:

# CSV output (default)
gnparser "Parus major Linnaeus, 1788"
# or
gnparser -f csv "Parus major Linnaeus, 1788"

# JSON compact format
gnparser "Parus major Linnaeus, 1788" -f compact

# pretty format
gnparser -f pretty "Parus major Linnaeus, 1788"

# to parse a name from the standard input
echo "Parus major Linnaeus, 1788" | gnparser

To parse a file:

There is no flag for parsing a file. If parser finds the given file path on your computer, it will parse the content of the file, assuming that every line is a new scientific name. If the file path is not found, gnparser will try to parse the "path" as a scientific name.

Parsed results will stream to STDOUT, while progress of the parsing will be directed to STDERR.

# to parse with 200 parallel processes
gnparser -j 200 names.txt > names_parsed.csv

# to parse file with more detailed output
gnparser names.txt -d -f compact > names_parsed.txt

# to parse files using pipes
cat names.txt | gnparser -f csv -j 200 > names_parsed.csv

# to parse using stream method instead of match method.
cat names.txt | gnparser -s > names_parsed.csv

# to not remove html tags and entities during parsing. You gain a bit of
# performance with this option if your data does not contain HTML tags or
# entities.
gnparser "<i>Pomatomus</i>&nbsp;<i>saltator</i>"
gnparser -i "<i>Pomatomus</i>&nbsp;<i>saltator</i>"
gnparser -i "Pomatomus saltator"

If jobs number is set to more than 1, parsing uses several concurrent processes. This approach increases speed of parsing on multi-CPU computers. The results are returned in some random order, and reassembled into the order of input transparently for a user.

Potentially the input file might contain millions of names, therefore creating one properly formatted JSON output might be prohibitively expensive. Therefore the parser creates one JSON line per name (when compact format is used)

You can use up to 20 times more "threads" than the number of your CPU cores to reach maximum speed of parsing (--jobs 200 flag). It is practical because additional "threads" are very cheap in Go and they try to fill out every idle gap in the CPU usage.

Pipes

About any language has an ability to use pipes of the underlying operating system. From the inside of your program you can make the CLI executable gnparser to listen on a STDIN pipe and produce output into STDOUT pipe. Here is an example in Ruby:

def self.start_gnparser
  io = {}

  ['compact', 'csv'].each do |format|
    stdin, stdout, stderr = Open3.popen3("./gnparser -s --format #{format}")
    io[format.to_sym] = { stdin: stdin, stdout: stdout, stderr: stderr }
  end
end

Note that you have to use --stream -s flag for this approach to work.

Usage as a REST API Interface

Web-based user interface and API are invoked by --port or -p flag. To start web server on http://0.0.0.0:9000

gnparser -p 9000

Opening a browser with this address will now show an interactive interface to parser. API calls would be accessible on http://0.0.0.0:9000/api/v1/.

The api is and schema are described fully using OpenAPI specification.

Make sure to CGI-escape name-strings for GET requests. An '&' character needs to be converted to '%26'

  • GET /api?q=Aus+bus|Aus+bus+D.+%26+M.,+1870
  • POST /api with request body of JSON array of strings
require 'json'
require 'net/http'

uri = URI('https://parser.globalnames.org/api/v1/')
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true
request = Net::HTTP::Post.new(uri, 'Content-Type' => 'application/json',
                                   'accept' => 'json')
request.body = ['Solanum mariae Särkinen & S.Knapp',
                'Ahmadiago Vánky 2004'].to_json
response = http.request(request)
Use as a Docker image

You need to have docker runtime installed on your computer for these examples to work.

# run as a website and a RESTful service
docker run -p 0.0.0.0:80:8080 gnames/gognparser -p 8080

# just parse something
docker run gnames/gognparser "Amaurorhinus bewichianus (Wollaston,1860) (s.str.)"
Use as a library in Go
import (
  "fmt"

  "github.com/gnames/gnparser"
  "github.com/gnames/gnparser/config"
)

func Example() {
	names := []string{"Pardosa moesta Banks, 1892", "Bubo bubo"}
	cfg := config.NewConfig()
	gnp := gnparser.NewGNParser(cfg)
	parsed := gnp.ParseNames(names)
	fmt.Println(parsed[0].Authorship.Normalized)
	fmt.Println(parsed[1].Canonical.Simple)
	fmt.Println(parsed[0].Output(gnp.Format()))
	// Output:
	// Banks 1892
	// Bubo bubo
	// e2fdf10b-6a36-5cc7-b6ca-be4d3b34b21f,"Pardosa moesta Banks, 1892",2,Pardosa moest,Pardosa moesta,Pardosa moesta,Banks 1892,1892,1
}
Use as a shared C library

It is possible to bind gnparser functionality with languages that can use C Application Binary Interface. For example such languages include Python, Ruby, Rust, C, C++, Java (via JNI).

To compile gnparser shared library for your platform/operating system of choice you need GNU make and GNU gcc compiler installed:

make clib
cd binding
cp libgnparser* /path/to/some/project

As an example how to use the shared library check this StackOverflow question and biodiversity Ruby gem.

Parsing ambiguities

Some name-strings cannot be parsed unambiguously without some additional data.

Names with filius (ICN code)

For names like Aus bus Linn. f. cus the f. is ambiguous. It might mean that species were described by a son of (filius) Linn., or it might mean that cus is forma of bus. We provide a warning "Ambiguous f. (filius or forma)" for such cases.

Names with subgenus (ICZN code) and genus author (ICN code)

For names like Aus (Bus) L. or Aus (Bus) cus L. the (Bus) token would mean the name of subgenus for ICZN names, but for ICN names it would be an author of genus Aus. We created a list of ICN generic authors using data from IRMNG to distinguish such names from each other. For detected ICN names we provide a warning "Possible ICN author instead of subgenus".

Authors

Contributors

If you want to submit a bug or add a feature read CONTRIBUTING file.

References

Rees, T. (compiler) (2019). The Interim Register of Marine and Nonmarine Genera. Available from http://www.irmng.org at VLIZ. Accessed 2019-04-10

License

Released under MIT license

Documentation

Overview

Example
package main

import (
	"fmt"

	"github.com/gnames/gnparser"
	"github.com/gnames/gnparser/config"
)

func main() {
	names := []string{"Pardosa moesta Banks, 1892", "Bubo bubo"}
	cfg := config.NewConfig()
	gnp := gnparser.NewGNParser(cfg)
	parsed := gnp.ParseNames(names)
	fmt.Println(parsed[0].Authorship.Normalized)
	fmt.Println(parsed[1].Canonical.Simple)
	fmt.Println(parsed[0].Output(gnp.Format()))
}
Output:

Banks 1892
Bubo bubo
e2fdf10b-6a36-5cc7-b6ca-be4d3b34b21f,"Pardosa moesta Banks, 1892",2,Pardosa moest,Pardosa moesta,Pardosa moesta,Banks 1892,1892,1

Index

Examples

Constants

This section is empty.

Variables

View Source
var (
	// Version is the version of the gnparser package. When Makefile is
	// used, the version is calculated out of Git tags.
	Version = "v1.0.0+"
	// Build is a timestamp of when Makefile was used to compile
	// the gnparser code. If go build was used, Build stays empty.
	Build string
)

Functions

This section is empty.

Types

type GNParser

type GNParser interface {
	// Versioner provides a version and a build timestamp of gnparser.
	gn.Versioner
	// Parse name takes a name-string, and returns parsed results for the name.
	ParseName(string) output.Parsed
	// Parse names takes a slice of name-strings, and returns a slice of
	// parsed results in the same order as the input.
	ParseNames([]string) []output.Parsed
	// ParseNameString takes a context, an input channel that takes a
	// a name-string and its position in the input. It returns parsed results
	// that come in the same order as the input.
	ParseNameStream(context.Context, <-chan input.Name, chan<- output.Parsed)
	// Format returns currently chosen desired output format of a JSON or
	// CSV output.
	Format() format.Format
	// ChangeConfig allows to modify settings of GNParser. Changing settings
	// might modify parsing process, and the final output of results.
	ChangeConfig(opts ...config.Option) GNParser
}

GNParser is the main use-case interface. It provides methods required for parsing scientific names.

func NewGNParser

func NewGNParser(cfg config.Config) GNParser

NewGNParser constructor function takes options organized into a configuration struct and returns an object that implements GNParser interface.

Directories

Path Synopsis
entity
stemmer
http://snowballstem.org/otherapps/schinke/ http://caio.ueberalles.net/a_stemming_algorithm_for_latin_text_databases-schinke_et_al.pdf The Schinke Latin stemming algorithm is described in, Schinke R, Greengrass M, Robertson AM and Willett P (1996) A stemming algorithm for Latin text databases.
http://snowballstem.org/otherapps/schinke/ http://caio.ueberalles.net/a_stemming_algorithm_for_latin_text_databases-schinke_et_al.pdf The Schinke Latin stemming algorithm is described in, Schinke R, Greengrass M, Robertson AM and Willett P (1996) A stemming algorithm for Latin text databases.
str
cmd
io
fs
web

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL