Documentation ¶
Index ¶
- Constants
- type Constraints
- type ConversionError
- type Field
- type FieldType
- type Fields
- type ForeignKeyReference
- type ForeignKeys
- type GeoPoint
- type InferOpts
- type RowConversionError
- type Schema
- func (s *Schema) CastColumn(col []string, name string, out interface{}) error
- func (s *Schema) CastRow(row []string, out interface{}) error
- func (s *Schema) CastTable(tab table.Table, out interface{}) error
- func (s *Schema) GetField(name string) (*Field, int)
- func (s *Schema) HasField(name string) bool
- func (s *Schema) MarshalJSON() ([]byte, error)
- func (s *Schema) SaveToFile(path string) error
- func (s *Schema) String() string
- func (s *Schema) UncastRow(in interface{}) ([]string, error)
- func (s *Schema) UncastTable(in interface{}) ([][]string, error)
- func (s *Schema) UnmarshalJSON(data []byte) error
- func (s *Schema) Validate() error
- func (s *Schema) Write(w io.Writer) error
Examples ¶
Constants ¶
const ( GeoPointArrayFormat = "array" GeoPointObjectFormat = "object" )
Formats specific to GeoPoint field type.
const (
AnyDateFormat = "any"
)
Formats.
const InvalidPosition = -1
InvalidPosition is returned by GetField call when it refers to a field that does not exist in the schema.
const ( // SampleAllRows can be passed to schema.SampleLimit(int) to sample all rows. // schema.SampleLimit(int) is an optional argument to // schema.Infer(table.Table, ...InferOpts) SampleAllRows = -1 )
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Constraints ¶ added in v0.1.4
type Constraints struct { // Required indicates whether this field is allowed to be null. // Schema.MissingValues define how the string representation can // represent null values. Required bool `json:"required,omitempty"` // Unique indicates whether this field is allowed to have duplicates. // This constrain is only relevant for Schema.CastTable Unique bool `json:"unique,omitempty"` Maximum string `json:"maximum,omitempty"` Minimum string `json:"minimum,omitempty"` MinLength int `json:"minLength,omitempty"` MaxLength int `json:"maxLength,omitempty"` Pattern string `json:"pattern,omitempty"` // Enum indicates that the value of the field must exactly match a value in the enum array. // The values of the fields could need encoding, depending on the type. // It applies to all field types. Enum []interface{} `json:"enum,omitempty"` // contains filtered or unexported fields }
Constraints can be used by consumers to list constraints for validating field values.
type ConversionError ¶ added in v1.5.2
type ConversionError struct {
Errors []RowConversionError
}
ConversionError aggregates all errors that happened during a conversion operation (i.e., CastTable or UncastTable).
func (*ConversionError) Error ¶ added in v1.5.2
func (ce *ConversionError) Error() string
Error returns a very simple string version of all errors found during conversion.
type Field ¶
type Field struct { // Name of the field. It is mandatory and shuold correspond to the name of field/column in the data file (if it has a name). Name string `json:"name"` Type FieldType `json:"type,omitempty"` Format string `json:"format,omitempty"` // A human readable label or title for the field. Title string `json:"title,omitempty"` // A description for this field e.g. "The recipient of the funds" Description string `json:"description,omitempty"` // Boolean properties. Define set of the values that represent true and false, respectively. // https://specs.frictionlessdata.io/table-schema/#boolean TrueValues []string `json:"trueValues,omitempty"` FalseValues []string `json:"falseValues,omitempty"` // A string whose value is used to represent a decimal point within the number. The default value is ".". DecimalChar string `json:"decimalChar,omitempty"` // A string whose value is used to group digits within the number. The default value is null. A common value is "," e.g. "100,000". GroupChar string `json:"groupChar,omitempty"` // If true the physical contents of this field must follow the formatting constraints already set out. // If false the contents of this field may contain leading and/or trailing non-numeric characters which // are going to be stripped. Default value is true: BareNumber bool `json:"bareNumber,omitempty"` // MissingValues is a map which dictates which string values should be treated as null // values. MissingValues map[string]struct{} `json:"-"` // Constraints can be used by consumers to list constraints for validating // field values. Constraints Constraints `json:"constraints,omitempty"` }
Field describes a single field in the table schema. More: https://specs.frictionlessdata.io/table-schema/#field-descriptors
func (*Field) Cast ¶ added in v1.1.2
Cast casts the passed-in string against field type. Returns an error if the value can not be cast or any field constraint can not be satisfied.
Example ¶
in := `{ "name": "id", "type": "string", "format": "default", "constraints": { "required": true, "minLen": "5", "maxLen": "10", "pattern": ".*11$", "enum":["1234511"] } }` var field Field json.Unmarshal([]byte(in), &field) v, err := field.Cast("1234511") if err != nil { panic(err) } fmt.Println(v)
Output: 1234511
func (*Field) TestString ¶ added in v0.1.2
TestString checks whether the value can be unmarshalled to the field type.
func (*Field) Uncast ¶ added in v1.1.2
Uncast uncasts the passed-in value into a string. It returns an error if the the type of the passed-in value can not be converted to field type.
func (*Field) UnmarshalJSON ¶
UnmarshalJSON sets *f to a copy of data. It will respect the default values described at: https://specs.frictionlessdata.io/table-schema/
type FieldType ¶ added in v1.1.2
type FieldType string
FieldType defines the field types.
const ( IntegerType FieldType = "integer" StringType FieldType = "string" BooleanType FieldType = "boolean" NumberType FieldType = "number" DateType FieldType = "date" ObjectType FieldType = "object" ArrayType FieldType = "array" DateTimeType FieldType = "datetime" TimeType FieldType = "time" YearMonthType FieldType = "yearmonth" YearType FieldType = "year" DurationType FieldType = "duration" GeoPointType FieldType = "geopoint" AnyType FieldType = "any" )
Field types.
type ForeignKeyReference ¶
type ForeignKeyReference struct { Resource string `json:"resource,omitempty"` Fields []string `json:"-"` FieldsPlaceholder interface{} `json:"fields,omitempty"` }
ForeignKeyReference represents the field reference by a foreign key.
type ForeignKeys ¶
type ForeignKeys struct { Fields []string `json:"-"` FieldsPlaceholder interface{} `json:"fields,omitempty"` Reference ForeignKeyReference `json:"reference,omitempty"` }
ForeignKeys defines a schema foreign key
type GeoPoint ¶
GeoPoint represents a "geopoint" cell. More at: https://specs.frictionlessdata.io/table-schema/#geopoint
func (*GeoPoint) UnmarshalJSON ¶
UnmarshalJSON sets *f to a copy of data. It will respect the default values
type InferOpts ¶ added in v1.1.2
type InferOpts func(c *inferConfig) error
InferOpts defines functional options for inferring a schema.
func SampleLimit ¶ added in v1.1.2
SampleLimit specifies the maximum number of rows to sample for inference.
func WithPriorityOrder ¶ added in v1.1.2
WithPriorityOrder allows users to specify the priority order of types used to infer fields.
type RowConversionError ¶ added in v1.5.2
RowConversionError stores information about an error converting (cast or uncasting) a single row.
type Schema ¶
type Schema struct { Fields Fields `json:"fields,omitempty"` PrimaryKeyPlaceholder interface{} `json:"primaryKey,omitempty"` PrimaryKeys []string `json:"-"` ForeignKeys []ForeignKeys `json:"foreignKeys,omitempty"` MissingValues []string `json:"missingValues,omitempty"` }
Schema describes tabular data.
func Infer ¶
Infer infers a schema from a slice of the tabular data. For columns that contain cells that can inferred as different types, the most popular type is set as the field type. For instance, a column with values 10.1, 10, 10 will inferred as being of type "integer".
Example (WithPrecedence) ¶
tab := table.FromSlices( []string{"Person", "Height"}, [][]string{ []string{"Foo", "0"}, []string{"Bar", "0"}, }) s, _ := Infer( tab, WithPriorityOrder([]FieldType{NumberType, BooleanType, YearType, IntegerType, GeoPointType, YearMonthType, DateType, DateTimeType, TimeType, DurationType, ArrayType, ObjectType})) fmt.Println("Fields:") for _, f := range s.Fields { fmt.Printf("{Name:%s Type:%s Format:%s}\n", f.Name, f.Type, f.Format) }
Output: Fields: {Name:Person Type:string Format:default} {Name:Height Type:number Format:default}
func InferImplicitCasting ¶
InferImplicitCasting uses a implicit casting for infering the type of columns that have cells of diference types. For instance, a column with values 10.1, 10, 10 will inferred as being of type "number" ("integer" can be implicitly cast to "number").
For medium to big tables, this method is faster than the Infer.
Example ¶
tab := table.FromSlices( []string{"Person", "Height"}, [][]string{ []string{"Foo", "5"}, []string{"Bar", "4"}, []string{"Bez", "5.5"}, }) s, _ := InferImplicitCasting(tab) fmt.Println("Fields:") for _, f := range s.Fields { fmt.Printf("{Name:%s Type:%s Format:%s}\n", f.Name, f.Type, f.Format) }
Output: Fields: {Name:Person Type:string Format:default} {Name:Height Type:number Format:default}
func LoadFromFile ¶ added in v0.1.3
LoadFromFile loads and parses a schema descriptor from a local file.
func LoadRemote ¶ added in v0.1.3
LoadRemote downloads and parses a schema descriptor from the specified URL.
func Read ¶
Read reads and parses a descriptor to create a schema.
Example - Reading a schema from a file:
f, err := os.Open("foo/bar/schema.json") if err != nil { panic(err) } s, err := Read(f) if err != nil { panic(err) } fmt.Println(s)
func (*Schema) CastColumn ¶ added in v1.1.2
CastColumn loads and casts all rows from a single column.
The result argument must necessarily be the address for a slice. The slice may be nil or previously allocated.
Example ¶
// Lets assume we have a schema ... s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType, Constraints: Constraints{Unique: true}}}} // And a Table. t := table.FromSlices([]string{"Name", "Age"}, [][]string{ {"Foo", "42"}, {"Bar", "43"}}) // And we would like to process the column Age using Go types. First we need to create a // slice to hold the column contents. var ages []float64 // Extract the column. col, _ := t.ReadColumn("Age") // And profit! s.CastColumn(col, "Age", &ages) fmt.Print(ages)
Output: [42 43]
func (*Schema) CastRow ¶
CastRow casts the passed-in row to schema types and stores it in the value pointed by out. The out value must be pointer to a struct. Only exported fields will be unmarshalled. The lowercased field name is used as the key for each exported field.
If a value in the row cannot be marshalled to its respective schema field (Field.Unmarshal), this call will return an error. Furthermore, this call is also going to return an error if the schema field value can not be unmarshalled to the struct field type.
Example ¶
// Lets assume we have a schema ... s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType}}} // And a Table. t := table.FromSlices([]string{"Name", "Age"}, [][]string{ {"Foo", "42"}, {"Bar", "43"}}) // And we would like to process them using Go types. First we need to create a struct to // hold the content of each row. // The tag tableheader maps the field to the schema. If no tag is set the name of the field // has to be the same like inside the schema. type person struct { MyName string `tableheader:"Name"` Age int } // Now it is a matter of iterate over the table and Cast each row. iter, _ := t.Iter() for iter.Next() { var p person s.CastRow(iter.Row(), &p) fmt.Printf("%+v\n", p) }
Output: {MyName:Foo Age:42} {MyName:Bar Age:43}
func (*Schema) CastTable ¶ added in v1.1.2
CastTable loads and casts all table rows in a best effort manner. Line-by-line errors will be reported as *ConversionError type
The result argument must necessarily be the address for a slice. The slice may be nil or previously allocated.
Example ¶
// Lets assume we have a schema ... s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType, Constraints: Constraints{Unique: true}}}} // And a Table. t := table.FromSlices([]string{"Name", "Age"}, [][]string{ {"Foo", "42"}, {"Bar", "43"}}) // And we would like to process them using Go types. First we need to create a struct to // hold the content of each row. // The tag tableheader maps the field to the schema. If no tag is set the name of the field // has to be the same like inside the schema. type person struct { MyName string `tableheader:"Name"` Age int } var people []person s.CastTable(t, &people) fmt.Print(people)
Output: [{Foo 42} {Bar 43}]
func (*Schema) HasField ¶
HasField returns checks whether the schema has a field with the passed-in.
func (*Schema) MarshalJSON ¶
MarshalJSON returns the JSON encoding of s.
func (*Schema) SaveToFile ¶
SaveToFile writes the schema descriptor in local file.
func (*Schema) UncastRow ¶ added in v1.1.2
UncastRow uncasts struct into a row. This method can only uncast structs (or pointer to structs) and will error out if nil is passed. The order of the cells in the returned row is the schema declaration order.
Example ¶
// Lets assume we have a schema. s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType}}} // And would like to create a CSV out of this list. The tag tableheader maps // the field to the schema name. If no tag is set the name of the field // has to be the same like inside the schema. people := []struct { MyName string `tableheader:"Name"` Age int }{{"Foo", 42}, {"Bar", 43}} // First create the writer and write the header. w := table.NewStringWriter() w.Write([]string{"Name", "Age"}) // Then write the list for _, person := range people { row, _ := s.UncastRow(person) w.Write(row) } w.Flush() fmt.Print(w.String())
Output: Name,Age Foo,42 Bar,43
func (*Schema) UncastTable ¶ added in v1.1.2
UncastTable uncasts each element (struct) of the passed-in slice and
Example ¶
// Lets assume we have a schema. s := Schema{Fields: []Field{{Name: "Name", Type: StringType}, {Name: "Age", Type: IntegerType}}} // And would like to create a CSV out of this list. The tag tableheader maps // the field to the schema name. If no tag is set the name of the field // has to be the same like inside the schema. people := []struct { MyName string `tableheader:"Name"` Age int }{{"Foo", 42}, {"Bar", 43}} // Then uncast the people slice into a slice of rows. rows, _ := s.UncastTable(people) // Now, simply write it down. w := table.NewStringWriter() w.Write([]string{"Name", "Age"}) w.WriteAll(rows) w.Flush() fmt.Print(w.String())
Output: Name,Age Foo,42 Bar,43
func (*Schema) UnmarshalJSON ¶
UnmarshalJSON sets *f to a copy of data. It will respect the default values described at: https://specs.frictionlessdata.io/table-schema/
func (*Schema) Validate ¶
Validate checks whether the schema is valid. If it is not, returns an error describing the problem. More at: https://specs.frictionlessdata.io/table-schema/