Documentation
¶
Index ¶
- Variables
- func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
- func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
- type AnnotationPayload
- func (*AnnotationPayload) Descriptor() ([]byte, []int)
- func (m *AnnotationPayload) GetAnnotationSpecId() string
- func (m *AnnotationPayload) GetClassification() *ClassificationAnnotation
- func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail
- func (m *AnnotationPayload) GetDisplayName() string
- func (m *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation
- func (m *AnnotationPayload) GetTables() *TablesAnnotation
- func (m *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation
- func (m *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation
- func (m *AnnotationPayload) GetTranslation() *TranslationAnnotation
- func (m *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation
- func (m *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation
- func (*AnnotationPayload) ProtoMessage()
- func (m *AnnotationPayload) Reset()
- func (m *AnnotationPayload) String() string
- func (m *AnnotationPayload) XXX_DiscardUnknown()
- func (m *AnnotationPayload) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *AnnotationPayload) XXX_Merge(src proto.Message)
- func (*AnnotationPayload) XXX_OneofWrappers() []interface{}
- func (m *AnnotationPayload) XXX_Size() int
- func (m *AnnotationPayload) XXX_Unmarshal(b []byte) error
- type AnnotationPayload_Classification
- type AnnotationPayload_ImageObjectDetection
- type AnnotationPayload_Tables
- type AnnotationPayload_TextExtraction
- type AnnotationPayload_TextSentiment
- type AnnotationPayload_Translation
- type AnnotationPayload_VideoClassification
- type AnnotationPayload_VideoObjectTracking
- type AnnotationSpec
- func (*AnnotationSpec) Descriptor() ([]byte, []int)
- func (m *AnnotationSpec) GetDisplayName() string
- func (m *AnnotationSpec) GetExampleCount() int32
- func (m *AnnotationSpec) GetName() string
- func (*AnnotationSpec) ProtoMessage()
- func (m *AnnotationSpec) Reset()
- func (m *AnnotationSpec) String() string
- func (m *AnnotationSpec) XXX_DiscardUnknown()
- func (m *AnnotationSpec) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *AnnotationSpec) XXX_Merge(src proto.Message)
- func (m *AnnotationSpec) XXX_Size() int
- func (m *AnnotationSpec) XXX_Unmarshal(b []byte) error
- type ArrayStats
- func (*ArrayStats) Descriptor() ([]byte, []int)
- func (m *ArrayStats) GetMemberStats() *DataStats
- func (*ArrayStats) ProtoMessage()
- func (m *ArrayStats) Reset()
- func (m *ArrayStats) String() string
- func (m *ArrayStats) XXX_DiscardUnknown()
- func (m *ArrayStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ArrayStats) XXX_Merge(src proto.Message)
- func (m *ArrayStats) XXX_Size() int
- func (m *ArrayStats) XXX_Unmarshal(b []byte) error
- type AutoMlClient
- type AutoMlServer
- type BatchPredictInputConfig
- func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)
- func (m *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource
- func (m *BatchPredictInputConfig) GetGcsSource() *GcsSource
- func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source
- func (*BatchPredictInputConfig) ProtoMessage()
- func (m *BatchPredictInputConfig) Reset()
- func (m *BatchPredictInputConfig) String() string
- func (m *BatchPredictInputConfig) XXX_DiscardUnknown()
- func (m *BatchPredictInputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BatchPredictInputConfig) XXX_Merge(src proto.Message)
- func (*BatchPredictInputConfig) XXX_OneofWrappers() []interface{}
- func (m *BatchPredictInputConfig) XXX_Size() int
- func (m *BatchPredictInputConfig) XXX_Unmarshal(b []byte) error
- type BatchPredictInputConfig_BigquerySource
- type BatchPredictInputConfig_GcsSource
- type BatchPredictOperationMetadata
- func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)
- func (m *BatchPredictOperationMetadata) GetInputConfig() *BatchPredictInputConfig
- func (m *BatchPredictOperationMetadata) GetOutputInfo() *BatchPredictOperationMetadata_BatchPredictOutputInfo
- func (*BatchPredictOperationMetadata) ProtoMessage()
- func (m *BatchPredictOperationMetadata) Reset()
- func (m *BatchPredictOperationMetadata) String() string
- func (m *BatchPredictOperationMetadata) XXX_DiscardUnknown()
- func (m *BatchPredictOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BatchPredictOperationMetadata) XXX_Merge(src proto.Message)
- func (m *BatchPredictOperationMetadata) XXX_Size() int
- func (m *BatchPredictOperationMetadata) XXX_Unmarshal(b []byte) error
- type BatchPredictOperationMetadata_BatchPredictOutputInfo
- func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor() ([]byte, []int)
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory() string
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation
- func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage()
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset()
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) String() string
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_DiscardUnknown()
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Merge(src proto.Message)
- func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_OneofWrappers() []interface{}
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Size() int
- func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Unmarshal(b []byte) error
- type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
- type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
- type BatchPredictOutputConfig
- func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)
- func (m *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination
- func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination
- func (m *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination
- func (*BatchPredictOutputConfig) ProtoMessage()
- func (m *BatchPredictOutputConfig) Reset()
- func (m *BatchPredictOutputConfig) String() string
- func (m *BatchPredictOutputConfig) XXX_DiscardUnknown()
- func (m *BatchPredictOutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BatchPredictOutputConfig) XXX_Merge(src proto.Message)
- func (*BatchPredictOutputConfig) XXX_OneofWrappers() []interface{}
- func (m *BatchPredictOutputConfig) XXX_Size() int
- func (m *BatchPredictOutputConfig) XXX_Unmarshal(b []byte) error
- type BatchPredictOutputConfig_BigqueryDestination
- type BatchPredictOutputConfig_GcsDestination
- type BatchPredictRequest
- func (*BatchPredictRequest) Descriptor() ([]byte, []int)
- func (m *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig
- func (m *BatchPredictRequest) GetName() string
- func (m *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig
- func (m *BatchPredictRequest) GetParams() map[string]string
- func (*BatchPredictRequest) ProtoMessage()
- func (m *BatchPredictRequest) Reset()
- func (m *BatchPredictRequest) String() string
- func (m *BatchPredictRequest) XXX_DiscardUnknown()
- func (m *BatchPredictRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BatchPredictRequest) XXX_Merge(src proto.Message)
- func (m *BatchPredictRequest) XXX_Size() int
- func (m *BatchPredictRequest) XXX_Unmarshal(b []byte) error
- type BatchPredictResult
- func (*BatchPredictResult) Descriptor() ([]byte, []int)
- func (m *BatchPredictResult) GetMetadata() map[string]string
- func (*BatchPredictResult) ProtoMessage()
- func (m *BatchPredictResult) Reset()
- func (m *BatchPredictResult) String() string
- func (m *BatchPredictResult) XXX_DiscardUnknown()
- func (m *BatchPredictResult) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BatchPredictResult) XXX_Merge(src proto.Message)
- func (m *BatchPredictResult) XXX_Size() int
- func (m *BatchPredictResult) XXX_Unmarshal(b []byte) error
- type BigQueryDestination
- func (*BigQueryDestination) Descriptor() ([]byte, []int)
- func (m *BigQueryDestination) GetOutputUri() string
- func (*BigQueryDestination) ProtoMessage()
- func (m *BigQueryDestination) Reset()
- func (m *BigQueryDestination) String() string
- func (m *BigQueryDestination) XXX_DiscardUnknown()
- func (m *BigQueryDestination) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BigQueryDestination) XXX_Merge(src proto.Message)
- func (m *BigQueryDestination) XXX_Size() int
- func (m *BigQueryDestination) XXX_Unmarshal(b []byte) error
- type BigQuerySource
- func (*BigQuerySource) Descriptor() ([]byte, []int)
- func (m *BigQuerySource) GetInputUri() string
- func (*BigQuerySource) ProtoMessage()
- func (m *BigQuerySource) Reset()
- func (m *BigQuerySource) String() string
- func (m *BigQuerySource) XXX_DiscardUnknown()
- func (m *BigQuerySource) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BigQuerySource) XXX_Merge(src proto.Message)
- func (m *BigQuerySource) XXX_Size() int
- func (m *BigQuerySource) XXX_Unmarshal(b []byte) error
- type BoundingBoxMetricsEntry
- func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)
- func (m *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry
- func (m *BoundingBoxMetricsEntry) GetIouThreshold() float32
- func (m *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32
- func (*BoundingBoxMetricsEntry) ProtoMessage()
- func (m *BoundingBoxMetricsEntry) Reset()
- func (m *BoundingBoxMetricsEntry) String() string
- func (m *BoundingBoxMetricsEntry) XXX_DiscardUnknown()
- func (m *BoundingBoxMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BoundingBoxMetricsEntry) XXX_Merge(src proto.Message)
- func (m *BoundingBoxMetricsEntry) XXX_Size() int
- func (m *BoundingBoxMetricsEntry) XXX_Unmarshal(b []byte) error
- type BoundingBoxMetricsEntry_ConfidenceMetricsEntry
- func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score() float32
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision() float32
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall() float32
- func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage()
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset()
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String() string
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_DiscardUnknown()
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Merge(src proto.Message)
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Size() int
- func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Unmarshal(b []byte) error
- type BoundingPoly
- func (*BoundingPoly) Descriptor() ([]byte, []int)
- func (m *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex
- func (*BoundingPoly) ProtoMessage()
- func (m *BoundingPoly) Reset()
- func (m *BoundingPoly) String() string
- func (m *BoundingPoly) XXX_DiscardUnknown()
- func (m *BoundingPoly) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *BoundingPoly) XXX_Merge(src proto.Message)
- func (m *BoundingPoly) XXX_Size() int
- func (m *BoundingPoly) XXX_Unmarshal(b []byte) error
- type CategoryStats
- func (*CategoryStats) Descriptor() ([]byte, []int)
- func (m *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats
- func (*CategoryStats) ProtoMessage()
- func (m *CategoryStats) Reset()
- func (m *CategoryStats) String() string
- func (m *CategoryStats) XXX_DiscardUnknown()
- func (m *CategoryStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *CategoryStats) XXX_Merge(src proto.Message)
- func (m *CategoryStats) XXX_Size() int
- func (m *CategoryStats) XXX_Unmarshal(b []byte) error
- type CategoryStats_SingleCategoryStats
- func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)
- func (m *CategoryStats_SingleCategoryStats) GetCount() int64
- func (m *CategoryStats_SingleCategoryStats) GetValue() string
- func (*CategoryStats_SingleCategoryStats) ProtoMessage()
- func (m *CategoryStats_SingleCategoryStats) Reset()
- func (m *CategoryStats_SingleCategoryStats) String() string
- func (m *CategoryStats_SingleCategoryStats) XXX_DiscardUnknown()
- func (m *CategoryStats_SingleCategoryStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *CategoryStats_SingleCategoryStats) XXX_Merge(src proto.Message)
- func (m *CategoryStats_SingleCategoryStats) XXX_Size() int
- func (m *CategoryStats_SingleCategoryStats) XXX_Unmarshal(b []byte) error
- type ClassificationAnnotation
- func (*ClassificationAnnotation) Descriptor() ([]byte, []int)
- func (m *ClassificationAnnotation) GetScore() float32
- func (*ClassificationAnnotation) ProtoMessage()
- func (m *ClassificationAnnotation) Reset()
- func (m *ClassificationAnnotation) String() string
- func (m *ClassificationAnnotation) XXX_DiscardUnknown()
- func (m *ClassificationAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ClassificationAnnotation) XXX_Merge(src proto.Message)
- func (m *ClassificationAnnotation) XXX_Size() int
- func (m *ClassificationAnnotation) XXX_Unmarshal(b []byte) error
- type ClassificationEvaluationMetrics
- func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string
- func (m *ClassificationEvaluationMetrics) GetAuPrc() float32
- func (m *ClassificationEvaluationMetrics) GetAuRoc() float32
- func (m *ClassificationEvaluationMetrics) GetBaseAuPrc() float32deprecated
- func (m *ClassificationEvaluationMetrics) GetConfidenceMetricsEntry() []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry
- func (m *ClassificationEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
- func (m *ClassificationEvaluationMetrics) GetLogLoss() float32
- func (*ClassificationEvaluationMetrics) ProtoMessage()
- func (m *ClassificationEvaluationMetrics) Reset()
- func (m *ClassificationEvaluationMetrics) String() string
- func (m *ClassificationEvaluationMetrics) XXX_DiscardUnknown()
- func (m *ClassificationEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ClassificationEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *ClassificationEvaluationMetrics) XXX_Size() int
- func (m *ClassificationEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type ClassificationEvaluationMetrics_ConfidenceMetricsEntry
- func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount() int64
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount() int64
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold() int32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1() float32
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount() int64
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount() int64
- func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset()
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String() string
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_DiscardUnknown()
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Merge(src proto.Message)
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Size() int
- func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Unmarshal(b []byte) error
- type ClassificationEvaluationMetrics_ConfusionMatrix
- func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName() []string
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) GetRow() []*ClassificationEvaluationMetrics_ConfusionMatrix_Row
- func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage()
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) Reset()
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) String() string
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_DiscardUnknown()
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Merge(src proto.Message)
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Size() int
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Unmarshal(b []byte) error
- type ClassificationEvaluationMetrics_ConfusionMatrix_Row
- func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount() []int32
- func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage()
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset()
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) String() string
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_DiscardUnknown()
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Merge(src proto.Message)
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Size() int
- func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Unmarshal(b []byte) error
- type ClassificationType
- type ColumnSpec
- func (*ColumnSpec) Descriptor() ([]byte, []int)
- func (m *ColumnSpec) GetDataStats() *DataStats
- func (m *ColumnSpec) GetDataType() *DataType
- func (m *ColumnSpec) GetDisplayName() string
- func (m *ColumnSpec) GetEtag() string
- func (m *ColumnSpec) GetName() string
- func (m *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn
- func (*ColumnSpec) ProtoMessage()
- func (m *ColumnSpec) Reset()
- func (m *ColumnSpec) String() string
- func (m *ColumnSpec) XXX_DiscardUnknown()
- func (m *ColumnSpec) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ColumnSpec) XXX_Merge(src proto.Message)
- func (m *ColumnSpec) XXX_Size() int
- func (m *ColumnSpec) XXX_Unmarshal(b []byte) error
- type ColumnSpec_CorrelatedColumn
- func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)
- func (m *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string
- func (m *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats
- func (*ColumnSpec_CorrelatedColumn) ProtoMessage()
- func (m *ColumnSpec_CorrelatedColumn) Reset()
- func (m *ColumnSpec_CorrelatedColumn) String() string
- func (m *ColumnSpec_CorrelatedColumn) XXX_DiscardUnknown()
- func (m *ColumnSpec_CorrelatedColumn) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ColumnSpec_CorrelatedColumn) XXX_Merge(src proto.Message)
- func (m *ColumnSpec_CorrelatedColumn) XXX_Size() int
- func (m *ColumnSpec_CorrelatedColumn) XXX_Unmarshal(b []byte) error
- type CorrelationStats
- func (*CorrelationStats) Descriptor() ([]byte, []int)
- func (m *CorrelationStats) GetCramersV() float64
- func (*CorrelationStats) ProtoMessage()
- func (m *CorrelationStats) Reset()
- func (m *CorrelationStats) String() string
- func (m *CorrelationStats) XXX_DiscardUnknown()
- func (m *CorrelationStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *CorrelationStats) XXX_Merge(src proto.Message)
- func (m *CorrelationStats) XXX_Size() int
- func (m *CorrelationStats) XXX_Unmarshal(b []byte) error
- type CreateDatasetRequest
- func (*CreateDatasetRequest) Descriptor() ([]byte, []int)
- func (m *CreateDatasetRequest) GetDataset() *Dataset
- func (m *CreateDatasetRequest) GetParent() string
- func (*CreateDatasetRequest) ProtoMessage()
- func (m *CreateDatasetRequest) Reset()
- func (m *CreateDatasetRequest) String() string
- func (m *CreateDatasetRequest) XXX_DiscardUnknown()
- func (m *CreateDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *CreateDatasetRequest) XXX_Merge(src proto.Message)
- func (m *CreateDatasetRequest) XXX_Size() int
- func (m *CreateDatasetRequest) XXX_Unmarshal(b []byte) error
- type CreateModelOperationMetadata
- func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)
- func (*CreateModelOperationMetadata) ProtoMessage()
- func (m *CreateModelOperationMetadata) Reset()
- func (m *CreateModelOperationMetadata) String() string
- func (m *CreateModelOperationMetadata) XXX_DiscardUnknown()
- func (m *CreateModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *CreateModelOperationMetadata) XXX_Merge(src proto.Message)
- func (m *CreateModelOperationMetadata) XXX_Size() int
- func (m *CreateModelOperationMetadata) XXX_Unmarshal(b []byte) error
- type CreateModelRequest
- func (*CreateModelRequest) Descriptor() ([]byte, []int)
- func (m *CreateModelRequest) GetModel() *Model
- func (m *CreateModelRequest) GetParent() string
- func (*CreateModelRequest) ProtoMessage()
- func (m *CreateModelRequest) Reset()
- func (m *CreateModelRequest) String() string
- func (m *CreateModelRequest) XXX_DiscardUnknown()
- func (m *CreateModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *CreateModelRequest) XXX_Merge(src proto.Message)
- func (m *CreateModelRequest) XXX_Size() int
- func (m *CreateModelRequest) XXX_Unmarshal(b []byte) error
- type DataStats
- func (*DataStats) Descriptor() ([]byte, []int)
- func (m *DataStats) GetArrayStats() *ArrayStats
- func (m *DataStats) GetCategoryStats() *CategoryStats
- func (m *DataStats) GetDistinctValueCount() int64
- func (m *DataStats) GetFloat64Stats() *Float64Stats
- func (m *DataStats) GetNullValueCount() int64
- func (m *DataStats) GetStats() isDataStats_Stats
- func (m *DataStats) GetStringStats() *StringStats
- func (m *DataStats) GetStructStats() *StructStats
- func (m *DataStats) GetTimestampStats() *TimestampStats
- func (m *DataStats) GetValidValueCount() int64
- func (*DataStats) ProtoMessage()
- func (m *DataStats) Reset()
- func (m *DataStats) String() string
- func (m *DataStats) XXX_DiscardUnknown()
- func (m *DataStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DataStats) XXX_Merge(src proto.Message)
- func (*DataStats) XXX_OneofWrappers() []interface{}
- func (m *DataStats) XXX_Size() int
- func (m *DataStats) XXX_Unmarshal(b []byte) error
- type DataStats_ArrayStats
- type DataStats_CategoryStats
- type DataStats_Float64Stats
- type DataStats_StringStats
- type DataStats_StructStats
- type DataStats_TimestampStats
- type DataType
- func (*DataType) Descriptor() ([]byte, []int)
- func (m *DataType) GetDetails() isDataType_Details
- func (m *DataType) GetListElementType() *DataType
- func (m *DataType) GetNullable() bool
- func (m *DataType) GetStructType() *StructType
- func (m *DataType) GetTimeFormat() string
- func (m *DataType) GetTypeCode() TypeCode
- func (*DataType) ProtoMessage()
- func (m *DataType) Reset()
- func (m *DataType) String() string
- func (m *DataType) XXX_DiscardUnknown()
- func (m *DataType) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DataType) XXX_Merge(src proto.Message)
- func (*DataType) XXX_OneofWrappers() []interface{}
- func (m *DataType) XXX_Size() int
- func (m *DataType) XXX_Unmarshal(b []byte) error
- type DataType_ListElementType
- type DataType_StructType
- type DataType_TimeFormat
- type Dataset
- func (*Dataset) Descriptor() ([]byte, []int)
- func (m *Dataset) GetCreateTime() *timestamp.Timestamp
- func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata
- func (m *Dataset) GetDescription() string
- func (m *Dataset) GetDisplayName() string
- func (m *Dataset) GetEtag() string
- func (m *Dataset) GetExampleCount() int32
- func (m *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata
- func (m *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata
- func (m *Dataset) GetName() string
- func (m *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata
- func (m *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata
- func (m *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata
- func (m *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata
- func (m *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata
- func (m *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata
- func (m *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata
- func (*Dataset) ProtoMessage()
- func (m *Dataset) Reset()
- func (m *Dataset) String() string
- func (m *Dataset) XXX_DiscardUnknown()
- func (m *Dataset) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Dataset) XXX_Merge(src proto.Message)
- func (*Dataset) XXX_OneofWrappers() []interface{}
- func (m *Dataset) XXX_Size() int
- func (m *Dataset) XXX_Unmarshal(b []byte) error
- type Dataset_ImageClassificationDatasetMetadata
- type Dataset_ImageObjectDetectionDatasetMetadata
- type Dataset_TablesDatasetMetadata
- type Dataset_TextClassificationDatasetMetadata
- type Dataset_TextExtractionDatasetMetadata
- type Dataset_TextSentimentDatasetMetadata
- type Dataset_TranslationDatasetMetadata
- type Dataset_VideoClassificationDatasetMetadata
- type Dataset_VideoObjectTrackingDatasetMetadata
- type DeleteDatasetRequest
- func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)
- func (m *DeleteDatasetRequest) GetName() string
- func (*DeleteDatasetRequest) ProtoMessage()
- func (m *DeleteDatasetRequest) Reset()
- func (m *DeleteDatasetRequest) String() string
- func (m *DeleteDatasetRequest) XXX_DiscardUnknown()
- func (m *DeleteDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DeleteDatasetRequest) XXX_Merge(src proto.Message)
- func (m *DeleteDatasetRequest) XXX_Size() int
- func (m *DeleteDatasetRequest) XXX_Unmarshal(b []byte) error
- type DeleteModelRequest
- func (*DeleteModelRequest) Descriptor() ([]byte, []int)
- func (m *DeleteModelRequest) GetName() string
- func (*DeleteModelRequest) ProtoMessage()
- func (m *DeleteModelRequest) Reset()
- func (m *DeleteModelRequest) String() string
- func (m *DeleteModelRequest) XXX_DiscardUnknown()
- func (m *DeleteModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DeleteModelRequest) XXX_Merge(src proto.Message)
- func (m *DeleteModelRequest) XXX_Size() int
- func (m *DeleteModelRequest) XXX_Unmarshal(b []byte) error
- type DeleteOperationMetadata
- func (*DeleteOperationMetadata) Descriptor() ([]byte, []int)
- func (*DeleteOperationMetadata) ProtoMessage()
- func (m *DeleteOperationMetadata) Reset()
- func (m *DeleteOperationMetadata) String() string
- func (m *DeleteOperationMetadata) XXX_DiscardUnknown()
- func (m *DeleteOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DeleteOperationMetadata) XXX_Merge(src proto.Message)
- func (m *DeleteOperationMetadata) XXX_Size() int
- func (m *DeleteOperationMetadata) XXX_Unmarshal(b []byte) error
- type DeployModelOperationMetadata
- func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)
- func (*DeployModelOperationMetadata) ProtoMessage()
- func (m *DeployModelOperationMetadata) Reset()
- func (m *DeployModelOperationMetadata) String() string
- func (m *DeployModelOperationMetadata) XXX_DiscardUnknown()
- func (m *DeployModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DeployModelOperationMetadata) XXX_Merge(src proto.Message)
- func (m *DeployModelOperationMetadata) XXX_Size() int
- func (m *DeployModelOperationMetadata) XXX_Unmarshal(b []byte) error
- type DeployModelRequest
- func (*DeployModelRequest) Descriptor() ([]byte, []int)
- func (m *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata
- func (m *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata
- func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata
- func (m *DeployModelRequest) GetName() string
- func (*DeployModelRequest) ProtoMessage()
- func (m *DeployModelRequest) Reset()
- func (m *DeployModelRequest) String() string
- func (m *DeployModelRequest) XXX_DiscardUnknown()
- func (m *DeployModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DeployModelRequest) XXX_Merge(src proto.Message)
- func (*DeployModelRequest) XXX_OneofWrappers() []interface{}
- func (m *DeployModelRequest) XXX_Size() int
- func (m *DeployModelRequest) XXX_Unmarshal(b []byte) error
- type DeployModelRequest_ImageClassificationModelDeploymentMetadata
- type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
- type Document
- func (*Document) Descriptor() ([]byte, []int)
- func (m *Document) GetDocumentDimensions() *DocumentDimensions
- func (m *Document) GetDocumentText() *TextSnippet
- func (m *Document) GetInputConfig() *DocumentInputConfig
- func (m *Document) GetLayout() []*Document_Layout
- func (m *Document) GetPageCount() int32
- func (*Document) ProtoMessage()
- func (m *Document) Reset()
- func (m *Document) String() string
- func (m *Document) XXX_DiscardUnknown()
- func (m *Document) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Document) XXX_Merge(src proto.Message)
- func (m *Document) XXX_Size() int
- func (m *Document) XXX_Unmarshal(b []byte) error
- type DocumentDimensions
- func (*DocumentDimensions) Descriptor() ([]byte, []int)
- func (m *DocumentDimensions) GetHeight() float32
- func (m *DocumentDimensions) GetUnit() DocumentDimensions_DocumentDimensionUnit
- func (m *DocumentDimensions) GetWidth() float32
- func (*DocumentDimensions) ProtoMessage()
- func (m *DocumentDimensions) Reset()
- func (m *DocumentDimensions) String() string
- func (m *DocumentDimensions) XXX_DiscardUnknown()
- func (m *DocumentDimensions) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DocumentDimensions) XXX_Merge(src proto.Message)
- func (m *DocumentDimensions) XXX_Size() int
- func (m *DocumentDimensions) XXX_Unmarshal(b []byte) error
- type DocumentDimensions_DocumentDimensionUnit
- type DocumentInputConfig
- func (*DocumentInputConfig) Descriptor() ([]byte, []int)
- func (m *DocumentInputConfig) GetGcsSource() *GcsSource
- func (*DocumentInputConfig) ProtoMessage()
- func (m *DocumentInputConfig) Reset()
- func (m *DocumentInputConfig) String() string
- func (m *DocumentInputConfig) XXX_DiscardUnknown()
- func (m *DocumentInputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DocumentInputConfig) XXX_Merge(src proto.Message)
- func (m *DocumentInputConfig) XXX_Size() int
- func (m *DocumentInputConfig) XXX_Unmarshal(b []byte) error
- type Document_Layout
- func (*Document_Layout) Descriptor() ([]byte, []int)
- func (m *Document_Layout) GetBoundingPoly() *BoundingPoly
- func (m *Document_Layout) GetPageNumber() int32
- func (m *Document_Layout) GetTextSegment() *TextSegment
- func (m *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType
- func (*Document_Layout) ProtoMessage()
- func (m *Document_Layout) Reset()
- func (m *Document_Layout) String() string
- func (m *Document_Layout) XXX_DiscardUnknown()
- func (m *Document_Layout) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Document_Layout) XXX_Merge(src proto.Message)
- func (m *Document_Layout) XXX_Size() int
- func (m *Document_Layout) XXX_Unmarshal(b []byte) error
- type Document_Layout_TextSegmentType
- type DoubleRange
- func (*DoubleRange) Descriptor() ([]byte, []int)
- func (m *DoubleRange) GetEnd() float64
- func (m *DoubleRange) GetStart() float64
- func (*DoubleRange) ProtoMessage()
- func (m *DoubleRange) Reset()
- func (m *DoubleRange) String() string
- func (m *DoubleRange) XXX_DiscardUnknown()
- func (m *DoubleRange) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *DoubleRange) XXX_Merge(src proto.Message)
- func (m *DoubleRange) XXX_Size() int
- func (m *DoubleRange) XXX_Unmarshal(b []byte) error
- type ExamplePayload
- func (*ExamplePayload) Descriptor() ([]byte, []int)
- func (m *ExamplePayload) GetDocument() *Document
- func (m *ExamplePayload) GetImage() *Image
- func (m *ExamplePayload) GetPayload() isExamplePayload_Payload
- func (m *ExamplePayload) GetRow() *Row
- func (m *ExamplePayload) GetTextSnippet() *TextSnippet
- func (*ExamplePayload) ProtoMessage()
- func (m *ExamplePayload) Reset()
- func (m *ExamplePayload) String() string
- func (m *ExamplePayload) XXX_DiscardUnknown()
- func (m *ExamplePayload) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExamplePayload) XXX_Merge(src proto.Message)
- func (*ExamplePayload) XXX_OneofWrappers() []interface{}
- func (m *ExamplePayload) XXX_Size() int
- func (m *ExamplePayload) XXX_Unmarshal(b []byte) error
- type ExamplePayload_Document
- type ExamplePayload_Image
- type ExamplePayload_Row
- type ExamplePayload_TextSnippet
- type ExportDataOperationMetadata
- func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)
- func (m *ExportDataOperationMetadata) GetOutputInfo() *ExportDataOperationMetadata_ExportDataOutputInfo
- func (*ExportDataOperationMetadata) ProtoMessage()
- func (m *ExportDataOperationMetadata) Reset()
- func (m *ExportDataOperationMetadata) String() string
- func (m *ExportDataOperationMetadata) XXX_DiscardUnknown()
- func (m *ExportDataOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportDataOperationMetadata) XXX_Merge(src proto.Message)
- func (m *ExportDataOperationMetadata) XXX_Size() int
- func (m *ExportDataOperationMetadata) XXX_Unmarshal(b []byte) error
- type ExportDataOperationMetadata_ExportDataOutputInfo
- func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor() ([]byte, []int)
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetBigqueryOutputDataset() string
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory() string
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation() isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation
- func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage()
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) Reset()
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) String() string
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_DiscardUnknown()
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Merge(src proto.Message)
- func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_OneofWrappers() []interface{}
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Size() int
- func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Unmarshal(b []byte) error
- type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset
- type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
- type ExportDataRequest
- func (*ExportDataRequest) Descriptor() ([]byte, []int)
- func (m *ExportDataRequest) GetName() string
- func (m *ExportDataRequest) GetOutputConfig() *OutputConfig
- func (*ExportDataRequest) ProtoMessage()
- func (m *ExportDataRequest) Reset()
- func (m *ExportDataRequest) String() string
- func (m *ExportDataRequest) XXX_DiscardUnknown()
- func (m *ExportDataRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportDataRequest) XXX_Merge(src proto.Message)
- func (m *ExportDataRequest) XXX_Size() int
- func (m *ExportDataRequest) XXX_Unmarshal(b []byte) error
- type ExportEvaluatedExamplesOperationMetadata
- func (*ExportEvaluatedExamplesOperationMetadata) Descriptor() ([]byte, []int)
- func (m *ExportEvaluatedExamplesOperationMetadata) GetOutputInfo() *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo
- func (*ExportEvaluatedExamplesOperationMetadata) ProtoMessage()
- func (m *ExportEvaluatedExamplesOperationMetadata) Reset()
- func (m *ExportEvaluatedExamplesOperationMetadata) String() string
- func (m *ExportEvaluatedExamplesOperationMetadata) XXX_DiscardUnknown()
- func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Merge(src proto.Message)
- func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Size() int
- func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Unmarshal(b []byte) error
- type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo
- func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Descriptor() ([]byte, []int)
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) GetBigqueryOutputDataset() string
- func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoMessage()
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Reset()
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) String() string
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_DiscardUnknown()
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Merge(src proto.Message)
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Size() int
- func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Unmarshal(b []byte) error
- type ExportEvaluatedExamplesOutputConfig
- func (*ExportEvaluatedExamplesOutputConfig) Descriptor() ([]byte, []int)
- func (m *ExportEvaluatedExamplesOutputConfig) GetBigqueryDestination() *BigQueryDestination
- func (m *ExportEvaluatedExamplesOutputConfig) GetDestination() isExportEvaluatedExamplesOutputConfig_Destination
- func (*ExportEvaluatedExamplesOutputConfig) ProtoMessage()
- func (m *ExportEvaluatedExamplesOutputConfig) Reset()
- func (m *ExportEvaluatedExamplesOutputConfig) String() string
- func (m *ExportEvaluatedExamplesOutputConfig) XXX_DiscardUnknown()
- func (m *ExportEvaluatedExamplesOutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportEvaluatedExamplesOutputConfig) XXX_Merge(src proto.Message)
- func (*ExportEvaluatedExamplesOutputConfig) XXX_OneofWrappers() []interface{}
- func (m *ExportEvaluatedExamplesOutputConfig) XXX_Size() int
- func (m *ExportEvaluatedExamplesOutputConfig) XXX_Unmarshal(b []byte) error
- type ExportEvaluatedExamplesOutputConfig_BigqueryDestination
- type ExportEvaluatedExamplesRequest
- func (*ExportEvaluatedExamplesRequest) Descriptor() ([]byte, []int)
- func (m *ExportEvaluatedExamplesRequest) GetName() string
- func (m *ExportEvaluatedExamplesRequest) GetOutputConfig() *ExportEvaluatedExamplesOutputConfig
- func (*ExportEvaluatedExamplesRequest) ProtoMessage()
- func (m *ExportEvaluatedExamplesRequest) Reset()
- func (m *ExportEvaluatedExamplesRequest) String() string
- func (m *ExportEvaluatedExamplesRequest) XXX_DiscardUnknown()
- func (m *ExportEvaluatedExamplesRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportEvaluatedExamplesRequest) XXX_Merge(src proto.Message)
- func (m *ExportEvaluatedExamplesRequest) XXX_Size() int
- func (m *ExportEvaluatedExamplesRequest) XXX_Unmarshal(b []byte) error
- type ExportModelOperationMetadata
- func (*ExportModelOperationMetadata) Descriptor() ([]byte, []int)
- func (m *ExportModelOperationMetadata) GetOutputInfo() *ExportModelOperationMetadata_ExportModelOutputInfo
- func (*ExportModelOperationMetadata) ProtoMessage()
- func (m *ExportModelOperationMetadata) Reset()
- func (m *ExportModelOperationMetadata) String() string
- func (m *ExportModelOperationMetadata) XXX_DiscardUnknown()
- func (m *ExportModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportModelOperationMetadata) XXX_Merge(src proto.Message)
- func (m *ExportModelOperationMetadata) XXX_Size() int
- func (m *ExportModelOperationMetadata) XXX_Unmarshal(b []byte) error
- type ExportModelOperationMetadata_ExportModelOutputInfo
- func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor() ([]byte, []int)
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory() string
- func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage()
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) Reset()
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) String() string
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_DiscardUnknown()
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Merge(src proto.Message)
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Size() int
- func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Unmarshal(b []byte) error
- type ExportModelRequest
- func (*ExportModelRequest) Descriptor() ([]byte, []int)
- func (m *ExportModelRequest) GetName() string
- func (m *ExportModelRequest) GetOutputConfig() *ModelExportOutputConfig
- func (*ExportModelRequest) ProtoMessage()
- func (m *ExportModelRequest) Reset()
- func (m *ExportModelRequest) String() string
- func (m *ExportModelRequest) XXX_DiscardUnknown()
- func (m *ExportModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ExportModelRequest) XXX_Merge(src proto.Message)
- func (m *ExportModelRequest) XXX_Size() int
- func (m *ExportModelRequest) XXX_Unmarshal(b []byte) error
- type Float64Stats
- func (*Float64Stats) Descriptor() ([]byte, []int)
- func (m *Float64Stats) GetHistogramBuckets() []*Float64Stats_HistogramBucket
- func (m *Float64Stats) GetMean() float64
- func (m *Float64Stats) GetQuantiles() []float64
- func (m *Float64Stats) GetStandardDeviation() float64
- func (*Float64Stats) ProtoMessage()
- func (m *Float64Stats) Reset()
- func (m *Float64Stats) String() string
- func (m *Float64Stats) XXX_DiscardUnknown()
- func (m *Float64Stats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Float64Stats) XXX_Merge(src proto.Message)
- func (m *Float64Stats) XXX_Size() int
- func (m *Float64Stats) XXX_Unmarshal(b []byte) error
- type Float64Stats_HistogramBucket
- func (*Float64Stats_HistogramBucket) Descriptor() ([]byte, []int)
- func (m *Float64Stats_HistogramBucket) GetCount() int64
- func (m *Float64Stats_HistogramBucket) GetMax() float64
- func (m *Float64Stats_HistogramBucket) GetMin() float64
- func (*Float64Stats_HistogramBucket) ProtoMessage()
- func (m *Float64Stats_HistogramBucket) Reset()
- func (m *Float64Stats_HistogramBucket) String() string
- func (m *Float64Stats_HistogramBucket) XXX_DiscardUnknown()
- func (m *Float64Stats_HistogramBucket) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Float64Stats_HistogramBucket) XXX_Merge(src proto.Message)
- func (m *Float64Stats_HistogramBucket) XXX_Size() int
- func (m *Float64Stats_HistogramBucket) XXX_Unmarshal(b []byte) error
- type GcrDestination
- func (*GcrDestination) Descriptor() ([]byte, []int)
- func (m *GcrDestination) GetOutputUri() string
- func (*GcrDestination) ProtoMessage()
- func (m *GcrDestination) Reset()
- func (m *GcrDestination) String() string
- func (m *GcrDestination) XXX_DiscardUnknown()
- func (m *GcrDestination) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GcrDestination) XXX_Merge(src proto.Message)
- func (m *GcrDestination) XXX_Size() int
- func (m *GcrDestination) XXX_Unmarshal(b []byte) error
- type GcsDestination
- func (*GcsDestination) Descriptor() ([]byte, []int)
- func (m *GcsDestination) GetOutputUriPrefix() string
- func (*GcsDestination) ProtoMessage()
- func (m *GcsDestination) Reset()
- func (m *GcsDestination) String() string
- func (m *GcsDestination) XXX_DiscardUnknown()
- func (m *GcsDestination) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GcsDestination) XXX_Merge(src proto.Message)
- func (m *GcsDestination) XXX_Size() int
- func (m *GcsDestination) XXX_Unmarshal(b []byte) error
- type GcsSource
- func (*GcsSource) Descriptor() ([]byte, []int)
- func (m *GcsSource) GetInputUris() []string
- func (*GcsSource) ProtoMessage()
- func (m *GcsSource) Reset()
- func (m *GcsSource) String() string
- func (m *GcsSource) XXX_DiscardUnknown()
- func (m *GcsSource) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GcsSource) XXX_Merge(src proto.Message)
- func (m *GcsSource) XXX_Size() int
- func (m *GcsSource) XXX_Unmarshal(b []byte) error
- type GetAnnotationSpecRequest
- func (*GetAnnotationSpecRequest) Descriptor() ([]byte, []int)
- func (m *GetAnnotationSpecRequest) GetName() string
- func (*GetAnnotationSpecRequest) ProtoMessage()
- func (m *GetAnnotationSpecRequest) Reset()
- func (m *GetAnnotationSpecRequest) String() string
- func (m *GetAnnotationSpecRequest) XXX_DiscardUnknown()
- func (m *GetAnnotationSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GetAnnotationSpecRequest) XXX_Merge(src proto.Message)
- func (m *GetAnnotationSpecRequest) XXX_Size() int
- func (m *GetAnnotationSpecRequest) XXX_Unmarshal(b []byte) error
- type GetColumnSpecRequest
- func (*GetColumnSpecRequest) Descriptor() ([]byte, []int)
- func (m *GetColumnSpecRequest) GetFieldMask() *field_mask.FieldMask
- func (m *GetColumnSpecRequest) GetName() string
- func (*GetColumnSpecRequest) ProtoMessage()
- func (m *GetColumnSpecRequest) Reset()
- func (m *GetColumnSpecRequest) String() string
- func (m *GetColumnSpecRequest) XXX_DiscardUnknown()
- func (m *GetColumnSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GetColumnSpecRequest) XXX_Merge(src proto.Message)
- func (m *GetColumnSpecRequest) XXX_Size() int
- func (m *GetColumnSpecRequest) XXX_Unmarshal(b []byte) error
- type GetDatasetRequest
- func (*GetDatasetRequest) Descriptor() ([]byte, []int)
- func (m *GetDatasetRequest) GetName() string
- func (*GetDatasetRequest) ProtoMessage()
- func (m *GetDatasetRequest) Reset()
- func (m *GetDatasetRequest) String() string
- func (m *GetDatasetRequest) XXX_DiscardUnknown()
- func (m *GetDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GetDatasetRequest) XXX_Merge(src proto.Message)
- func (m *GetDatasetRequest) XXX_Size() int
- func (m *GetDatasetRequest) XXX_Unmarshal(b []byte) error
- type GetModelEvaluationRequest
- func (*GetModelEvaluationRequest) Descriptor() ([]byte, []int)
- func (m *GetModelEvaluationRequest) GetName() string
- func (*GetModelEvaluationRequest) ProtoMessage()
- func (m *GetModelEvaluationRequest) Reset()
- func (m *GetModelEvaluationRequest) String() string
- func (m *GetModelEvaluationRequest) XXX_DiscardUnknown()
- func (m *GetModelEvaluationRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GetModelEvaluationRequest) XXX_Merge(src proto.Message)
- func (m *GetModelEvaluationRequest) XXX_Size() int
- func (m *GetModelEvaluationRequest) XXX_Unmarshal(b []byte) error
- type GetModelRequest
- func (*GetModelRequest) Descriptor() ([]byte, []int)
- func (m *GetModelRequest) GetName() string
- func (*GetModelRequest) ProtoMessage()
- func (m *GetModelRequest) Reset()
- func (m *GetModelRequest) String() string
- func (m *GetModelRequest) XXX_DiscardUnknown()
- func (m *GetModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GetModelRequest) XXX_Merge(src proto.Message)
- func (m *GetModelRequest) XXX_Size() int
- func (m *GetModelRequest) XXX_Unmarshal(b []byte) error
- type GetTableSpecRequest
- func (*GetTableSpecRequest) Descriptor() ([]byte, []int)
- func (m *GetTableSpecRequest) GetFieldMask() *field_mask.FieldMask
- func (m *GetTableSpecRequest) GetName() string
- func (*GetTableSpecRequest) ProtoMessage()
- func (m *GetTableSpecRequest) Reset()
- func (m *GetTableSpecRequest) String() string
- func (m *GetTableSpecRequest) XXX_DiscardUnknown()
- func (m *GetTableSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *GetTableSpecRequest) XXX_Merge(src proto.Message)
- func (m *GetTableSpecRequest) XXX_Size() int
- func (m *GetTableSpecRequest) XXX_Unmarshal(b []byte) error
- type Image
- func (*Image) Descriptor() ([]byte, []int)
- func (m *Image) GetData() isImage_Data
- func (m *Image) GetImageBytes() []byte
- func (m *Image) GetInputConfig() *InputConfig
- func (m *Image) GetThumbnailUri() string
- func (*Image) ProtoMessage()
- func (m *Image) Reset()
- func (m *Image) String() string
- func (m *Image) XXX_DiscardUnknown()
- func (m *Image) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Image) XXX_Merge(src proto.Message)
- func (*Image) XXX_OneofWrappers() []interface{}
- func (m *Image) XXX_Size() int
- func (m *Image) XXX_Unmarshal(b []byte) error
- type ImageClassificationDatasetMetadata
- func (*ImageClassificationDatasetMetadata) Descriptor() ([]byte, []int)
- func (m *ImageClassificationDatasetMetadata) GetClassificationType() ClassificationType
- func (*ImageClassificationDatasetMetadata) ProtoMessage()
- func (m *ImageClassificationDatasetMetadata) Reset()
- func (m *ImageClassificationDatasetMetadata) String() string
- func (m *ImageClassificationDatasetMetadata) XXX_DiscardUnknown()
- func (m *ImageClassificationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageClassificationDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *ImageClassificationDatasetMetadata) XXX_Size() int
- func (m *ImageClassificationDatasetMetadata) XXX_Unmarshal(b []byte) error
- type ImageClassificationModelDeploymentMetadata
- func (*ImageClassificationModelDeploymentMetadata) Descriptor() ([]byte, []int)
- func (m *ImageClassificationModelDeploymentMetadata) GetNodeCount() int64
- func (*ImageClassificationModelDeploymentMetadata) ProtoMessage()
- func (m *ImageClassificationModelDeploymentMetadata) Reset()
- func (m *ImageClassificationModelDeploymentMetadata) String() string
- func (m *ImageClassificationModelDeploymentMetadata) XXX_DiscardUnknown()
- func (m *ImageClassificationModelDeploymentMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageClassificationModelDeploymentMetadata) XXX_Merge(src proto.Message)
- func (m *ImageClassificationModelDeploymentMetadata) XXX_Size() int
- func (m *ImageClassificationModelDeploymentMetadata) XXX_Unmarshal(b []byte) error
- type ImageClassificationModelMetadata
- func (*ImageClassificationModelMetadata) Descriptor() ([]byte, []int)
- func (m *ImageClassificationModelMetadata) GetBaseModelId() string
- func (m *ImageClassificationModelMetadata) GetModelType() string
- func (m *ImageClassificationModelMetadata) GetNodeCount() int64
- func (m *ImageClassificationModelMetadata) GetNodeQps() float64
- func (m *ImageClassificationModelMetadata) GetStopReason() string
- func (m *ImageClassificationModelMetadata) GetTrainBudget() int64
- func (m *ImageClassificationModelMetadata) GetTrainCost() int64
- func (*ImageClassificationModelMetadata) ProtoMessage()
- func (m *ImageClassificationModelMetadata) Reset()
- func (m *ImageClassificationModelMetadata) String() string
- func (m *ImageClassificationModelMetadata) XXX_DiscardUnknown()
- func (m *ImageClassificationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageClassificationModelMetadata) XXX_Merge(src proto.Message)
- func (m *ImageClassificationModelMetadata) XXX_Size() int
- func (m *ImageClassificationModelMetadata) XXX_Unmarshal(b []byte) error
- type ImageObjectDetectionAnnotation
- func (*ImageObjectDetectionAnnotation) Descriptor() ([]byte, []int)
- func (m *ImageObjectDetectionAnnotation) GetBoundingBox() *BoundingPoly
- func (m *ImageObjectDetectionAnnotation) GetScore() float32
- func (*ImageObjectDetectionAnnotation) ProtoMessage()
- func (m *ImageObjectDetectionAnnotation) Reset()
- func (m *ImageObjectDetectionAnnotation) String() string
- func (m *ImageObjectDetectionAnnotation) XXX_DiscardUnknown()
- func (m *ImageObjectDetectionAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageObjectDetectionAnnotation) XXX_Merge(src proto.Message)
- func (m *ImageObjectDetectionAnnotation) XXX_Size() int
- func (m *ImageObjectDetectionAnnotation) XXX_Unmarshal(b []byte) error
- type ImageObjectDetectionDatasetMetadata
- func (*ImageObjectDetectionDatasetMetadata) Descriptor() ([]byte, []int)
- func (*ImageObjectDetectionDatasetMetadata) ProtoMessage()
- func (m *ImageObjectDetectionDatasetMetadata) Reset()
- func (m *ImageObjectDetectionDatasetMetadata) String() string
- func (m *ImageObjectDetectionDatasetMetadata) XXX_DiscardUnknown()
- func (m *ImageObjectDetectionDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageObjectDetectionDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *ImageObjectDetectionDatasetMetadata) XXX_Size() int
- func (m *ImageObjectDetectionDatasetMetadata) XXX_Unmarshal(b []byte) error
- type ImageObjectDetectionEvaluationMetrics
- func (*ImageObjectDetectionEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
- func (m *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
- func (m *ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
- func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage()
- func (m *ImageObjectDetectionEvaluationMetrics) Reset()
- func (m *ImageObjectDetectionEvaluationMetrics) String() string
- func (m *ImageObjectDetectionEvaluationMetrics) XXX_DiscardUnknown()
- func (m *ImageObjectDetectionEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageObjectDetectionEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *ImageObjectDetectionEvaluationMetrics) XXX_Size() int
- func (m *ImageObjectDetectionEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type ImageObjectDetectionModelDeploymentMetadata
- func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor() ([]byte, []int)
- func (m *ImageObjectDetectionModelDeploymentMetadata) GetNodeCount() int64
- func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage()
- func (m *ImageObjectDetectionModelDeploymentMetadata) Reset()
- func (m *ImageObjectDetectionModelDeploymentMetadata) String() string
- func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_DiscardUnknown()
- func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Merge(src proto.Message)
- func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Size() int
- func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Unmarshal(b []byte) error
- type ImageObjectDetectionModelMetadata
- func (*ImageObjectDetectionModelMetadata) Descriptor() ([]byte, []int)
- func (m *ImageObjectDetectionModelMetadata) GetModelType() string
- func (m *ImageObjectDetectionModelMetadata) GetNodeCount() int64
- func (m *ImageObjectDetectionModelMetadata) GetNodeQps() float64
- func (m *ImageObjectDetectionModelMetadata) GetStopReason() string
- func (m *ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours() int64
- func (m *ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours() int64
- func (*ImageObjectDetectionModelMetadata) ProtoMessage()
- func (m *ImageObjectDetectionModelMetadata) Reset()
- func (m *ImageObjectDetectionModelMetadata) String() string
- func (m *ImageObjectDetectionModelMetadata) XXX_DiscardUnknown()
- func (m *ImageObjectDetectionModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImageObjectDetectionModelMetadata) XXX_Merge(src proto.Message)
- func (m *ImageObjectDetectionModelMetadata) XXX_Size() int
- func (m *ImageObjectDetectionModelMetadata) XXX_Unmarshal(b []byte) error
- type Image_ImageBytes
- type Image_InputConfig
- type ImportDataOperationMetadata
- func (*ImportDataOperationMetadata) Descriptor() ([]byte, []int)
- func (*ImportDataOperationMetadata) ProtoMessage()
- func (m *ImportDataOperationMetadata) Reset()
- func (m *ImportDataOperationMetadata) String() string
- func (m *ImportDataOperationMetadata) XXX_DiscardUnknown()
- func (m *ImportDataOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImportDataOperationMetadata) XXX_Merge(src proto.Message)
- func (m *ImportDataOperationMetadata) XXX_Size() int
- func (m *ImportDataOperationMetadata) XXX_Unmarshal(b []byte) error
- type ImportDataRequest
- func (*ImportDataRequest) Descriptor() ([]byte, []int)
- func (m *ImportDataRequest) GetInputConfig() *InputConfig
- func (m *ImportDataRequest) GetName() string
- func (*ImportDataRequest) ProtoMessage()
- func (m *ImportDataRequest) Reset()
- func (m *ImportDataRequest) String() string
- func (m *ImportDataRequest) XXX_DiscardUnknown()
- func (m *ImportDataRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ImportDataRequest) XXX_Merge(src proto.Message)
- func (m *ImportDataRequest) XXX_Size() int
- func (m *ImportDataRequest) XXX_Unmarshal(b []byte) error
- type InputConfig
- func (*InputConfig) Descriptor() ([]byte, []int)
- func (m *InputConfig) GetBigquerySource() *BigQuerySource
- func (m *InputConfig) GetGcsSource() *GcsSource
- func (m *InputConfig) GetParams() map[string]string
- func (m *InputConfig) GetSource() isInputConfig_Source
- func (*InputConfig) ProtoMessage()
- func (m *InputConfig) Reset()
- func (m *InputConfig) String() string
- func (m *InputConfig) XXX_DiscardUnknown()
- func (m *InputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *InputConfig) XXX_Merge(src proto.Message)
- func (*InputConfig) XXX_OneofWrappers() []interface{}
- func (m *InputConfig) XXX_Size() int
- func (m *InputConfig) XXX_Unmarshal(b []byte) error
- type InputConfig_BigquerySource
- type InputConfig_GcsSource
- type ListColumnSpecsRequest
- func (*ListColumnSpecsRequest) Descriptor() ([]byte, []int)
- func (m *ListColumnSpecsRequest) GetFieldMask() *field_mask.FieldMask
- func (m *ListColumnSpecsRequest) GetFilter() string
- func (m *ListColumnSpecsRequest) GetPageSize() int32
- func (m *ListColumnSpecsRequest) GetPageToken() string
- func (m *ListColumnSpecsRequest) GetParent() string
- func (*ListColumnSpecsRequest) ProtoMessage()
- func (m *ListColumnSpecsRequest) Reset()
- func (m *ListColumnSpecsRequest) String() string
- func (m *ListColumnSpecsRequest) XXX_DiscardUnknown()
- func (m *ListColumnSpecsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListColumnSpecsRequest) XXX_Merge(src proto.Message)
- func (m *ListColumnSpecsRequest) XXX_Size() int
- func (m *ListColumnSpecsRequest) XXX_Unmarshal(b []byte) error
- type ListColumnSpecsResponse
- func (*ListColumnSpecsResponse) Descriptor() ([]byte, []int)
- func (m *ListColumnSpecsResponse) GetColumnSpecs() []*ColumnSpec
- func (m *ListColumnSpecsResponse) GetNextPageToken() string
- func (*ListColumnSpecsResponse) ProtoMessage()
- func (m *ListColumnSpecsResponse) Reset()
- func (m *ListColumnSpecsResponse) String() string
- func (m *ListColumnSpecsResponse) XXX_DiscardUnknown()
- func (m *ListColumnSpecsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListColumnSpecsResponse) XXX_Merge(src proto.Message)
- func (m *ListColumnSpecsResponse) XXX_Size() int
- func (m *ListColumnSpecsResponse) XXX_Unmarshal(b []byte) error
- type ListDatasetsRequest
- func (*ListDatasetsRequest) Descriptor() ([]byte, []int)
- func (m *ListDatasetsRequest) GetFilter() string
- func (m *ListDatasetsRequest) GetPageSize() int32
- func (m *ListDatasetsRequest) GetPageToken() string
- func (m *ListDatasetsRequest) GetParent() string
- func (*ListDatasetsRequest) ProtoMessage()
- func (m *ListDatasetsRequest) Reset()
- func (m *ListDatasetsRequest) String() string
- func (m *ListDatasetsRequest) XXX_DiscardUnknown()
- func (m *ListDatasetsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListDatasetsRequest) XXX_Merge(src proto.Message)
- func (m *ListDatasetsRequest) XXX_Size() int
- func (m *ListDatasetsRequest) XXX_Unmarshal(b []byte) error
- type ListDatasetsResponse
- func (*ListDatasetsResponse) Descriptor() ([]byte, []int)
- func (m *ListDatasetsResponse) GetDatasets() []*Dataset
- func (m *ListDatasetsResponse) GetNextPageToken() string
- func (*ListDatasetsResponse) ProtoMessage()
- func (m *ListDatasetsResponse) Reset()
- func (m *ListDatasetsResponse) String() string
- func (m *ListDatasetsResponse) XXX_DiscardUnknown()
- func (m *ListDatasetsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListDatasetsResponse) XXX_Merge(src proto.Message)
- func (m *ListDatasetsResponse) XXX_Size() int
- func (m *ListDatasetsResponse) XXX_Unmarshal(b []byte) error
- type ListModelEvaluationsRequest
- func (*ListModelEvaluationsRequest) Descriptor() ([]byte, []int)
- func (m *ListModelEvaluationsRequest) GetFilter() string
- func (m *ListModelEvaluationsRequest) GetPageSize() int32
- func (m *ListModelEvaluationsRequest) GetPageToken() string
- func (m *ListModelEvaluationsRequest) GetParent() string
- func (*ListModelEvaluationsRequest) ProtoMessage()
- func (m *ListModelEvaluationsRequest) Reset()
- func (m *ListModelEvaluationsRequest) String() string
- func (m *ListModelEvaluationsRequest) XXX_DiscardUnknown()
- func (m *ListModelEvaluationsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListModelEvaluationsRequest) XXX_Merge(src proto.Message)
- func (m *ListModelEvaluationsRequest) XXX_Size() int
- func (m *ListModelEvaluationsRequest) XXX_Unmarshal(b []byte) error
- type ListModelEvaluationsResponse
- func (*ListModelEvaluationsResponse) Descriptor() ([]byte, []int)
- func (m *ListModelEvaluationsResponse) GetModelEvaluation() []*ModelEvaluation
- func (m *ListModelEvaluationsResponse) GetNextPageToken() string
- func (*ListModelEvaluationsResponse) ProtoMessage()
- func (m *ListModelEvaluationsResponse) Reset()
- func (m *ListModelEvaluationsResponse) String() string
- func (m *ListModelEvaluationsResponse) XXX_DiscardUnknown()
- func (m *ListModelEvaluationsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListModelEvaluationsResponse) XXX_Merge(src proto.Message)
- func (m *ListModelEvaluationsResponse) XXX_Size() int
- func (m *ListModelEvaluationsResponse) XXX_Unmarshal(b []byte) error
- type ListModelsRequest
- func (*ListModelsRequest) Descriptor() ([]byte, []int)
- func (m *ListModelsRequest) GetFilter() string
- func (m *ListModelsRequest) GetPageSize() int32
- func (m *ListModelsRequest) GetPageToken() string
- func (m *ListModelsRequest) GetParent() string
- func (*ListModelsRequest) ProtoMessage()
- func (m *ListModelsRequest) Reset()
- func (m *ListModelsRequest) String() string
- func (m *ListModelsRequest) XXX_DiscardUnknown()
- func (m *ListModelsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListModelsRequest) XXX_Merge(src proto.Message)
- func (m *ListModelsRequest) XXX_Size() int
- func (m *ListModelsRequest) XXX_Unmarshal(b []byte) error
- type ListModelsResponse
- func (*ListModelsResponse) Descriptor() ([]byte, []int)
- func (m *ListModelsResponse) GetModel() []*Model
- func (m *ListModelsResponse) GetNextPageToken() string
- func (*ListModelsResponse) ProtoMessage()
- func (m *ListModelsResponse) Reset()
- func (m *ListModelsResponse) String() string
- func (m *ListModelsResponse) XXX_DiscardUnknown()
- func (m *ListModelsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListModelsResponse) XXX_Merge(src proto.Message)
- func (m *ListModelsResponse) XXX_Size() int
- func (m *ListModelsResponse) XXX_Unmarshal(b []byte) error
- type ListTableSpecsRequest
- func (*ListTableSpecsRequest) Descriptor() ([]byte, []int)
- func (m *ListTableSpecsRequest) GetFieldMask() *field_mask.FieldMask
- func (m *ListTableSpecsRequest) GetFilter() string
- func (m *ListTableSpecsRequest) GetPageSize() int32
- func (m *ListTableSpecsRequest) GetPageToken() string
- func (m *ListTableSpecsRequest) GetParent() string
- func (*ListTableSpecsRequest) ProtoMessage()
- func (m *ListTableSpecsRequest) Reset()
- func (m *ListTableSpecsRequest) String() string
- func (m *ListTableSpecsRequest) XXX_DiscardUnknown()
- func (m *ListTableSpecsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListTableSpecsRequest) XXX_Merge(src proto.Message)
- func (m *ListTableSpecsRequest) XXX_Size() int
- func (m *ListTableSpecsRequest) XXX_Unmarshal(b []byte) error
- type ListTableSpecsResponse
- func (*ListTableSpecsResponse) Descriptor() ([]byte, []int)
- func (m *ListTableSpecsResponse) GetNextPageToken() string
- func (m *ListTableSpecsResponse) GetTableSpecs() []*TableSpec
- func (*ListTableSpecsResponse) ProtoMessage()
- func (m *ListTableSpecsResponse) Reset()
- func (m *ListTableSpecsResponse) String() string
- func (m *ListTableSpecsResponse) XXX_DiscardUnknown()
- func (m *ListTableSpecsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ListTableSpecsResponse) XXX_Merge(src proto.Message)
- func (m *ListTableSpecsResponse) XXX_Size() int
- func (m *ListTableSpecsResponse) XXX_Unmarshal(b []byte) error
- type Model
- func (*Model) Descriptor() ([]byte, []int)
- func (m *Model) GetCreateTime() *timestamp.Timestamp
- func (m *Model) GetDatasetId() string
- func (m *Model) GetDeploymentState() Model_DeploymentState
- func (m *Model) GetDisplayName() string
- func (m *Model) GetImageClassificationModelMetadata() *ImageClassificationModelMetadata
- func (m *Model) GetImageObjectDetectionModelMetadata() *ImageObjectDetectionModelMetadata
- func (m *Model) GetModelMetadata() isModel_ModelMetadata
- func (m *Model) GetName() string
- func (m *Model) GetTablesModelMetadata() *TablesModelMetadata
- func (m *Model) GetTextClassificationModelMetadata() *TextClassificationModelMetadata
- func (m *Model) GetTextExtractionModelMetadata() *TextExtractionModelMetadata
- func (m *Model) GetTextSentimentModelMetadata() *TextSentimentModelMetadata
- func (m *Model) GetTranslationModelMetadata() *TranslationModelMetadata
- func (m *Model) GetUpdateTime() *timestamp.Timestamp
- func (m *Model) GetVideoClassificationModelMetadata() *VideoClassificationModelMetadata
- func (m *Model) GetVideoObjectTrackingModelMetadata() *VideoObjectTrackingModelMetadata
- func (*Model) ProtoMessage()
- func (m *Model) Reset()
- func (m *Model) String() string
- func (m *Model) XXX_DiscardUnknown()
- func (m *Model) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Model) XXX_Merge(src proto.Message)
- func (*Model) XXX_OneofWrappers() []interface{}
- func (m *Model) XXX_Size() int
- func (m *Model) XXX_Unmarshal(b []byte) error
- type ModelEvaluation
- func (*ModelEvaluation) Descriptor() ([]byte, []int)
- func (m *ModelEvaluation) GetAnnotationSpecId() string
- func (m *ModelEvaluation) GetClassificationEvaluationMetrics() *ClassificationEvaluationMetrics
- func (m *ModelEvaluation) GetCreateTime() *timestamp.Timestamp
- func (m *ModelEvaluation) GetDisplayName() string
- func (m *ModelEvaluation) GetEvaluatedExampleCount() int32
- func (m *ModelEvaluation) GetImageObjectDetectionEvaluationMetrics() *ImageObjectDetectionEvaluationMetrics
- func (m *ModelEvaluation) GetMetrics() isModelEvaluation_Metrics
- func (m *ModelEvaluation) GetName() string
- func (m *ModelEvaluation) GetRegressionEvaluationMetrics() *RegressionEvaluationMetrics
- func (m *ModelEvaluation) GetTextExtractionEvaluationMetrics() *TextExtractionEvaluationMetrics
- func (m *ModelEvaluation) GetTextSentimentEvaluationMetrics() *TextSentimentEvaluationMetrics
- func (m *ModelEvaluation) GetTranslationEvaluationMetrics() *TranslationEvaluationMetrics
- func (m *ModelEvaluation) GetVideoObjectTrackingEvaluationMetrics() *VideoObjectTrackingEvaluationMetrics
- func (*ModelEvaluation) ProtoMessage()
- func (m *ModelEvaluation) Reset()
- func (m *ModelEvaluation) String() string
- func (m *ModelEvaluation) XXX_DiscardUnknown()
- func (m *ModelEvaluation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ModelEvaluation) XXX_Merge(src proto.Message)
- func (*ModelEvaluation) XXX_OneofWrappers() []interface{}
- func (m *ModelEvaluation) XXX_Size() int
- func (m *ModelEvaluation) XXX_Unmarshal(b []byte) error
- type ModelEvaluation_ClassificationEvaluationMetrics
- type ModelEvaluation_ImageObjectDetectionEvaluationMetrics
- type ModelEvaluation_RegressionEvaluationMetrics
- type ModelEvaluation_TextExtractionEvaluationMetrics
- type ModelEvaluation_TextSentimentEvaluationMetrics
- type ModelEvaluation_TranslationEvaluationMetrics
- type ModelEvaluation_VideoObjectTrackingEvaluationMetrics
- type ModelExportOutputConfig
- func (*ModelExportOutputConfig) Descriptor() ([]byte, []int)
- func (m *ModelExportOutputConfig) GetDestination() isModelExportOutputConfig_Destination
- func (m *ModelExportOutputConfig) GetGcrDestination() *GcrDestination
- func (m *ModelExportOutputConfig) GetGcsDestination() *GcsDestination
- func (m *ModelExportOutputConfig) GetModelFormat() string
- func (m *ModelExportOutputConfig) GetParams() map[string]string
- func (*ModelExportOutputConfig) ProtoMessage()
- func (m *ModelExportOutputConfig) Reset()
- func (m *ModelExportOutputConfig) String() string
- func (m *ModelExportOutputConfig) XXX_DiscardUnknown()
- func (m *ModelExportOutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *ModelExportOutputConfig) XXX_Merge(src proto.Message)
- func (*ModelExportOutputConfig) XXX_OneofWrappers() []interface{}
- func (m *ModelExportOutputConfig) XXX_Size() int
- func (m *ModelExportOutputConfig) XXX_Unmarshal(b []byte) error
- type ModelExportOutputConfig_GcrDestination
- type ModelExportOutputConfig_GcsDestination
- type Model_DeploymentState
- type Model_ImageClassificationModelMetadata
- type Model_ImageObjectDetectionModelMetadata
- type Model_TablesModelMetadata
- type Model_TextClassificationModelMetadata
- type Model_TextExtractionModelMetadata
- type Model_TextSentimentModelMetadata
- type Model_TranslationModelMetadata
- type Model_VideoClassificationModelMetadata
- type Model_VideoObjectTrackingModelMetadata
- type NormalizedVertex
- func (*NormalizedVertex) Descriptor() ([]byte, []int)
- func (m *NormalizedVertex) GetX() float32
- func (m *NormalizedVertex) GetY() float32
- func (*NormalizedVertex) ProtoMessage()
- func (m *NormalizedVertex) Reset()
- func (m *NormalizedVertex) String() string
- func (m *NormalizedVertex) XXX_DiscardUnknown()
- func (m *NormalizedVertex) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *NormalizedVertex) XXX_Merge(src proto.Message)
- func (m *NormalizedVertex) XXX_Size() int
- func (m *NormalizedVertex) XXX_Unmarshal(b []byte) error
- type OperationMetadata
- func (*OperationMetadata) Descriptor() ([]byte, []int)
- func (m *OperationMetadata) GetBatchPredictDetails() *BatchPredictOperationMetadata
- func (m *OperationMetadata) GetCreateModelDetails() *CreateModelOperationMetadata
- func (m *OperationMetadata) GetCreateTime() *timestamp.Timestamp
- func (m *OperationMetadata) GetDeleteDetails() *DeleteOperationMetadata
- func (m *OperationMetadata) GetDeployModelDetails() *DeployModelOperationMetadata
- func (m *OperationMetadata) GetDetails() isOperationMetadata_Details
- func (m *OperationMetadata) GetExportDataDetails() *ExportDataOperationMetadata
- func (m *OperationMetadata) GetExportEvaluatedExamplesDetails() *ExportEvaluatedExamplesOperationMetadata
- func (m *OperationMetadata) GetExportModelDetails() *ExportModelOperationMetadata
- func (m *OperationMetadata) GetImportDataDetails() *ImportDataOperationMetadata
- func (m *OperationMetadata) GetPartialFailures() []*status.Status
- func (m *OperationMetadata) GetProgressPercent() int32
- func (m *OperationMetadata) GetUndeployModelDetails() *UndeployModelOperationMetadata
- func (m *OperationMetadata) GetUpdateTime() *timestamp.Timestamp
- func (*OperationMetadata) ProtoMessage()
- func (m *OperationMetadata) Reset()
- func (m *OperationMetadata) String() string
- func (m *OperationMetadata) XXX_DiscardUnknown()
- func (m *OperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *OperationMetadata) XXX_Merge(src proto.Message)
- func (*OperationMetadata) XXX_OneofWrappers() []interface{}
- func (m *OperationMetadata) XXX_Size() int
- func (m *OperationMetadata) XXX_Unmarshal(b []byte) error
- type OperationMetadata_BatchPredictDetails
- type OperationMetadata_CreateModelDetails
- type OperationMetadata_DeleteDetails
- type OperationMetadata_DeployModelDetails
- type OperationMetadata_ExportDataDetails
- type OperationMetadata_ExportEvaluatedExamplesDetails
- type OperationMetadata_ExportModelDetails
- type OperationMetadata_ImportDataDetails
- type OperationMetadata_UndeployModelDetails
- type OutputConfig
- func (*OutputConfig) Descriptor() ([]byte, []int)
- func (m *OutputConfig) GetBigqueryDestination() *BigQueryDestination
- func (m *OutputConfig) GetDestination() isOutputConfig_Destination
- func (m *OutputConfig) GetGcsDestination() *GcsDestination
- func (*OutputConfig) ProtoMessage()
- func (m *OutputConfig) Reset()
- func (m *OutputConfig) String() string
- func (m *OutputConfig) XXX_DiscardUnknown()
- func (m *OutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *OutputConfig) XXX_Merge(src proto.Message)
- func (*OutputConfig) XXX_OneofWrappers() []interface{}
- func (m *OutputConfig) XXX_Size() int
- func (m *OutputConfig) XXX_Unmarshal(b []byte) error
- type OutputConfig_BigqueryDestination
- type OutputConfig_GcsDestination
- type PredictRequest
- func (*PredictRequest) Descriptor() ([]byte, []int)
- func (m *PredictRequest) GetName() string
- func (m *PredictRequest) GetParams() map[string]string
- func (m *PredictRequest) GetPayload() *ExamplePayload
- func (*PredictRequest) ProtoMessage()
- func (m *PredictRequest) Reset()
- func (m *PredictRequest) String() string
- func (m *PredictRequest) XXX_DiscardUnknown()
- func (m *PredictRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *PredictRequest) XXX_Merge(src proto.Message)
- func (m *PredictRequest) XXX_Size() int
- func (m *PredictRequest) XXX_Unmarshal(b []byte) error
- type PredictResponse
- func (*PredictResponse) Descriptor() ([]byte, []int)
- func (m *PredictResponse) GetMetadata() map[string]string
- func (m *PredictResponse) GetPayload() []*AnnotationPayload
- func (m *PredictResponse) GetPreprocessedInput() *ExamplePayload
- func (*PredictResponse) ProtoMessage()
- func (m *PredictResponse) Reset()
- func (m *PredictResponse) String() string
- func (m *PredictResponse) XXX_DiscardUnknown()
- func (m *PredictResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *PredictResponse) XXX_Merge(src proto.Message)
- func (m *PredictResponse) XXX_Size() int
- func (m *PredictResponse) XXX_Unmarshal(b []byte) error
- type PredictionServiceClient
- type PredictionServiceServer
- type RegressionEvaluationMetrics
- func (*RegressionEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *RegressionEvaluationMetrics) GetMeanAbsoluteError() float32
- func (m *RegressionEvaluationMetrics) GetMeanAbsolutePercentageError() float32
- func (m *RegressionEvaluationMetrics) GetRSquared() float32
- func (m *RegressionEvaluationMetrics) GetRootMeanSquaredError() float32
- func (m *RegressionEvaluationMetrics) GetRootMeanSquaredLogError() float32
- func (*RegressionEvaluationMetrics) ProtoMessage()
- func (m *RegressionEvaluationMetrics) Reset()
- func (m *RegressionEvaluationMetrics) String() string
- func (m *RegressionEvaluationMetrics) XXX_DiscardUnknown()
- func (m *RegressionEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *RegressionEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *RegressionEvaluationMetrics) XXX_Size() int
- func (m *RegressionEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type Row
- func (*Row) Descriptor() ([]byte, []int)
- func (m *Row) GetColumnSpecIds() []string
- func (m *Row) GetValues() []*_struct.Value
- func (*Row) ProtoMessage()
- func (m *Row) Reset()
- func (m *Row) String() string
- func (m *Row) XXX_DiscardUnknown()
- func (m *Row) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *Row) XXX_Merge(src proto.Message)
- func (m *Row) XXX_Size() int
- func (m *Row) XXX_Unmarshal(b []byte) error
- type StringStats
- func (*StringStats) Descriptor() ([]byte, []int)
- func (m *StringStats) GetTopUnigramStats() []*StringStats_UnigramStats
- func (*StringStats) ProtoMessage()
- func (m *StringStats) Reset()
- func (m *StringStats) String() string
- func (m *StringStats) XXX_DiscardUnknown()
- func (m *StringStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *StringStats) XXX_Merge(src proto.Message)
- func (m *StringStats) XXX_Size() int
- func (m *StringStats) XXX_Unmarshal(b []byte) error
- type StringStats_UnigramStats
- func (*StringStats_UnigramStats) Descriptor() ([]byte, []int)
- func (m *StringStats_UnigramStats) GetCount() int64
- func (m *StringStats_UnigramStats) GetValue() string
- func (*StringStats_UnigramStats) ProtoMessage()
- func (m *StringStats_UnigramStats) Reset()
- func (m *StringStats_UnigramStats) String() string
- func (m *StringStats_UnigramStats) XXX_DiscardUnknown()
- func (m *StringStats_UnigramStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *StringStats_UnigramStats) XXX_Merge(src proto.Message)
- func (m *StringStats_UnigramStats) XXX_Size() int
- func (m *StringStats_UnigramStats) XXX_Unmarshal(b []byte) error
- type StructStats
- func (*StructStats) Descriptor() ([]byte, []int)
- func (m *StructStats) GetFieldStats() map[string]*DataStats
- func (*StructStats) ProtoMessage()
- func (m *StructStats) Reset()
- func (m *StructStats) String() string
- func (m *StructStats) XXX_DiscardUnknown()
- func (m *StructStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *StructStats) XXX_Merge(src proto.Message)
- func (m *StructStats) XXX_Size() int
- func (m *StructStats) XXX_Unmarshal(b []byte) error
- type StructType
- func (*StructType) Descriptor() ([]byte, []int)
- func (m *StructType) GetFields() map[string]*DataType
- func (*StructType) ProtoMessage()
- func (m *StructType) Reset()
- func (m *StructType) String() string
- func (m *StructType) XXX_DiscardUnknown()
- func (m *StructType) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *StructType) XXX_Merge(src proto.Message)
- func (m *StructType) XXX_Size() int
- func (m *StructType) XXX_Unmarshal(b []byte) error
- type TableSpec
- func (*TableSpec) Descriptor() ([]byte, []int)
- func (m *TableSpec) GetColumnCount() int64
- func (m *TableSpec) GetEtag() string
- func (m *TableSpec) GetInputConfigs() []*InputConfig
- func (m *TableSpec) GetName() string
- func (m *TableSpec) GetRowCount() int64
- func (m *TableSpec) GetTimeColumnSpecId() string
- func (m *TableSpec) GetValidRowCount() int64
- func (*TableSpec) ProtoMessage()
- func (m *TableSpec) Reset()
- func (m *TableSpec) String() string
- func (m *TableSpec) XXX_DiscardUnknown()
- func (m *TableSpec) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TableSpec) XXX_Merge(src proto.Message)
- func (m *TableSpec) XXX_Size() int
- func (m *TableSpec) XXX_Unmarshal(b []byte) error
- type TablesAnnotation
- func (*TablesAnnotation) Descriptor() ([]byte, []int)
- func (m *TablesAnnotation) GetBaselineScore() float32
- func (m *TablesAnnotation) GetPredictionInterval() *DoubleRange
- func (m *TablesAnnotation) GetScore() float32
- func (m *TablesAnnotation) GetTablesModelColumnInfo() []*TablesModelColumnInfo
- func (m *TablesAnnotation) GetValue() *_struct.Value
- func (*TablesAnnotation) ProtoMessage()
- func (m *TablesAnnotation) Reset()
- func (m *TablesAnnotation) String() string
- func (m *TablesAnnotation) XXX_DiscardUnknown()
- func (m *TablesAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TablesAnnotation) XXX_Merge(src proto.Message)
- func (m *TablesAnnotation) XXX_Size() int
- func (m *TablesAnnotation) XXX_Unmarshal(b []byte) error
- type TablesDatasetMetadata
- func (*TablesDatasetMetadata) Descriptor() ([]byte, []int)
- func (m *TablesDatasetMetadata) GetMlUseColumnSpecId() string
- func (m *TablesDatasetMetadata) GetPrimaryTableSpecId() string
- func (m *TablesDatasetMetadata) GetStatsUpdateTime() *timestamp.Timestamp
- func (m *TablesDatasetMetadata) GetTargetColumnCorrelations() map[string]*CorrelationStats
- func (m *TablesDatasetMetadata) GetTargetColumnSpecId() string
- func (m *TablesDatasetMetadata) GetWeightColumnSpecId() string
- func (*TablesDatasetMetadata) ProtoMessage()
- func (m *TablesDatasetMetadata) Reset()
- func (m *TablesDatasetMetadata) String() string
- func (m *TablesDatasetMetadata) XXX_DiscardUnknown()
- func (m *TablesDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TablesDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *TablesDatasetMetadata) XXX_Size() int
- func (m *TablesDatasetMetadata) XXX_Unmarshal(b []byte) error
- type TablesModelColumnInfo
- func (*TablesModelColumnInfo) Descriptor() ([]byte, []int)
- func (m *TablesModelColumnInfo) GetColumnDisplayName() string
- func (m *TablesModelColumnInfo) GetColumnSpecName() string
- func (m *TablesModelColumnInfo) GetFeatureImportance() float32
- func (*TablesModelColumnInfo) ProtoMessage()
- func (m *TablesModelColumnInfo) Reset()
- func (m *TablesModelColumnInfo) String() string
- func (m *TablesModelColumnInfo) XXX_DiscardUnknown()
- func (m *TablesModelColumnInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TablesModelColumnInfo) XXX_Merge(src proto.Message)
- func (m *TablesModelColumnInfo) XXX_Size() int
- func (m *TablesModelColumnInfo) XXX_Unmarshal(b []byte) error
- type TablesModelMetadata
- func (*TablesModelMetadata) Descriptor() ([]byte, []int)
- func (m *TablesModelMetadata) GetAdditionalOptimizationObjectiveConfig() isTablesModelMetadata_AdditionalOptimizationObjectiveConfig
- func (m *TablesModelMetadata) GetDisableEarlyStopping() bool
- func (m *TablesModelMetadata) GetInputFeatureColumnSpecs() []*ColumnSpec
- func (m *TablesModelMetadata) GetOptimizationObjective() string
- func (m *TablesModelMetadata) GetOptimizationObjectivePrecisionValue() float32
- func (m *TablesModelMetadata) GetOptimizationObjectiveRecallValue() float32
- func (m *TablesModelMetadata) GetTablesModelColumnInfo() []*TablesModelColumnInfo
- func (m *TablesModelMetadata) GetTargetColumnSpec() *ColumnSpec
- func (m *TablesModelMetadata) GetTrainBudgetMilliNodeHours() int64
- func (m *TablesModelMetadata) GetTrainCostMilliNodeHours() int64
- func (*TablesModelMetadata) ProtoMessage()
- func (m *TablesModelMetadata) Reset()
- func (m *TablesModelMetadata) String() string
- func (m *TablesModelMetadata) XXX_DiscardUnknown()
- func (m *TablesModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TablesModelMetadata) XXX_Merge(src proto.Message)
- func (*TablesModelMetadata) XXX_OneofWrappers() []interface{}
- func (m *TablesModelMetadata) XXX_Size() int
- func (m *TablesModelMetadata) XXX_Unmarshal(b []byte) error
- type TablesModelMetadata_OptimizationObjectivePrecisionValue
- type TablesModelMetadata_OptimizationObjectiveRecallValue
- type TextClassificationDatasetMetadata
- func (*TextClassificationDatasetMetadata) Descriptor() ([]byte, []int)
- func (m *TextClassificationDatasetMetadata) GetClassificationType() ClassificationType
- func (*TextClassificationDatasetMetadata) ProtoMessage()
- func (m *TextClassificationDatasetMetadata) Reset()
- func (m *TextClassificationDatasetMetadata) String() string
- func (m *TextClassificationDatasetMetadata) XXX_DiscardUnknown()
- func (m *TextClassificationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextClassificationDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *TextClassificationDatasetMetadata) XXX_Size() int
- func (m *TextClassificationDatasetMetadata) XXX_Unmarshal(b []byte) error
- type TextClassificationModelMetadata
- func (*TextClassificationModelMetadata) Descriptor() ([]byte, []int)
- func (m *TextClassificationModelMetadata) GetClassificationType() ClassificationType
- func (*TextClassificationModelMetadata) ProtoMessage()
- func (m *TextClassificationModelMetadata) Reset()
- func (m *TextClassificationModelMetadata) String() string
- func (m *TextClassificationModelMetadata) XXX_DiscardUnknown()
- func (m *TextClassificationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextClassificationModelMetadata) XXX_Merge(src proto.Message)
- func (m *TextClassificationModelMetadata) XXX_Size() int
- func (m *TextClassificationModelMetadata) XXX_Unmarshal(b []byte) error
- type TextExtractionAnnotation
- func (*TextExtractionAnnotation) Descriptor() ([]byte, []int)
- func (m *TextExtractionAnnotation) GetAnnotation() isTextExtractionAnnotation_Annotation
- func (m *TextExtractionAnnotation) GetScore() float32
- func (m *TextExtractionAnnotation) GetTextSegment() *TextSegment
- func (*TextExtractionAnnotation) ProtoMessage()
- func (m *TextExtractionAnnotation) Reset()
- func (m *TextExtractionAnnotation) String() string
- func (m *TextExtractionAnnotation) XXX_DiscardUnknown()
- func (m *TextExtractionAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextExtractionAnnotation) XXX_Merge(src proto.Message)
- func (*TextExtractionAnnotation) XXX_OneofWrappers() []interface{}
- func (m *TextExtractionAnnotation) XXX_Size() int
- func (m *TextExtractionAnnotation) XXX_Unmarshal(b []byte) error
- type TextExtractionAnnotation_TextSegment
- type TextExtractionDatasetMetadata
- func (*TextExtractionDatasetMetadata) Descriptor() ([]byte, []int)
- func (*TextExtractionDatasetMetadata) ProtoMessage()
- func (m *TextExtractionDatasetMetadata) Reset()
- func (m *TextExtractionDatasetMetadata) String() string
- func (m *TextExtractionDatasetMetadata) XXX_DiscardUnknown()
- func (m *TextExtractionDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextExtractionDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *TextExtractionDatasetMetadata) XXX_Size() int
- func (m *TextExtractionDatasetMetadata) XXX_Unmarshal(b []byte) error
- type TextExtractionEvaluationMetrics
- func (*TextExtractionEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *TextExtractionEvaluationMetrics) GetAuPrc() float32
- func (m *TextExtractionEvaluationMetrics) GetConfidenceMetricsEntries() []*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
- func (*TextExtractionEvaluationMetrics) ProtoMessage()
- func (m *TextExtractionEvaluationMetrics) Reset()
- func (m *TextExtractionEvaluationMetrics) String() string
- func (m *TextExtractionEvaluationMetrics) XXX_DiscardUnknown()
- func (m *TextExtractionEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextExtractionEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *TextExtractionEvaluationMetrics) XXX_Size() int
- func (m *TextExtractionEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
- func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
- func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Reset()
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) String() string
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_DiscardUnknown()
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Merge(src proto.Message)
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Size() int
- func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Unmarshal(b []byte) error
- type TextExtractionModelMetadata
- func (*TextExtractionModelMetadata) Descriptor() ([]byte, []int)
- func (*TextExtractionModelMetadata) ProtoMessage()
- func (m *TextExtractionModelMetadata) Reset()
- func (m *TextExtractionModelMetadata) String() string
- func (m *TextExtractionModelMetadata) XXX_DiscardUnknown()
- func (m *TextExtractionModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextExtractionModelMetadata) XXX_Merge(src proto.Message)
- func (m *TextExtractionModelMetadata) XXX_Size() int
- func (m *TextExtractionModelMetadata) XXX_Unmarshal(b []byte) error
- type TextSegment
- func (*TextSegment) Descriptor() ([]byte, []int)
- func (m *TextSegment) GetContent() string
- func (m *TextSegment) GetEndOffset() int64
- func (m *TextSegment) GetStartOffset() int64
- func (*TextSegment) ProtoMessage()
- func (m *TextSegment) Reset()
- func (m *TextSegment) String() string
- func (m *TextSegment) XXX_DiscardUnknown()
- func (m *TextSegment) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextSegment) XXX_Merge(src proto.Message)
- func (m *TextSegment) XXX_Size() int
- func (m *TextSegment) XXX_Unmarshal(b []byte) error
- type TextSentimentAnnotation
- func (*TextSentimentAnnotation) Descriptor() ([]byte, []int)
- func (m *TextSentimentAnnotation) GetSentiment() int32
- func (*TextSentimentAnnotation) ProtoMessage()
- func (m *TextSentimentAnnotation) Reset()
- func (m *TextSentimentAnnotation) String() string
- func (m *TextSentimentAnnotation) XXX_DiscardUnknown()
- func (m *TextSentimentAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextSentimentAnnotation) XXX_Merge(src proto.Message)
- func (m *TextSentimentAnnotation) XXX_Size() int
- func (m *TextSentimentAnnotation) XXX_Unmarshal(b []byte) error
- type TextSentimentDatasetMetadata
- func (*TextSentimentDatasetMetadata) Descriptor() ([]byte, []int)
- func (m *TextSentimentDatasetMetadata) GetSentimentMax() int32
- func (*TextSentimentDatasetMetadata) ProtoMessage()
- func (m *TextSentimentDatasetMetadata) Reset()
- func (m *TextSentimentDatasetMetadata) String() string
- func (m *TextSentimentDatasetMetadata) XXX_DiscardUnknown()
- func (m *TextSentimentDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextSentimentDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *TextSentimentDatasetMetadata) XXX_Size() int
- func (m *TextSentimentDatasetMetadata) XXX_Unmarshal(b []byte) error
- type TextSentimentEvaluationMetrics
- func (*TextSentimentEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *TextSentimentEvaluationMetrics) GetAnnotationSpecId() []stringdeprecated
- func (m *TextSentimentEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
- func (m *TextSentimentEvaluationMetrics) GetF1Score() float32
- func (m *TextSentimentEvaluationMetrics) GetLinearKappa() float32
- func (m *TextSentimentEvaluationMetrics) GetMeanAbsoluteError() float32
- func (m *TextSentimentEvaluationMetrics) GetMeanSquaredError() float32
- func (m *TextSentimentEvaluationMetrics) GetPrecision() float32
- func (m *TextSentimentEvaluationMetrics) GetQuadraticKappa() float32
- func (m *TextSentimentEvaluationMetrics) GetRecall() float32
- func (*TextSentimentEvaluationMetrics) ProtoMessage()
- func (m *TextSentimentEvaluationMetrics) Reset()
- func (m *TextSentimentEvaluationMetrics) String() string
- func (m *TextSentimentEvaluationMetrics) XXX_DiscardUnknown()
- func (m *TextSentimentEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextSentimentEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *TextSentimentEvaluationMetrics) XXX_Size() int
- func (m *TextSentimentEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type TextSentimentModelMetadata
- func (*TextSentimentModelMetadata) Descriptor() ([]byte, []int)
- func (*TextSentimentModelMetadata) ProtoMessage()
- func (m *TextSentimentModelMetadata) Reset()
- func (m *TextSentimentModelMetadata) String() string
- func (m *TextSentimentModelMetadata) XXX_DiscardUnknown()
- func (m *TextSentimentModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextSentimentModelMetadata) XXX_Merge(src proto.Message)
- func (m *TextSentimentModelMetadata) XXX_Size() int
- func (m *TextSentimentModelMetadata) XXX_Unmarshal(b []byte) error
- type TextSnippet
- func (*TextSnippet) Descriptor() ([]byte, []int)
- func (m *TextSnippet) GetContent() string
- func (m *TextSnippet) GetContentUri() string
- func (m *TextSnippet) GetMimeType() string
- func (*TextSnippet) ProtoMessage()
- func (m *TextSnippet) Reset()
- func (m *TextSnippet) String() string
- func (m *TextSnippet) XXX_DiscardUnknown()
- func (m *TextSnippet) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TextSnippet) XXX_Merge(src proto.Message)
- func (m *TextSnippet) XXX_Size() int
- func (m *TextSnippet) XXX_Unmarshal(b []byte) error
- type TimeSegment
- func (*TimeSegment) Descriptor() ([]byte, []int)
- func (m *TimeSegment) GetEndTimeOffset() *duration.Duration
- func (m *TimeSegment) GetStartTimeOffset() *duration.Duration
- func (*TimeSegment) ProtoMessage()
- func (m *TimeSegment) Reset()
- func (m *TimeSegment) String() string
- func (m *TimeSegment) XXX_DiscardUnknown()
- func (m *TimeSegment) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TimeSegment) XXX_Merge(src proto.Message)
- func (m *TimeSegment) XXX_Size() int
- func (m *TimeSegment) XXX_Unmarshal(b []byte) error
- type TimestampStats
- func (*TimestampStats) Descriptor() ([]byte, []int)
- func (m *TimestampStats) GetGranularStats() map[string]*TimestampStats_GranularStats
- func (*TimestampStats) ProtoMessage()
- func (m *TimestampStats) Reset()
- func (m *TimestampStats) String() string
- func (m *TimestampStats) XXX_DiscardUnknown()
- func (m *TimestampStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TimestampStats) XXX_Merge(src proto.Message)
- func (m *TimestampStats) XXX_Size() int
- func (m *TimestampStats) XXX_Unmarshal(b []byte) error
- type TimestampStats_GranularStats
- func (*TimestampStats_GranularStats) Descriptor() ([]byte, []int)
- func (m *TimestampStats_GranularStats) GetBuckets() map[int32]int64
- func (*TimestampStats_GranularStats) ProtoMessage()
- func (m *TimestampStats_GranularStats) Reset()
- func (m *TimestampStats_GranularStats) String() string
- func (m *TimestampStats_GranularStats) XXX_DiscardUnknown()
- func (m *TimestampStats_GranularStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TimestampStats_GranularStats) XXX_Merge(src proto.Message)
- func (m *TimestampStats_GranularStats) XXX_Size() int
- func (m *TimestampStats_GranularStats) XXX_Unmarshal(b []byte) error
- type TranslationAnnotation
- func (*TranslationAnnotation) Descriptor() ([]byte, []int)
- func (m *TranslationAnnotation) GetTranslatedContent() *TextSnippet
- func (*TranslationAnnotation) ProtoMessage()
- func (m *TranslationAnnotation) Reset()
- func (m *TranslationAnnotation) String() string
- func (m *TranslationAnnotation) XXX_DiscardUnknown()
- func (m *TranslationAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TranslationAnnotation) XXX_Merge(src proto.Message)
- func (m *TranslationAnnotation) XXX_Size() int
- func (m *TranslationAnnotation) XXX_Unmarshal(b []byte) error
- type TranslationDatasetMetadata
- func (*TranslationDatasetMetadata) Descriptor() ([]byte, []int)
- func (m *TranslationDatasetMetadata) GetSourceLanguageCode() string
- func (m *TranslationDatasetMetadata) GetTargetLanguageCode() string
- func (*TranslationDatasetMetadata) ProtoMessage()
- func (m *TranslationDatasetMetadata) Reset()
- func (m *TranslationDatasetMetadata) String() string
- func (m *TranslationDatasetMetadata) XXX_DiscardUnknown()
- func (m *TranslationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TranslationDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *TranslationDatasetMetadata) XXX_Size() int
- func (m *TranslationDatasetMetadata) XXX_Unmarshal(b []byte) error
- type TranslationEvaluationMetrics
- func (*TranslationEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *TranslationEvaluationMetrics) GetBaseBleuScore() float64
- func (m *TranslationEvaluationMetrics) GetBleuScore() float64
- func (*TranslationEvaluationMetrics) ProtoMessage()
- func (m *TranslationEvaluationMetrics) Reset()
- func (m *TranslationEvaluationMetrics) String() string
- func (m *TranslationEvaluationMetrics) XXX_DiscardUnknown()
- func (m *TranslationEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TranslationEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *TranslationEvaluationMetrics) XXX_Size() int
- func (m *TranslationEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type TranslationModelMetadata
- func (*TranslationModelMetadata) Descriptor() ([]byte, []int)
- func (m *TranslationModelMetadata) GetBaseModel() string
- func (m *TranslationModelMetadata) GetSourceLanguageCode() string
- func (m *TranslationModelMetadata) GetTargetLanguageCode() string
- func (*TranslationModelMetadata) ProtoMessage()
- func (m *TranslationModelMetadata) Reset()
- func (m *TranslationModelMetadata) String() string
- func (m *TranslationModelMetadata) XXX_DiscardUnknown()
- func (m *TranslationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *TranslationModelMetadata) XXX_Merge(src proto.Message)
- func (m *TranslationModelMetadata) XXX_Size() int
- func (m *TranslationModelMetadata) XXX_Unmarshal(b []byte) error
- type TypeCode
- type UndeployModelOperationMetadata
- func (*UndeployModelOperationMetadata) Descriptor() ([]byte, []int)
- func (*UndeployModelOperationMetadata) ProtoMessage()
- func (m *UndeployModelOperationMetadata) Reset()
- func (m *UndeployModelOperationMetadata) String() string
- func (m *UndeployModelOperationMetadata) XXX_DiscardUnknown()
- func (m *UndeployModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *UndeployModelOperationMetadata) XXX_Merge(src proto.Message)
- func (m *UndeployModelOperationMetadata) XXX_Size() int
- func (m *UndeployModelOperationMetadata) XXX_Unmarshal(b []byte) error
- type UndeployModelRequest
- func (*UndeployModelRequest) Descriptor() ([]byte, []int)
- func (m *UndeployModelRequest) GetName() string
- func (*UndeployModelRequest) ProtoMessage()
- func (m *UndeployModelRequest) Reset()
- func (m *UndeployModelRequest) String() string
- func (m *UndeployModelRequest) XXX_DiscardUnknown()
- func (m *UndeployModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *UndeployModelRequest) XXX_Merge(src proto.Message)
- func (m *UndeployModelRequest) XXX_Size() int
- func (m *UndeployModelRequest) XXX_Unmarshal(b []byte) error
- type UnimplementedAutoMlServer
- func (*UnimplementedAutoMlServer) CreateDataset(ctx context.Context, req *CreateDatasetRequest) (*Dataset, error)
- func (*UnimplementedAutoMlServer) CreateModel(ctx context.Context, req *CreateModelRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) DeleteDataset(ctx context.Context, req *DeleteDatasetRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) DeleteModel(ctx context.Context, req *DeleteModelRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) DeployModel(ctx context.Context, req *DeployModelRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) ExportData(ctx context.Context, req *ExportDataRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) ExportEvaluatedExamples(ctx context.Context, req *ExportEvaluatedExamplesRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) ExportModel(ctx context.Context, req *ExportModelRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) GetAnnotationSpec(ctx context.Context, req *GetAnnotationSpecRequest) (*AnnotationSpec, error)
- func (*UnimplementedAutoMlServer) GetColumnSpec(ctx context.Context, req *GetColumnSpecRequest) (*ColumnSpec, error)
- func (*UnimplementedAutoMlServer) GetDataset(ctx context.Context, req *GetDatasetRequest) (*Dataset, error)
- func (*UnimplementedAutoMlServer) GetModel(ctx context.Context, req *GetModelRequest) (*Model, error)
- func (*UnimplementedAutoMlServer) GetModelEvaluation(ctx context.Context, req *GetModelEvaluationRequest) (*ModelEvaluation, error)
- func (*UnimplementedAutoMlServer) GetTableSpec(ctx context.Context, req *GetTableSpecRequest) (*TableSpec, error)
- func (*UnimplementedAutoMlServer) ImportData(ctx context.Context, req *ImportDataRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) ListColumnSpecs(ctx context.Context, req *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error)
- func (*UnimplementedAutoMlServer) ListDatasets(ctx context.Context, req *ListDatasetsRequest) (*ListDatasetsResponse, error)
- func (*UnimplementedAutoMlServer) ListModelEvaluations(ctx context.Context, req *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
- func (*UnimplementedAutoMlServer) ListModels(ctx context.Context, req *ListModelsRequest) (*ListModelsResponse, error)
- func (*UnimplementedAutoMlServer) ListTableSpecs(ctx context.Context, req *ListTableSpecsRequest) (*ListTableSpecsResponse, error)
- func (*UnimplementedAutoMlServer) UndeployModel(ctx context.Context, req *UndeployModelRequest) (*longrunning.Operation, error)
- func (*UnimplementedAutoMlServer) UpdateColumnSpec(ctx context.Context, req *UpdateColumnSpecRequest) (*ColumnSpec, error)
- func (*UnimplementedAutoMlServer) UpdateDataset(ctx context.Context, req *UpdateDatasetRequest) (*Dataset, error)
- func (*UnimplementedAutoMlServer) UpdateTableSpec(ctx context.Context, req *UpdateTableSpecRequest) (*TableSpec, error)
- type UnimplementedPredictionServiceServer
- type UpdateColumnSpecRequest
- func (*UpdateColumnSpecRequest) Descriptor() ([]byte, []int)
- func (m *UpdateColumnSpecRequest) GetColumnSpec() *ColumnSpec
- func (m *UpdateColumnSpecRequest) GetUpdateMask() *field_mask.FieldMask
- func (*UpdateColumnSpecRequest) ProtoMessage()
- func (m *UpdateColumnSpecRequest) Reset()
- func (m *UpdateColumnSpecRequest) String() string
- func (m *UpdateColumnSpecRequest) XXX_DiscardUnknown()
- func (m *UpdateColumnSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *UpdateColumnSpecRequest) XXX_Merge(src proto.Message)
- func (m *UpdateColumnSpecRequest) XXX_Size() int
- func (m *UpdateColumnSpecRequest) XXX_Unmarshal(b []byte) error
- type UpdateDatasetRequest
- func (*UpdateDatasetRequest) Descriptor() ([]byte, []int)
- func (m *UpdateDatasetRequest) GetDataset() *Dataset
- func (m *UpdateDatasetRequest) GetUpdateMask() *field_mask.FieldMask
- func (*UpdateDatasetRequest) ProtoMessage()
- func (m *UpdateDatasetRequest) Reset()
- func (m *UpdateDatasetRequest) String() string
- func (m *UpdateDatasetRequest) XXX_DiscardUnknown()
- func (m *UpdateDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *UpdateDatasetRequest) XXX_Merge(src proto.Message)
- func (m *UpdateDatasetRequest) XXX_Size() int
- func (m *UpdateDatasetRequest) XXX_Unmarshal(b []byte) error
- type UpdateTableSpecRequest
- func (*UpdateTableSpecRequest) Descriptor() ([]byte, []int)
- func (m *UpdateTableSpecRequest) GetTableSpec() *TableSpec
- func (m *UpdateTableSpecRequest) GetUpdateMask() *field_mask.FieldMask
- func (*UpdateTableSpecRequest) ProtoMessage()
- func (m *UpdateTableSpecRequest) Reset()
- func (m *UpdateTableSpecRequest) String() string
- func (m *UpdateTableSpecRequest) XXX_DiscardUnknown()
- func (m *UpdateTableSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *UpdateTableSpecRequest) XXX_Merge(src proto.Message)
- func (m *UpdateTableSpecRequest) XXX_Size() int
- func (m *UpdateTableSpecRequest) XXX_Unmarshal(b []byte) error
- type VideoClassificationAnnotation
- func (*VideoClassificationAnnotation) Descriptor() ([]byte, []int)
- func (m *VideoClassificationAnnotation) GetClassificationAnnotation() *ClassificationAnnotation
- func (m *VideoClassificationAnnotation) GetTimeSegment() *TimeSegment
- func (m *VideoClassificationAnnotation) GetType() string
- func (*VideoClassificationAnnotation) ProtoMessage()
- func (m *VideoClassificationAnnotation) Reset()
- func (m *VideoClassificationAnnotation) String() string
- func (m *VideoClassificationAnnotation) XXX_DiscardUnknown()
- func (m *VideoClassificationAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoClassificationAnnotation) XXX_Merge(src proto.Message)
- func (m *VideoClassificationAnnotation) XXX_Size() int
- func (m *VideoClassificationAnnotation) XXX_Unmarshal(b []byte) error
- type VideoClassificationDatasetMetadata
- func (*VideoClassificationDatasetMetadata) Descriptor() ([]byte, []int)
- func (*VideoClassificationDatasetMetadata) ProtoMessage()
- func (m *VideoClassificationDatasetMetadata) Reset()
- func (m *VideoClassificationDatasetMetadata) String() string
- func (m *VideoClassificationDatasetMetadata) XXX_DiscardUnknown()
- func (m *VideoClassificationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoClassificationDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *VideoClassificationDatasetMetadata) XXX_Size() int
- func (m *VideoClassificationDatasetMetadata) XXX_Unmarshal(b []byte) error
- type VideoClassificationModelMetadata
- func (*VideoClassificationModelMetadata) Descriptor() ([]byte, []int)
- func (*VideoClassificationModelMetadata) ProtoMessage()
- func (m *VideoClassificationModelMetadata) Reset()
- func (m *VideoClassificationModelMetadata) String() string
- func (m *VideoClassificationModelMetadata) XXX_DiscardUnknown()
- func (m *VideoClassificationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoClassificationModelMetadata) XXX_Merge(src proto.Message)
- func (m *VideoClassificationModelMetadata) XXX_Size() int
- func (m *VideoClassificationModelMetadata) XXX_Unmarshal(b []byte) error
- type VideoObjectTrackingAnnotation
- func (*VideoObjectTrackingAnnotation) Descriptor() ([]byte, []int)
- func (m *VideoObjectTrackingAnnotation) GetBoundingBox() *BoundingPoly
- func (m *VideoObjectTrackingAnnotation) GetInstanceId() string
- func (m *VideoObjectTrackingAnnotation) GetScore() float32
- func (m *VideoObjectTrackingAnnotation) GetTimeOffset() *duration.Duration
- func (*VideoObjectTrackingAnnotation) ProtoMessage()
- func (m *VideoObjectTrackingAnnotation) Reset()
- func (m *VideoObjectTrackingAnnotation) String() string
- func (m *VideoObjectTrackingAnnotation) XXX_DiscardUnknown()
- func (m *VideoObjectTrackingAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoObjectTrackingAnnotation) XXX_Merge(src proto.Message)
- func (m *VideoObjectTrackingAnnotation) XXX_Size() int
- func (m *VideoObjectTrackingAnnotation) XXX_Unmarshal(b []byte) error
- type VideoObjectTrackingDatasetMetadata
- func (*VideoObjectTrackingDatasetMetadata) Descriptor() ([]byte, []int)
- func (*VideoObjectTrackingDatasetMetadata) ProtoMessage()
- func (m *VideoObjectTrackingDatasetMetadata) Reset()
- func (m *VideoObjectTrackingDatasetMetadata) String() string
- func (m *VideoObjectTrackingDatasetMetadata) XXX_DiscardUnknown()
- func (m *VideoObjectTrackingDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoObjectTrackingDatasetMetadata) XXX_Merge(src proto.Message)
- func (m *VideoObjectTrackingDatasetMetadata) XXX_Size() int
- func (m *VideoObjectTrackingDatasetMetadata) XXX_Unmarshal(b []byte) error
- type VideoObjectTrackingEvaluationMetrics
- func (*VideoObjectTrackingEvaluationMetrics) Descriptor() ([]byte, []int)
- func (m *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
- func (m *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
- func (m *VideoObjectTrackingEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
- func (m *VideoObjectTrackingEvaluationMetrics) GetEvaluatedFrameCount() int32
- func (*VideoObjectTrackingEvaluationMetrics) ProtoMessage()
- func (m *VideoObjectTrackingEvaluationMetrics) Reset()
- func (m *VideoObjectTrackingEvaluationMetrics) String() string
- func (m *VideoObjectTrackingEvaluationMetrics) XXX_DiscardUnknown()
- func (m *VideoObjectTrackingEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoObjectTrackingEvaluationMetrics) XXX_Merge(src proto.Message)
- func (m *VideoObjectTrackingEvaluationMetrics) XXX_Size() int
- func (m *VideoObjectTrackingEvaluationMetrics) XXX_Unmarshal(b []byte) error
- type VideoObjectTrackingModelMetadata
- func (*VideoObjectTrackingModelMetadata) Descriptor() ([]byte, []int)
- func (*VideoObjectTrackingModelMetadata) ProtoMessage()
- func (m *VideoObjectTrackingModelMetadata) Reset()
- func (m *VideoObjectTrackingModelMetadata) String() string
- func (m *VideoObjectTrackingModelMetadata) XXX_DiscardUnknown()
- func (m *VideoObjectTrackingModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
- func (m *VideoObjectTrackingModelMetadata) XXX_Merge(src proto.Message)
- func (m *VideoObjectTrackingModelMetadata) XXX_Size() int
- func (m *VideoObjectTrackingModelMetadata) XXX_Unmarshal(b []byte) error
Constants ¶
This section is empty.
Variables ¶
var ClassificationType_name = map[int32]string{
0: "CLASSIFICATION_TYPE_UNSPECIFIED",
1: "MULTICLASS",
2: "MULTILABEL",
}
var ClassificationType_value = map[string]int32{
"CLASSIFICATION_TYPE_UNSPECIFIED": 0,
"MULTICLASS": 1,
"MULTILABEL": 2,
}
var DocumentDimensions_DocumentDimensionUnit_name = map[int32]string{
0: "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED",
1: "INCH",
2: "CENTIMETER",
3: "POINT",
}
var DocumentDimensions_DocumentDimensionUnit_value = map[string]int32{
"DOCUMENT_DIMENSION_UNIT_UNSPECIFIED": 0,
"INCH": 1,
"CENTIMETER": 2,
"POINT": 3,
}
var Document_Layout_TextSegmentType_name = map[int32]string{
0: "TEXT_SEGMENT_TYPE_UNSPECIFIED",
1: "TOKEN",
2: "PARAGRAPH",
3: "FORM_FIELD",
4: "FORM_FIELD_NAME",
5: "FORM_FIELD_CONTENTS",
6: "TABLE",
7: "TABLE_HEADER",
8: "TABLE_ROW",
9: "TABLE_CELL",
}
var Document_Layout_TextSegmentType_value = map[string]int32{
"TEXT_SEGMENT_TYPE_UNSPECIFIED": 0,
"TOKEN": 1,
"PARAGRAPH": 2,
"FORM_FIELD": 3,
"FORM_FIELD_NAME": 4,
"FORM_FIELD_CONTENTS": 5,
"TABLE": 6,
"TABLE_HEADER": 7,
"TABLE_ROW": 8,
"TABLE_CELL": 9,
}
var Model_DeploymentState_name = map[int32]string{
0: "DEPLOYMENT_STATE_UNSPECIFIED",
1: "DEPLOYED",
2: "UNDEPLOYED",
}
var Model_DeploymentState_value = map[string]int32{
"DEPLOYMENT_STATE_UNSPECIFIED": 0,
"DEPLOYED": 1,
"UNDEPLOYED": 2,
}
var TypeCode_name = map[int32]string{
0: "TYPE_CODE_UNSPECIFIED",
3: "FLOAT64",
4: "TIMESTAMP",
6: "STRING",
8: "ARRAY",
9: "STRUCT",
10: "CATEGORY",
}
var TypeCode_value = map[string]int32{
"TYPE_CODE_UNSPECIFIED": 0,
"FLOAT64": 3,
"TIMESTAMP": 4,
"STRING": 6,
"ARRAY": 8,
"STRUCT": 9,
"CATEGORY": 10,
}
Functions ¶
func RegisterAutoMlServer ¶
func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
func RegisterPredictionServiceServer ¶
func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
Types ¶
type AnnotationPayload ¶
type AnnotationPayload struct { // Output only . Additional information about the annotation // specific to the AutoML domain. // // Types that are valid to be assigned to Detail: // *AnnotationPayload_Translation // *AnnotationPayload_Classification // *AnnotationPayload_ImageObjectDetection // *AnnotationPayload_VideoClassification // *AnnotationPayload_VideoObjectTracking // *AnnotationPayload_TextExtraction // *AnnotationPayload_TextSentiment // *AnnotationPayload_Tables Detail isAnnotationPayload_Detail `protobuf_oneof:"detail"` // Output only . The resource ID of the annotation spec that // this annotation pertains to. The annotation spec comes from either an // ancestor dataset, or the dataset that was used to train the model in use. AnnotationSpecId string `protobuf:"bytes,1,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // Output only. The value of // [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] // when the model was trained. Because this field returns a value at model // training time, for different models trained using the same dataset, the // returned value could be different as model owner could update the // `display_name` between any two model training. DisplayName string `protobuf:"bytes,5,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Contains annotation information that is relevant to AutoML.
func (*AnnotationPayload) Descriptor ¶
func (*AnnotationPayload) Descriptor() ([]byte, []int)
func (*AnnotationPayload) GetAnnotationSpecId ¶
func (m *AnnotationPayload) GetAnnotationSpecId() string
func (*AnnotationPayload) GetClassification ¶
func (m *AnnotationPayload) GetClassification() *ClassificationAnnotation
func (*AnnotationPayload) GetDetail ¶
func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail
func (*AnnotationPayload) GetDisplayName ¶
func (m *AnnotationPayload) GetDisplayName() string
func (*AnnotationPayload) GetImageObjectDetection ¶
func (m *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation
func (*AnnotationPayload) GetTables ¶
func (m *AnnotationPayload) GetTables() *TablesAnnotation
func (*AnnotationPayload) GetTextExtraction ¶
func (m *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation
func (*AnnotationPayload) GetTextSentiment ¶
func (m *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation
func (*AnnotationPayload) GetTranslation ¶
func (m *AnnotationPayload) GetTranslation() *TranslationAnnotation
func (*AnnotationPayload) GetVideoClassification ¶
func (m *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation
func (*AnnotationPayload) GetVideoObjectTracking ¶
func (m *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation
func (*AnnotationPayload) ProtoMessage ¶
func (*AnnotationPayload) ProtoMessage()
func (*AnnotationPayload) Reset ¶
func (m *AnnotationPayload) Reset()
func (*AnnotationPayload) String ¶
func (m *AnnotationPayload) String() string
func (*AnnotationPayload) XXX_DiscardUnknown ¶
func (m *AnnotationPayload) XXX_DiscardUnknown()
func (*AnnotationPayload) XXX_Marshal ¶
func (m *AnnotationPayload) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*AnnotationPayload) XXX_Merge ¶
func (m *AnnotationPayload) XXX_Merge(src proto.Message)
func (*AnnotationPayload) XXX_OneofWrappers ¶
func (*AnnotationPayload) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*AnnotationPayload) XXX_Size ¶
func (m *AnnotationPayload) XXX_Size() int
func (*AnnotationPayload) XXX_Unmarshal ¶
func (m *AnnotationPayload) XXX_Unmarshal(b []byte) error
type AnnotationPayload_Classification ¶
type AnnotationPayload_Classification struct {
Classification *ClassificationAnnotation `protobuf:"bytes,3,opt,name=classification,proto3,oneof"`
}
type AnnotationPayload_ImageObjectDetection ¶
type AnnotationPayload_ImageObjectDetection struct {
ImageObjectDetection *ImageObjectDetectionAnnotation `protobuf:"bytes,4,opt,name=image_object_detection,json=imageObjectDetection,proto3,oneof"`
}
type AnnotationPayload_Tables ¶
type AnnotationPayload_Tables struct {
Tables *TablesAnnotation `protobuf:"bytes,10,opt,name=tables,proto3,oneof"`
}
type AnnotationPayload_TextExtraction ¶
type AnnotationPayload_TextExtraction struct {
TextExtraction *TextExtractionAnnotation `protobuf:"bytes,6,opt,name=text_extraction,json=textExtraction,proto3,oneof"`
}
type AnnotationPayload_TextSentiment ¶
type AnnotationPayload_TextSentiment struct {
TextSentiment *TextSentimentAnnotation `protobuf:"bytes,7,opt,name=text_sentiment,json=textSentiment,proto3,oneof"`
}
type AnnotationPayload_Translation ¶
type AnnotationPayload_Translation struct {
Translation *TranslationAnnotation `protobuf:"bytes,2,opt,name=translation,proto3,oneof"`
}
type AnnotationPayload_VideoClassification ¶
type AnnotationPayload_VideoClassification struct {
VideoClassification *VideoClassificationAnnotation `protobuf:"bytes,9,opt,name=video_classification,json=videoClassification,proto3,oneof"`
}
type AnnotationPayload_VideoObjectTracking ¶
type AnnotationPayload_VideoObjectTracking struct {
VideoObjectTracking *VideoObjectTrackingAnnotation `protobuf:"bytes,8,opt,name=video_object_tracking,json=videoObjectTracking,proto3,oneof"`
}
type AnnotationSpec ¶
type AnnotationSpec struct { // Output only. Resource name of the annotation spec. // Form: // // 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}' Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The name of the annotation spec to show in the interface. The name can be // up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`. DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. The number of examples in the parent dataset // labeled by the annotation spec. ExampleCount int32 `protobuf:"varint,9,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A definition of an annotation spec.
func (*AnnotationSpec) Descriptor ¶
func (*AnnotationSpec) Descriptor() ([]byte, []int)
func (*AnnotationSpec) GetDisplayName ¶
func (m *AnnotationSpec) GetDisplayName() string
func (*AnnotationSpec) GetExampleCount ¶
func (m *AnnotationSpec) GetExampleCount() int32
func (*AnnotationSpec) GetName ¶
func (m *AnnotationSpec) GetName() string
func (*AnnotationSpec) ProtoMessage ¶
func (*AnnotationSpec) ProtoMessage()
func (*AnnotationSpec) Reset ¶
func (m *AnnotationSpec) Reset()
func (*AnnotationSpec) String ¶
func (m *AnnotationSpec) String() string
func (*AnnotationSpec) XXX_DiscardUnknown ¶
func (m *AnnotationSpec) XXX_DiscardUnknown()
func (*AnnotationSpec) XXX_Marshal ¶
func (m *AnnotationSpec) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*AnnotationSpec) XXX_Merge ¶
func (m *AnnotationSpec) XXX_Merge(src proto.Message)
func (*AnnotationSpec) XXX_Size ¶
func (m *AnnotationSpec) XXX_Size() int
func (*AnnotationSpec) XXX_Unmarshal ¶
func (m *AnnotationSpec) XXX_Unmarshal(b []byte) error
type ArrayStats ¶
type ArrayStats struct { // Stats of all the values of all arrays, as if they were a single long // series of data. The type depends on the element type of the array. MemberStats *DataStats `protobuf:"bytes,2,opt,name=member_stats,json=memberStats,proto3" json:"member_stats,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of ARRAY values.
func (*ArrayStats) Descriptor ¶
func (*ArrayStats) Descriptor() ([]byte, []int)
func (*ArrayStats) GetMemberStats ¶
func (m *ArrayStats) GetMemberStats() *DataStats
func (*ArrayStats) ProtoMessage ¶
func (*ArrayStats) ProtoMessage()
func (*ArrayStats) Reset ¶
func (m *ArrayStats) Reset()
func (*ArrayStats) String ¶
func (m *ArrayStats) String() string
func (*ArrayStats) XXX_DiscardUnknown ¶
func (m *ArrayStats) XXX_DiscardUnknown()
func (*ArrayStats) XXX_Marshal ¶
func (m *ArrayStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ArrayStats) XXX_Merge ¶
func (m *ArrayStats) XXX_Merge(src proto.Message)
func (*ArrayStats) XXX_Size ¶
func (m *ArrayStats) XXX_Size() int
func (*ArrayStats) XXX_Unmarshal ¶
func (m *ArrayStats) XXX_Unmarshal(b []byte) error
type AutoMlClient ¶
type AutoMlClient interface { // Creates a dataset. CreateDataset(ctx context.Context, in *CreateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error) // Gets a dataset. GetDataset(ctx context.Context, in *GetDatasetRequest, opts ...grpc.CallOption) (*Dataset, error) // Lists datasets in a project. ListDatasets(ctx context.Context, in *ListDatasetsRequest, opts ...grpc.CallOption) (*ListDatasetsResponse, error) // Updates a dataset. UpdateDataset(ctx context.Context, in *UpdateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error) // Deletes a dataset and all of its contents. // Returns empty response in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteDataset(ctx context.Context, in *DeleteDatasetRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Imports data into a dataset. // For Tables this method can only be called on an empty Dataset. // // For Tables: // * A // [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params] // parameter must be explicitly set. // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ImportData(ctx context.Context, in *ImportDataRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Exports dataset's data to the provided output location. // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportData(ctx context.Context, in *ExportDataRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Gets an annotation spec. GetAnnotationSpec(ctx context.Context, in *GetAnnotationSpecRequest, opts ...grpc.CallOption) (*AnnotationSpec, error) // Gets a table spec. GetTableSpec(ctx context.Context, in *GetTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error) // Lists table specs in a dataset. ListTableSpecs(ctx context.Context, in *ListTableSpecsRequest, opts ...grpc.CallOption) (*ListTableSpecsResponse, error) // Updates a table spec. UpdateTableSpec(ctx context.Context, in *UpdateTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error) // Gets a column spec. GetColumnSpec(ctx context.Context, in *GetColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error) // Lists column specs in a table spec. ListColumnSpecs(ctx context.Context, in *ListColumnSpecsRequest, opts ...grpc.CallOption) (*ListColumnSpecsResponse, error) // Updates a column spec. UpdateColumnSpec(ctx context.Context, in *UpdateColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error) // Creates a model. // Returns a Model in the [response][google.longrunning.Operation.response] // field when it completes. // When you create a model, several model evaluations are created for it: // a global evaluation, and one evaluation for each annotation spec. CreateModel(ctx context.Context, in *CreateModelRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Gets a model. GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error) // Lists models. ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error) // Deletes a model. // Returns `google.protobuf.Empty` in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Deploys a model. If a model is already deployed, deploying it with the // same parameters has no effect. Deploying with different parametrs // (as e.g. changing // // [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number]) // will reset the deployment state without pausing the model's availability. // // Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage // deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. DeployModel(ctx context.Context, in *DeployModelRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Undeploys a model. If the model is not deployed this method has no effect. // // Only applicable for Text Classification, Image Object Detection and Tables; // all other domains manage deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. UndeployModel(ctx context.Context, in *UndeployModelRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Exports a trained, "export-able", model to a user specified Google Cloud // Storage location. A model is considered export-able if and only if it has // an export format defined for it in // // [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig]. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportModel(ctx context.Context, in *ExportModelRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Exports examples on which the model was evaluated (i.e. which were in the // TEST set of the dataset the model was created from), together with their // ground truth annotations and the annotations created (predicted) by the // model. // The examples, ground truth and predictions are exported in the state // they were at the moment the model was evaluated. // // This export is available only for 30 days since the model evaluation is // created. // // Currently only available for Tables. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportEvaluatedExamples(ctx context.Context, in *ExportEvaluatedExamplesRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) // Gets a model evaluation. GetModelEvaluation(ctx context.Context, in *GetModelEvaluationRequest, opts ...grpc.CallOption) (*ModelEvaluation, error) // Lists model evaluations. ListModelEvaluations(ctx context.Context, in *ListModelEvaluationsRequest, opts ...grpc.CallOption) (*ListModelEvaluationsResponse, error) }
AutoMlClient is the client API for AutoMl service.
For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
func NewAutoMlClient ¶
func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient
type AutoMlServer ¶
type AutoMlServer interface { // Creates a dataset. CreateDataset(context.Context, *CreateDatasetRequest) (*Dataset, error) // Gets a dataset. GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error) // Lists datasets in a project. ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error) // Updates a dataset. UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error) // Deletes a dataset and all of its contents. // Returns empty response in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunning.Operation, error) // Imports data into a dataset. // For Tables this method can only be called on an empty Dataset. // // For Tables: // * A // [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params] // parameter must be explicitly set. // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ImportData(context.Context, *ImportDataRequest) (*longrunning.Operation, error) // Exports dataset's data to the provided output location. // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportData(context.Context, *ExportDataRequest) (*longrunning.Operation, error) // Gets an annotation spec. GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error) // Gets a table spec. GetTableSpec(context.Context, *GetTableSpecRequest) (*TableSpec, error) // Lists table specs in a dataset. ListTableSpecs(context.Context, *ListTableSpecsRequest) (*ListTableSpecsResponse, error) // Updates a table spec. UpdateTableSpec(context.Context, *UpdateTableSpecRequest) (*TableSpec, error) // Gets a column spec. GetColumnSpec(context.Context, *GetColumnSpecRequest) (*ColumnSpec, error) // Lists column specs in a table spec. ListColumnSpecs(context.Context, *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error) // Updates a column spec. UpdateColumnSpec(context.Context, *UpdateColumnSpecRequest) (*ColumnSpec, error) // Creates a model. // Returns a Model in the [response][google.longrunning.Operation.response] // field when it completes. // When you create a model, several model evaluations are created for it: // a global evaluation, and one evaluation for each annotation spec. CreateModel(context.Context, *CreateModelRequest) (*longrunning.Operation, error) // Gets a model. GetModel(context.Context, *GetModelRequest) (*Model, error) // Lists models. ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error) // Deletes a model. // Returns `google.protobuf.Empty` in the // [response][google.longrunning.Operation.response] field when it completes, // and `delete_details` in the // [metadata][google.longrunning.Operation.metadata] field. DeleteModel(context.Context, *DeleteModelRequest) (*longrunning.Operation, error) // Deploys a model. If a model is already deployed, deploying it with the // same parameters has no effect. Deploying with different parametrs // (as e.g. changing // // [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number]) // will reset the deployment state without pausing the model's availability. // // Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage // deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. DeployModel(context.Context, *DeployModelRequest) (*longrunning.Operation, error) // Undeploys a model. If the model is not deployed this method has no effect. // // Only applicable for Text Classification, Image Object Detection and Tables; // all other domains manage deployment automatically. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. UndeployModel(context.Context, *UndeployModelRequest) (*longrunning.Operation, error) // Exports a trained, "export-able", model to a user specified Google Cloud // Storage location. A model is considered export-able if and only if it has // an export format defined for it in // // [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig]. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportModel(context.Context, *ExportModelRequest) (*longrunning.Operation, error) // Exports examples on which the model was evaluated (i.e. which were in the // TEST set of the dataset the model was created from), together with their // ground truth annotations and the annotations created (predicted) by the // model. // The examples, ground truth and predictions are exported in the state // they were at the moment the model was evaluated. // // This export is available only for 30 days since the model evaluation is // created. // // Currently only available for Tables. // // Returns an empty response in the // [response][google.longrunning.Operation.response] field when it completes. ExportEvaluatedExamples(context.Context, *ExportEvaluatedExamplesRequest) (*longrunning.Operation, error) // Gets a model evaluation. GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error) // Lists model evaluations. ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error) }
AutoMlServer is the server API for AutoMl service.
type BatchPredictInputConfig ¶
type BatchPredictInputConfig struct { // Required. The source of the input. // // Types that are valid to be assigned to Source: // *BatchPredictInputConfig_GcsSource // *BatchPredictInputConfig_BigquerySource Source isBatchPredictInputConfig_Source `protobuf_oneof:"source"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Input configuration for BatchPredict Action.
The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf
For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf
For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }
For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].
GCS case: CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted. For FORECASTING
[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
all columns having
[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
type will be ignored. First three sample rows of a CSV file: "First Name","Last Name","Dob","Addresses"
"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
BigQuery case: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted. For FORECASTING
[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
all columns having
[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
type will be ignored. Definitions: GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi". TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes ("") TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed and it means the end of the example. Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.
func (*BatchPredictInputConfig) Descriptor ¶
func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)
func (*BatchPredictInputConfig) GetBigquerySource ¶
func (m *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource
func (*BatchPredictInputConfig) GetGcsSource ¶
func (m *BatchPredictInputConfig) GetGcsSource() *GcsSource
func (*BatchPredictInputConfig) GetSource ¶
func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source
func (*BatchPredictInputConfig) ProtoMessage ¶
func (*BatchPredictInputConfig) ProtoMessage()
func (*BatchPredictInputConfig) Reset ¶
func (m *BatchPredictInputConfig) Reset()
func (*BatchPredictInputConfig) String ¶
func (m *BatchPredictInputConfig) String() string
func (*BatchPredictInputConfig) XXX_DiscardUnknown ¶
func (m *BatchPredictInputConfig) XXX_DiscardUnknown()
func (*BatchPredictInputConfig) XXX_Marshal ¶
func (m *BatchPredictInputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BatchPredictInputConfig) XXX_Merge ¶
func (m *BatchPredictInputConfig) XXX_Merge(src proto.Message)
func (*BatchPredictInputConfig) XXX_OneofWrappers ¶
func (*BatchPredictInputConfig) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*BatchPredictInputConfig) XXX_Size ¶
func (m *BatchPredictInputConfig) XXX_Size() int
func (*BatchPredictInputConfig) XXX_Unmarshal ¶
func (m *BatchPredictInputConfig) XXX_Unmarshal(b []byte) error
type BatchPredictInputConfig_BigquerySource ¶
type BatchPredictInputConfig_BigquerySource struct {
BigquerySource *BigQuerySource `protobuf:"bytes,2,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"`
}
type BatchPredictInputConfig_GcsSource ¶
type BatchPredictInputConfig_GcsSource struct {
GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}
type BatchPredictOperationMetadata ¶
type BatchPredictOperationMetadata struct { // Output only. The input config that was given upon starting this // batch predict operation. InputConfig *BatchPredictInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"` // Output only. Information further describing this batch predict's output. OutputInfo *BatchPredictOperationMetadata_BatchPredictOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of BatchPredict operation.
func (*BatchPredictOperationMetadata) Descriptor ¶
func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)
func (*BatchPredictOperationMetadata) GetInputConfig ¶
func (m *BatchPredictOperationMetadata) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictOperationMetadata) GetOutputInfo ¶
func (m *BatchPredictOperationMetadata) GetOutputInfo() *BatchPredictOperationMetadata_BatchPredictOutputInfo
func (*BatchPredictOperationMetadata) ProtoMessage ¶
func (*BatchPredictOperationMetadata) ProtoMessage()
func (*BatchPredictOperationMetadata) Reset ¶
func (m *BatchPredictOperationMetadata) Reset()
func (*BatchPredictOperationMetadata) String ¶
func (m *BatchPredictOperationMetadata) String() string
func (*BatchPredictOperationMetadata) XXX_DiscardUnknown ¶
func (m *BatchPredictOperationMetadata) XXX_DiscardUnknown()
func (*BatchPredictOperationMetadata) XXX_Marshal ¶
func (m *BatchPredictOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BatchPredictOperationMetadata) XXX_Merge ¶
func (m *BatchPredictOperationMetadata) XXX_Merge(src proto.Message)
func (*BatchPredictOperationMetadata) XXX_Size ¶
func (m *BatchPredictOperationMetadata) XXX_Size() int
func (*BatchPredictOperationMetadata) XXX_Unmarshal ¶
func (m *BatchPredictOperationMetadata) XXX_Unmarshal(b []byte) error
type BatchPredictOperationMetadata_BatchPredictOutputInfo ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo struct { // The output location into which prediction output is written. // // Types that are valid to be assigned to OutputLocation: // *BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory // *BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset OutputLocation isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation `protobuf_oneof:"output_location"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Further describes this batch predict's output. Supplements
BatchPredictOutputConfig[google.cloud.automl.v1beta1.BatchPredictOutputConfig].
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor ¶
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor() ([]byte, []int)
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage ¶
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) String ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) String() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_DiscardUnknown ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_DiscardUnknown()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Marshal ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Merge ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Merge(src proto.Message)
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_OneofWrappers ¶
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Size ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Size() int
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Unmarshal ¶
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) XXX_Unmarshal(b []byte) error
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset struct {
BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"`
}
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory struct {
GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}
type BatchPredictOutputConfig ¶
type BatchPredictOutputConfig struct { // Required. The destination of the output. // // Types that are valid to be assigned to Destination: // *BatchPredictOutputConfig_GcsDestination // *BatchPredictOutputConfig_BigqueryDestination Destination isBatchPredictOutputConfig_Destination `protobuf_oneof:"destination"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Output configuration for BatchPredict Action.
As destination the ¶
[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-<model-display-name>-<timestamp-of-prediction-call>", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for.
- For Image Classification: In the created directory files `image_classification_1.jsonl`, `image_classification_2.jsonl`,...,`image_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`fields. * For Image Object Detection: In the created directory files `image_object_detection_1.jsonl`, `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have image_object_detection detail populated. A single image will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any image failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`fields. * For Video Classification: In the created directory a video_classification.csv file, and a .JSON file per each video classification requested in the input (i.e. each line in given CSV(s)), will be created. The format of video_classification.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for the video time segment the file is assigned to in the video_classification.csv. All AnnotationPayload protos will have video_classification field set, and will be sorted by video_classification.type field (note that the returned types are governed by `classifaction_types` parameter in [PredictService.BatchPredictRequest.params][]). * For Video Object Tracking: In the created directory a video_object_tracking.csv file will be created, and multiple files video_object_trackinng_1.json, video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is the number of requests in the input (i.e. the number of lines in given CSV(s)). The format of video_object_tracking.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for each frame of the video time segment the file is assigned to in video_object_tracking.csv. All AnnotationPayload protos will have video_object_tracking field set. * For Text Classification: In the created directory files `text_classification_1.jsonl`, `text_classification_2.jsonl`,...,`text_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`. * For Text Sentiment: In the created directory files `text_sentiment_1.jsonl`, `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have text_sentiment detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`. * For Text Extraction: In the created directory files `text_extraction_1.jsonl`, `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. The contents of these .JSONL file(s) depend on whether the input used inline text, or documents. If input was inline, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request text snippet's "id" (if specified), followed by input text snippet, and a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated. A single text snippet will be listed only once with all its annotations, and its annotations will never be split across files. If input used documents, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request document proto, followed by its OCR-ed representation in the form of a text snippet, finally followed by a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated and refer, via their indices, to the OCR-ed text snippet. A single document (and its text snippet) will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps either the "id" : "<id_value>" (in case of inline) or the document proto (in case of document) but here followed by exactly one
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`. * For Tables: Output depends on whether
[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
or
[bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]
is set (either is allowed). GCS case: In the created directory files `tables_1.csv`, `tables_2.csv`,..., `tables_N.csv` will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION
[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
Each .csv file will contain a header, listing all columns'
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
given on input followed by M target column names in the format of
"<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target
value>_score" where M is the number of distinct target values, i.e. number of distinct values in the target column of the table used to train the model. Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, columns having the corresponding prediction [scores][google.cloud.automl.v1beta1.TablesAnnotation.score]. For REGRESSION and FORECASTING
[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
Each .csv file will contain a header, listing all columns' [display_name-s][google.cloud.automl.v1beta1.display_name] given on input followed by the predicted target column with name in the format of
"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additional `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be created (N depends on total number of failed rows). These files will have analogous format as `tables_*.csv`, but always with a single target column having
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a JSON string, and containing only `code` and `message`. BigQuery case:
[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
pointing to a BigQuery project must be set. In the given project a new dataset will be created with name `prediction_<model-display-name>_<timestamp-of-prediction-call>` where <model-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two tables will be created, `predictions`, and `errors`. The `predictions` table's column names will be the input columns'
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
followed by the target column with name in the format of
"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
The input feature columns will contain the respective values of successfully predicted rows, with the target column having an ARRAY of
[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
represented as STRUCT-s, containing [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation]. The `errors` table contains rows for which the prediction has failed, it has analogous input columns while the target column name is in the format of
"errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",
and as a value has
[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a STRUCT, and containing only `code` and `message`.
func (*BatchPredictOutputConfig) Descriptor ¶
func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)
func (*BatchPredictOutputConfig) GetBigqueryDestination ¶
func (m *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination
func (*BatchPredictOutputConfig) GetDestination ¶
func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination
func (*BatchPredictOutputConfig) GetGcsDestination ¶
func (m *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination
func (*BatchPredictOutputConfig) ProtoMessage ¶
func (*BatchPredictOutputConfig) ProtoMessage()
func (*BatchPredictOutputConfig) Reset ¶
func (m *BatchPredictOutputConfig) Reset()
func (*BatchPredictOutputConfig) String ¶
func (m *BatchPredictOutputConfig) String() string
func (*BatchPredictOutputConfig) XXX_DiscardUnknown ¶
func (m *BatchPredictOutputConfig) XXX_DiscardUnknown()
func (*BatchPredictOutputConfig) XXX_Marshal ¶
func (m *BatchPredictOutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BatchPredictOutputConfig) XXX_Merge ¶
func (m *BatchPredictOutputConfig) XXX_Merge(src proto.Message)
func (*BatchPredictOutputConfig) XXX_OneofWrappers ¶
func (*BatchPredictOutputConfig) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*BatchPredictOutputConfig) XXX_Size ¶
func (m *BatchPredictOutputConfig) XXX_Size() int
func (*BatchPredictOutputConfig) XXX_Unmarshal ¶
func (m *BatchPredictOutputConfig) XXX_Unmarshal(b []byte) error
type BatchPredictOutputConfig_BigqueryDestination ¶
type BatchPredictOutputConfig_BigqueryDestination struct {
BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}
type BatchPredictOutputConfig_GcsDestination ¶
type BatchPredictOutputConfig_GcsDestination struct {
GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}
type BatchPredictRequest ¶
type BatchPredictRequest struct { // Required. Name of the model requested to serve the batch prediction. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The input configuration for batch prediction. InputConfig *BatchPredictInputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"` // Required. The Configuration specifying where output predictions should // be written. OutputConfig *BatchPredictOutputConfig `protobuf:"bytes,4,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"` // Required. Additional domain-specific parameters for the predictions, any string must // be up to 25000 characters long. // // * For Text Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for a text snippet, it will only produce results // that have at least this confidence score. The default is 0.5. // // * For Image Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for an image, it will only produce results that // have at least this confidence score. The default is 0.5. // // * For Image Object Detection: // // `score_threshold` - (float) When Model detects objects on the image, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be produced per image. Default is 100, the // requested value may be limited by server. // // * For Video Classification : // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for a video, it will only produce results that // have at least this confidence score. The default is 0.5. // `segment_classification` - (boolean) Set to true to request // segment-level classification. AutoML Video Intelligence returns // labels and their confidence scores for the entire segment of the // video that user specified in the request configuration. // The default is "true". // `shot_classification` - (boolean) Set to true to request shot-level // classification. AutoML Video Intelligence determines the boundaries // for each camera shot in the entire segment of the video that user // specified in the request configuration. AutoML Video Intelligence // then returns labels and their confidence scores for each detected // shot, along with the start and end time of the shot. // WARNING: Model evaluation is not done for this classification type, // the quality of it depends on training data, but there are no metrics // provided to describe that quality. The default is "false". // `1s_interval_classification` - (boolean) Set to true to request // classification for a video at one-second intervals. AutoML Video // Intelligence returns labels and their confidence scores for each // second of the entire segment of the video that user specified in the // request configuration. // WARNING: Model evaluation is not done for this classification // type, the quality of it depends on training data, but there are no // metrics provided to describe that quality. The default is // "false". // // * For Tables: // // feature_imp<span>ortan</span>ce - (boolean) Whether feature importance // should be populated in the returned TablesAnnotations. The // default is false. // // * For Video Object Tracking: // // `score_threshold` - (float) When Model detects objects on video frames, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be returned per frame. Default is 100, the requested // value may be limited by server. // `min_bounding_box_size` - (float) Only bounding boxes with shortest edge // at least that long as a relative value of video frame size will be // returned. Value in 0 to 1 range. Default is 0. Params map[string]string `` /* 153-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
func (*BatchPredictRequest) Descriptor ¶
func (*BatchPredictRequest) Descriptor() ([]byte, []int)
func (*BatchPredictRequest) GetInputConfig ¶
func (m *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictRequest) GetName ¶
func (m *BatchPredictRequest) GetName() string
func (*BatchPredictRequest) GetOutputConfig ¶
func (m *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig
func (*BatchPredictRequest) GetParams ¶
func (m *BatchPredictRequest) GetParams() map[string]string
func (*BatchPredictRequest) ProtoMessage ¶
func (*BatchPredictRequest) ProtoMessage()
func (*BatchPredictRequest) Reset ¶
func (m *BatchPredictRequest) Reset()
func (*BatchPredictRequest) String ¶
func (m *BatchPredictRequest) String() string
func (*BatchPredictRequest) XXX_DiscardUnknown ¶
func (m *BatchPredictRequest) XXX_DiscardUnknown()
func (*BatchPredictRequest) XXX_Marshal ¶
func (m *BatchPredictRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BatchPredictRequest) XXX_Merge ¶
func (m *BatchPredictRequest) XXX_Merge(src proto.Message)
func (*BatchPredictRequest) XXX_Size ¶
func (m *BatchPredictRequest) XXX_Size() int
func (*BatchPredictRequest) XXX_Unmarshal ¶
func (m *BatchPredictRequest) XXX_Unmarshal(b []byte) error
type BatchPredictResult ¶
type BatchPredictResult struct { // Additional domain-specific prediction response metadata. // // * For Image Object Detection: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // image could have been returned. // // * For Video Object Tracking: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // frame could have been returned. Metadata map[string]string `` /* 157-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
func (*BatchPredictResult) Descriptor ¶
func (*BatchPredictResult) Descriptor() ([]byte, []int)
func (*BatchPredictResult) GetMetadata ¶
func (m *BatchPredictResult) GetMetadata() map[string]string
func (*BatchPredictResult) ProtoMessage ¶
func (*BatchPredictResult) ProtoMessage()
func (*BatchPredictResult) Reset ¶
func (m *BatchPredictResult) Reset()
func (*BatchPredictResult) String ¶
func (m *BatchPredictResult) String() string
func (*BatchPredictResult) XXX_DiscardUnknown ¶
func (m *BatchPredictResult) XXX_DiscardUnknown()
func (*BatchPredictResult) XXX_Marshal ¶
func (m *BatchPredictResult) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BatchPredictResult) XXX_Merge ¶
func (m *BatchPredictResult) XXX_Merge(src proto.Message)
func (*BatchPredictResult) XXX_Size ¶
func (m *BatchPredictResult) XXX_Size() int
func (*BatchPredictResult) XXX_Unmarshal ¶
func (m *BatchPredictResult) XXX_Unmarshal(b []byte) error
type BigQueryDestination ¶
type BigQueryDestination struct { // Required. BigQuery URI to a project, up to 2000 characters long. // Accepted forms: // * BigQuery path e.g. bq://projectId OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The BigQuery location for the output content.
func (*BigQueryDestination) Descriptor ¶
func (*BigQueryDestination) Descriptor() ([]byte, []int)
func (*BigQueryDestination) GetOutputUri ¶
func (m *BigQueryDestination) GetOutputUri() string
func (*BigQueryDestination) ProtoMessage ¶
func (*BigQueryDestination) ProtoMessage()
func (*BigQueryDestination) Reset ¶
func (m *BigQueryDestination) Reset()
func (*BigQueryDestination) String ¶
func (m *BigQueryDestination) String() string
func (*BigQueryDestination) XXX_DiscardUnknown ¶
func (m *BigQueryDestination) XXX_DiscardUnknown()
func (*BigQueryDestination) XXX_Marshal ¶
func (m *BigQueryDestination) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BigQueryDestination) XXX_Merge ¶
func (m *BigQueryDestination) XXX_Merge(src proto.Message)
func (*BigQueryDestination) XXX_Size ¶
func (m *BigQueryDestination) XXX_Size() int
func (*BigQueryDestination) XXX_Unmarshal ¶
func (m *BigQueryDestination) XXX_Unmarshal(b []byte) error
type BigQuerySource ¶
type BigQuerySource struct { // Required. BigQuery URI to a table, up to 2000 characters long. // Accepted forms: // * BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId InputUri string `protobuf:"bytes,1,opt,name=input_uri,json=inputUri,proto3" json:"input_uri,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The BigQuery location for the input content.
func (*BigQuerySource) Descriptor ¶
func (*BigQuerySource) Descriptor() ([]byte, []int)
func (*BigQuerySource) GetInputUri ¶
func (m *BigQuerySource) GetInputUri() string
func (*BigQuerySource) ProtoMessage ¶
func (*BigQuerySource) ProtoMessage()
func (*BigQuerySource) Reset ¶
func (m *BigQuerySource) Reset()
func (*BigQuerySource) String ¶
func (m *BigQuerySource) String() string
func (*BigQuerySource) XXX_DiscardUnknown ¶
func (m *BigQuerySource) XXX_DiscardUnknown()
func (*BigQuerySource) XXX_Marshal ¶
func (m *BigQuerySource) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BigQuerySource) XXX_Merge ¶
func (m *BigQuerySource) XXX_Merge(src proto.Message)
func (*BigQuerySource) XXX_Size ¶
func (m *BigQuerySource) XXX_Size() int
func (*BigQuerySource) XXX_Unmarshal ¶
func (m *BigQuerySource) XXX_Unmarshal(b []byte) error
type BoundingBoxMetricsEntry ¶
type BoundingBoxMetricsEntry struct { // Output only. The intersection-over-union threshold value used to compute // this metrics entry. IouThreshold float32 `protobuf:"fixed32,1,opt,name=iou_threshold,json=iouThreshold,proto3" json:"iou_threshold,omitempty"` // Output only. The mean average precision, most often close to au_prc. MeanAveragePrecision float32 `protobuf:"fixed32,2,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"` // Output only. Metrics for each label-match confidence_threshold from // 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is // derived from them. ConfidenceMetricsEntries []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry `` /* 135-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
func (*BoundingBoxMetricsEntry) Descriptor ¶
func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)
func (*BoundingBoxMetricsEntry) GetConfidenceMetricsEntries ¶
func (m *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry
func (*BoundingBoxMetricsEntry) GetIouThreshold ¶
func (m *BoundingBoxMetricsEntry) GetIouThreshold() float32
func (*BoundingBoxMetricsEntry) GetMeanAveragePrecision ¶
func (m *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32
func (*BoundingBoxMetricsEntry) ProtoMessage ¶
func (*BoundingBoxMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry) Reset ¶
func (m *BoundingBoxMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry) String ¶
func (m *BoundingBoxMetricsEntry) String() string
func (*BoundingBoxMetricsEntry) XXX_DiscardUnknown ¶
func (m *BoundingBoxMetricsEntry) XXX_DiscardUnknown()
func (*BoundingBoxMetricsEntry) XXX_Marshal ¶
func (m *BoundingBoxMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BoundingBoxMetricsEntry) XXX_Merge ¶
func (m *BoundingBoxMetricsEntry) XXX_Merge(src proto.Message)
func (*BoundingBoxMetricsEntry) XXX_Size ¶
func (m *BoundingBoxMetricsEntry) XXX_Size() int
func (*BoundingBoxMetricsEntry) XXX_Unmarshal ¶
func (m *BoundingBoxMetricsEntry) XXX_Unmarshal(b []byte) error
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry ¶
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry struct { // Output only. The confidence threshold value used to compute the metrics. ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"` // Output only. Recall under the given confidence threshold. Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"` // Output only. Precision under the given confidence threshold. Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"` // Output only. The harmonic mean of recall and precision. F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Metrics for a single confidence threshold.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor ¶
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage ¶
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String() string
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_DiscardUnknown ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_DiscardUnknown()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Marshal ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Merge ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Merge(src proto.Message)
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Size ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Size() int
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Unmarshal ¶
func (m *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) XXX_Unmarshal(b []byte) error
type BoundingPoly ¶
type BoundingPoly struct { // Output only . The bounding polygon normalized vertices. NormalizedVertices []*NormalizedVertex `protobuf:"bytes,2,rep,name=normalized_vertices,json=normalizedVertices,proto3" json:"normalized_vertices,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
func (*BoundingPoly) Descriptor ¶
func (*BoundingPoly) Descriptor() ([]byte, []int)
func (*BoundingPoly) GetNormalizedVertices ¶
func (m *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex
func (*BoundingPoly) ProtoMessage ¶
func (*BoundingPoly) ProtoMessage()
func (*BoundingPoly) Reset ¶
func (m *BoundingPoly) Reset()
func (*BoundingPoly) String ¶
func (m *BoundingPoly) String() string
func (*BoundingPoly) XXX_DiscardUnknown ¶
func (m *BoundingPoly) XXX_DiscardUnknown()
func (*BoundingPoly) XXX_Marshal ¶
func (m *BoundingPoly) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*BoundingPoly) XXX_Merge ¶
func (m *BoundingPoly) XXX_Merge(src proto.Message)
func (*BoundingPoly) XXX_Size ¶
func (m *BoundingPoly) XXX_Size() int
func (*BoundingPoly) XXX_Unmarshal ¶
func (m *BoundingPoly) XXX_Unmarshal(b []byte) error
type CategoryStats ¶
type CategoryStats struct { // The statistics of the top 20 CATEGORY values, ordered by // // [count][google.cloud.automl.v1beta1.CategoryStats.SingleCategoryStats.count]. TopCategoryStats []*CategoryStats_SingleCategoryStats `protobuf:"bytes,1,rep,name=top_category_stats,json=topCategoryStats,proto3" json:"top_category_stats,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of CATEGORY values.
func (*CategoryStats) Descriptor ¶
func (*CategoryStats) Descriptor() ([]byte, []int)
func (*CategoryStats) GetTopCategoryStats ¶
func (m *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats
func (*CategoryStats) ProtoMessage ¶
func (*CategoryStats) ProtoMessage()
func (*CategoryStats) Reset ¶
func (m *CategoryStats) Reset()
func (*CategoryStats) String ¶
func (m *CategoryStats) String() string
func (*CategoryStats) XXX_DiscardUnknown ¶
func (m *CategoryStats) XXX_DiscardUnknown()
func (*CategoryStats) XXX_Marshal ¶
func (m *CategoryStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*CategoryStats) XXX_Merge ¶
func (m *CategoryStats) XXX_Merge(src proto.Message)
func (*CategoryStats) XXX_Size ¶
func (m *CategoryStats) XXX_Size() int
func (*CategoryStats) XXX_Unmarshal ¶
func (m *CategoryStats) XXX_Unmarshal(b []byte) error
type CategoryStats_SingleCategoryStats ¶
type CategoryStats_SingleCategoryStats struct { // The CATEGORY value. Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"` // The number of occurrences of this value in the series. Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The statistics of a single CATEGORY value.
func (*CategoryStats_SingleCategoryStats) Descriptor ¶
func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)
func (*CategoryStats_SingleCategoryStats) GetCount ¶
func (m *CategoryStats_SingleCategoryStats) GetCount() int64
func (*CategoryStats_SingleCategoryStats) GetValue ¶
func (m *CategoryStats_SingleCategoryStats) GetValue() string
func (*CategoryStats_SingleCategoryStats) ProtoMessage ¶
func (*CategoryStats_SingleCategoryStats) ProtoMessage()
func (*CategoryStats_SingleCategoryStats) Reset ¶
func (m *CategoryStats_SingleCategoryStats) Reset()
func (*CategoryStats_SingleCategoryStats) String ¶
func (m *CategoryStats_SingleCategoryStats) String() string
func (*CategoryStats_SingleCategoryStats) XXX_DiscardUnknown ¶
func (m *CategoryStats_SingleCategoryStats) XXX_DiscardUnknown()
func (*CategoryStats_SingleCategoryStats) XXX_Marshal ¶
func (m *CategoryStats_SingleCategoryStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*CategoryStats_SingleCategoryStats) XXX_Merge ¶
func (m *CategoryStats_SingleCategoryStats) XXX_Merge(src proto.Message)
func (*CategoryStats_SingleCategoryStats) XXX_Size ¶
func (m *CategoryStats_SingleCategoryStats) XXX_Size() int
func (*CategoryStats_SingleCategoryStats) XXX_Unmarshal ¶
func (m *CategoryStats_SingleCategoryStats) XXX_Unmarshal(b []byte) error
type ClassificationAnnotation ¶
type ClassificationAnnotation struct { // Output only. A confidence estimate between 0.0 and 1.0. A higher value // means greater confidence that the annotation is positive. If a user // approves an annotation as negative or positive, the score value remains // unchanged. If a user creates an annotation, the score is 0 for negative or // 1 for positive. Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Contains annotation details specific to classification.
func (*ClassificationAnnotation) Descriptor ¶
func (*ClassificationAnnotation) Descriptor() ([]byte, []int)
func (*ClassificationAnnotation) GetScore ¶
func (m *ClassificationAnnotation) GetScore() float32
func (*ClassificationAnnotation) ProtoMessage ¶
func (*ClassificationAnnotation) ProtoMessage()
func (*ClassificationAnnotation) Reset ¶
func (m *ClassificationAnnotation) Reset()
func (*ClassificationAnnotation) String ¶
func (m *ClassificationAnnotation) String() string
func (*ClassificationAnnotation) XXX_DiscardUnknown ¶
func (m *ClassificationAnnotation) XXX_DiscardUnknown()
func (*ClassificationAnnotation) XXX_Marshal ¶
func (m *ClassificationAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ClassificationAnnotation) XXX_Merge ¶
func (m *ClassificationAnnotation) XXX_Merge(src proto.Message)
func (*ClassificationAnnotation) XXX_Size ¶
func (m *ClassificationAnnotation) XXX_Size() int
func (*ClassificationAnnotation) XXX_Unmarshal ¶
func (m *ClassificationAnnotation) XXX_Unmarshal(b []byte) error
type ClassificationEvaluationMetrics ¶
type ClassificationEvaluationMetrics struct { // Output only. The Area Under Precision-Recall Curve metric. Micro-averaged // for the overall evaluation. AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"` // Output only. The Area Under Precision-Recall Curve metric based on priors. // Micro-averaged for the overall evaluation. // Deprecated. BaseAuPrc float32 `protobuf:"fixed32,2,opt,name=base_au_prc,json=baseAuPrc,proto3" json:"base_au_prc,omitempty"` // Deprecated: Do not use. // Output only. The Area Under Receiver Operating Characteristic curve metric. // Micro-averaged for the overall evaluation. AuRoc float32 `protobuf:"fixed32,6,opt,name=au_roc,json=auRoc,proto3" json:"au_roc,omitempty"` // Output only. The Log Loss metric. LogLoss float32 `protobuf:"fixed32,7,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"` // Output only. Metrics for each confidence_threshold in // 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and // position_threshold = INT32_MAX_VALUE. // ROC and precision-recall curves, and other aggregated metrics are derived // from them. The confidence metrics entries may also be supplied for // additional values of position_threshold, but from these no aggregated // metrics are computed. ConfidenceMetricsEntry []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry `` /* 129-byte string literal not displayed */ // Output only. Confusion matrix of the evaluation. // Only set for MULTICLASS classification problems where number // of labels is no more than 10. // Only set for model level evaluation, not for evaluation per label. ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,4,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"` // Output only. The annotation spec ids used for this evaluation. AnnotationSpecId []string `protobuf:"bytes,5,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.
func (*ClassificationEvaluationMetrics) Descriptor ¶
func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)
func (*ClassificationEvaluationMetrics) GetAnnotationSpecId ¶
func (m *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics) GetAuPrc ¶
func (m *ClassificationEvaluationMetrics) GetAuPrc() float32
func (*ClassificationEvaluationMetrics) GetAuRoc ¶
func (m *ClassificationEvaluationMetrics) GetAuRoc() float32
func (*ClassificationEvaluationMetrics) GetBaseAuPrc
deprecated
func (m *ClassificationEvaluationMetrics) GetBaseAuPrc() float32
Deprecated: Do not use.
func (*ClassificationEvaluationMetrics) GetConfidenceMetricsEntry ¶
func (m *ClassificationEvaluationMetrics) GetConfidenceMetricsEntry() []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry
func (*ClassificationEvaluationMetrics) GetConfusionMatrix ¶
func (m *ClassificationEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
func (*ClassificationEvaluationMetrics) GetLogLoss ¶
func (m *ClassificationEvaluationMetrics) GetLogLoss() float32
func (*ClassificationEvaluationMetrics) ProtoMessage ¶
func (*ClassificationEvaluationMetrics) ProtoMessage()
func (*ClassificationEvaluationMetrics) Reset ¶
func (m *ClassificationEvaluationMetrics) Reset()
func (*ClassificationEvaluationMetrics) String ¶
func (m *ClassificationEvaluationMetrics) String() string
func (*ClassificationEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *ClassificationEvaluationMetrics) XXX_DiscardUnknown()
func (*ClassificationEvaluationMetrics) XXX_Marshal ¶
func (m *ClassificationEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ClassificationEvaluationMetrics) XXX_Merge ¶
func (m *ClassificationEvaluationMetrics) XXX_Merge(src proto.Message)
func (*ClassificationEvaluationMetrics) XXX_Size ¶
func (m *ClassificationEvaluationMetrics) XXX_Size() int
func (*ClassificationEvaluationMetrics) XXX_Unmarshal ¶
func (m *ClassificationEvaluationMetrics) XXX_Unmarshal(b []byte) error
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry ¶
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry struct { // Output only. Metrics are computed with an assumption that the model // never returns predictions with score lower than this value. ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"` // Output only. Metrics are computed with an assumption that the model // always returns at most this many predictions (ordered by their score, // descendingly), but they all still need to meet the confidence_threshold. PositionThreshold int32 `protobuf:"varint,14,opt,name=position_threshold,json=positionThreshold,proto3" json:"position_threshold,omitempty"` // Output only. Recall (True Positive Rate) for the given confidence // threshold. Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"` // Output only. Precision for the given confidence threshold. Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"` // Output only. False Positive Rate for the given confidence threshold. FalsePositiveRate float32 `protobuf:"fixed32,8,opt,name=false_positive_rate,json=falsePositiveRate,proto3" json:"false_positive_rate,omitempty"` // Output only. The harmonic mean of recall and precision. F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"` // Output only. The Recall (True Positive Rate) when only considering the // label that has the highest prediction score and not below the confidence // threshold for each example. RecallAt1 float32 `protobuf:"fixed32,5,opt,name=recall_at1,json=recallAt1,proto3" json:"recall_at1,omitempty"` // Output only. The precision when only considering the label that has the // highest prediction score and not below the confidence threshold for each // example. PrecisionAt1 float32 `protobuf:"fixed32,6,opt,name=precision_at1,json=precisionAt1,proto3" json:"precision_at1,omitempty"` // Output only. The False Positive Rate when only considering the label that // has the highest prediction score and not below the confidence threshold // for each example. FalsePositiveRateAt1 float32 `` /* 127-byte string literal not displayed */ // Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1]. F1ScoreAt1 float32 `protobuf:"fixed32,7,opt,name=f1_score_at1,json=f1ScoreAt1,proto3" json:"f1_score_at1,omitempty"` // Output only. The number of model created labels that match a ground truth // label. TruePositiveCount int64 `protobuf:"varint,10,opt,name=true_positive_count,json=truePositiveCount,proto3" json:"true_positive_count,omitempty"` // Output only. The number of model created labels that do not match a // ground truth label. FalsePositiveCount int64 `protobuf:"varint,11,opt,name=false_positive_count,json=falsePositiveCount,proto3" json:"false_positive_count,omitempty"` // Output only. The number of ground truth labels that are not matched // by a model created label. FalseNegativeCount int64 `protobuf:"varint,12,opt,name=false_negative_count,json=falseNegativeCount,proto3" json:"false_negative_count,omitempty"` // Output only. The number of labels that were not created by the model, // but if they would, they would not match a ground truth label. TrueNegativeCount int64 `protobuf:"varint,13,opt,name=true_negative_count,json=trueNegativeCount,proto3" json:"true_negative_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Metrics for a single confidence threshold.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor ¶
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1 ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1 ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold() int32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1 ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1 ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage ¶
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String() string
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_DiscardUnknown ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_DiscardUnknown()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Marshal ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Merge ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Merge(src proto.Message)
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Size ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Size() int
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Unmarshal ¶
func (m *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) XXX_Unmarshal(b []byte) error
type ClassificationEvaluationMetrics_ConfusionMatrix ¶
type ClassificationEvaluationMetrics_ConfusionMatrix struct { // Output only. IDs of the annotation specs used in the confusion matrix. // For Tables CLASSIFICATION // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] // only list of [annotation_spec_display_name-s][] is populated. AnnotationSpecId []string `protobuf:"bytes,1,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // Output only. Display name of the annotation specs used in the confusion // matrix, as they were at the moment of the evaluation. For Tables // CLASSIFICATION // // [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type], // distinct values of the target column at the moment of the model // evaluation are populated here. DisplayName []string `protobuf:"bytes,3,rep,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. Rows in the confusion matrix. The number of rows is equal to // the size of `annotation_spec_id`. // `row[i].example_count[j]` is the number of examples that have ground // truth of the `annotation_spec_id[i]` and are predicted as // `annotation_spec_id[j]` by the model being evaluated. Row []*ClassificationEvaluationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=row,proto3" json:"row,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Confusion matrix of the model running the classification.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor ¶
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage ¶
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Reset ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) String ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) String() string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) XXX_DiscardUnknown ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_DiscardUnknown()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Marshal ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Merge ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Merge(src proto.Message)
func (*ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Size ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Size() int
func (*ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Unmarshal ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix) XXX_Unmarshal(b []byte) error
type ClassificationEvaluationMetrics_ConfusionMatrix_Row ¶
type ClassificationEvaluationMetrics_ConfusionMatrix_Row struct { // Output only. Value of the specific cell in the confusion matrix. // The number of values each row has (i.e. the length of the row) is equal // to the length of the `annotation_spec_id` field or, if that one is not // populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field. ExampleCount []int32 `protobuf:"varint,1,rep,packed,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Output only. A row in the confusion matrix.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor ¶
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount() []int32
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage ¶
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) String ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) String() string
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_DiscardUnknown ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_DiscardUnknown()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Marshal ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Merge ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Merge(src proto.Message)
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Size ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Size() int
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Unmarshal ¶
func (m *ClassificationEvaluationMetrics_ConfusionMatrix_Row) XXX_Unmarshal(b []byte) error
type ClassificationType ¶
type ClassificationType int32
Type of the classification problem.
const ( // An un-set value of this enum. ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType = 0 // At most one label is allowed per example. ClassificationType_MULTICLASS ClassificationType = 1 // Multiple labels are allowed for one example. ClassificationType_MULTILABEL ClassificationType = 2 )
func (ClassificationType) EnumDescriptor ¶
func (ClassificationType) EnumDescriptor() ([]byte, []int)
func (ClassificationType) String ¶
func (x ClassificationType) String() string
type ColumnSpec ¶
type ColumnSpec struct { // Output only. The resource name of the column specs. // Form: // // `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}/columnSpecs/{column_spec_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // The data type of elements stored in the column. DataType *DataType `protobuf:"bytes,2,opt,name=data_type,json=dataType,proto3" json:"data_type,omitempty"` // Output only. The name of the column to show in the interface. The name can // be up to 100 characters long and can consist only of ASCII Latin letters // A-Z and a-z, ASCII digits 0-9, underscores(_), and forward slashes(/), and // must start with a letter or a digit. DisplayName string `protobuf:"bytes,3,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. Stats of the series of values in the column. // This field may be stale, see the ancestor's // Dataset.tables_dataset_metadata.stats_update_time field // for the timestamp at which these stats were last updated. DataStats *DataStats `protobuf:"bytes,4,opt,name=data_stats,json=dataStats,proto3" json:"data_stats,omitempty"` TopCorrelatedColumns []*ColumnSpec_CorrelatedColumn `protobuf:"bytes,5,rep,name=top_correlated_columns,json=topCorrelatedColumns,proto3" json:"top_correlated_columns,omitempty"` // Used to perform consistent read-modify-write updates. If not set, a blind // "overwrite" update happens. Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:
- Tables
func (*ColumnSpec) Descriptor ¶
func (*ColumnSpec) Descriptor() ([]byte, []int)
func (*ColumnSpec) GetDataStats ¶
func (m *ColumnSpec) GetDataStats() *DataStats
func (*ColumnSpec) GetDataType ¶
func (m *ColumnSpec) GetDataType() *DataType
func (*ColumnSpec) GetDisplayName ¶
func (m *ColumnSpec) GetDisplayName() string
func (*ColumnSpec) GetEtag ¶
func (m *ColumnSpec) GetEtag() string
func (*ColumnSpec) GetName ¶
func (m *ColumnSpec) GetName() string
func (*ColumnSpec) GetTopCorrelatedColumns ¶
func (m *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn
func (*ColumnSpec) ProtoMessage ¶
func (*ColumnSpec) ProtoMessage()
func (*ColumnSpec) Reset ¶
func (m *ColumnSpec) Reset()
func (*ColumnSpec) String ¶
func (m *ColumnSpec) String() string
func (*ColumnSpec) XXX_DiscardUnknown ¶
func (m *ColumnSpec) XXX_DiscardUnknown()
func (*ColumnSpec) XXX_Marshal ¶
func (m *ColumnSpec) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ColumnSpec) XXX_Merge ¶
func (m *ColumnSpec) XXX_Merge(src proto.Message)
func (*ColumnSpec) XXX_Size ¶
func (m *ColumnSpec) XXX_Size() int
func (*ColumnSpec) XXX_Unmarshal ¶
func (m *ColumnSpec) XXX_Unmarshal(b []byte) error
type ColumnSpec_CorrelatedColumn ¶
type ColumnSpec_CorrelatedColumn struct { // table as the in-context column. ColumnSpecId string `protobuf:"bytes,1,opt,name=column_spec_id,json=columnSpecId,proto3" json:"column_spec_id,omitempty"` // Correlation between this and the in-context column. }
Identifies the table's column, and its correlation with the column this ColumnSpec describes.
func (*ColumnSpec_CorrelatedColumn) Descriptor ¶
func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)
func (*ColumnSpec_CorrelatedColumn) GetColumnSpecId ¶
func (m *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string
func (*ColumnSpec_CorrelatedColumn) GetCorrelationStats ¶
func (m *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats
func (*ColumnSpec_CorrelatedColumn) ProtoMessage ¶
func (*ColumnSpec_CorrelatedColumn) ProtoMessage()
func (*ColumnSpec_CorrelatedColumn) Reset ¶
func (m *ColumnSpec_CorrelatedColumn) Reset()
func (*ColumnSpec_CorrelatedColumn) String ¶
func (m *ColumnSpec_CorrelatedColumn) String() string
func (*ColumnSpec_CorrelatedColumn) XXX_DiscardUnknown ¶
func (m *ColumnSpec_CorrelatedColumn) XXX_DiscardUnknown()
func (*ColumnSpec_CorrelatedColumn) XXX_Marshal ¶
func (m *ColumnSpec_CorrelatedColumn) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ColumnSpec_CorrelatedColumn) XXX_Merge ¶
func (m *ColumnSpec_CorrelatedColumn) XXX_Merge(src proto.Message)
func (*ColumnSpec_CorrelatedColumn) XXX_Size ¶
func (m *ColumnSpec_CorrelatedColumn) XXX_Size() int
func (*ColumnSpec_CorrelatedColumn) XXX_Unmarshal ¶
func (m *ColumnSpec_CorrelatedColumn) XXX_Unmarshal(b []byte) error
type CorrelationStats ¶
type CorrelationStats struct { // The correlation value using the Cramer's V measure. CramersV float64 `protobuf:"fixed64,1,opt,name=cramers_v,json=cramersV,proto3" json:"cramers_v,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.
func (*CorrelationStats) Descriptor ¶
func (*CorrelationStats) Descriptor() ([]byte, []int)
func (*CorrelationStats) GetCramersV ¶
func (m *CorrelationStats) GetCramersV() float64
func (*CorrelationStats) ProtoMessage ¶
func (*CorrelationStats) ProtoMessage()
func (*CorrelationStats) Reset ¶
func (m *CorrelationStats) Reset()
func (*CorrelationStats) String ¶
func (m *CorrelationStats) String() string
func (*CorrelationStats) XXX_DiscardUnknown ¶
func (m *CorrelationStats) XXX_DiscardUnknown()
func (*CorrelationStats) XXX_Marshal ¶
func (m *CorrelationStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*CorrelationStats) XXX_Merge ¶
func (m *CorrelationStats) XXX_Merge(src proto.Message)
func (*CorrelationStats) XXX_Size ¶
func (m *CorrelationStats) XXX_Size() int
func (*CorrelationStats) XXX_Unmarshal ¶
func (m *CorrelationStats) XXX_Unmarshal(b []byte) error
type CreateDatasetRequest ¶
type CreateDatasetRequest struct { // Required. The resource name of the project to create the dataset for. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // Required. The dataset to create. Dataset *Dataset `protobuf:"bytes,2,opt,name=dataset,proto3" json:"dataset,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].
func (*CreateDatasetRequest) Descriptor ¶
func (*CreateDatasetRequest) Descriptor() ([]byte, []int)
func (*CreateDatasetRequest) GetDataset ¶
func (m *CreateDatasetRequest) GetDataset() *Dataset
func (*CreateDatasetRequest) GetParent ¶
func (m *CreateDatasetRequest) GetParent() string
func (*CreateDatasetRequest) ProtoMessage ¶
func (*CreateDatasetRequest) ProtoMessage()
func (*CreateDatasetRequest) Reset ¶
func (m *CreateDatasetRequest) Reset()
func (*CreateDatasetRequest) String ¶
func (m *CreateDatasetRequest) String() string
func (*CreateDatasetRequest) XXX_DiscardUnknown ¶
func (m *CreateDatasetRequest) XXX_DiscardUnknown()
func (*CreateDatasetRequest) XXX_Marshal ¶
func (m *CreateDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*CreateDatasetRequest) XXX_Merge ¶
func (m *CreateDatasetRequest) XXX_Merge(src proto.Message)
func (*CreateDatasetRequest) XXX_Size ¶
func (m *CreateDatasetRequest) XXX_Size() int
func (*CreateDatasetRequest) XXX_Unmarshal ¶
func (m *CreateDatasetRequest) XXX_Unmarshal(b []byte) error
type CreateModelOperationMetadata ¶
type CreateModelOperationMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of CreateModel operation.
func (*CreateModelOperationMetadata) Descriptor ¶
func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)
func (*CreateModelOperationMetadata) ProtoMessage ¶
func (*CreateModelOperationMetadata) ProtoMessage()
func (*CreateModelOperationMetadata) Reset ¶
func (m *CreateModelOperationMetadata) Reset()
func (*CreateModelOperationMetadata) String ¶
func (m *CreateModelOperationMetadata) String() string
func (*CreateModelOperationMetadata) XXX_DiscardUnknown ¶
func (m *CreateModelOperationMetadata) XXX_DiscardUnknown()
func (*CreateModelOperationMetadata) XXX_Marshal ¶
func (m *CreateModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*CreateModelOperationMetadata) XXX_Merge ¶
func (m *CreateModelOperationMetadata) XXX_Merge(src proto.Message)
func (*CreateModelOperationMetadata) XXX_Size ¶
func (m *CreateModelOperationMetadata) XXX_Size() int
func (*CreateModelOperationMetadata) XXX_Unmarshal ¶
func (m *CreateModelOperationMetadata) XXX_Unmarshal(b []byte) error
type CreateModelRequest ¶
type CreateModelRequest struct { // Required. Resource name of the parent project where the model is being created. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // Required. The model to create. Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].
func (*CreateModelRequest) Descriptor ¶
func (*CreateModelRequest) Descriptor() ([]byte, []int)
func (*CreateModelRequest) GetModel ¶
func (m *CreateModelRequest) GetModel() *Model
func (*CreateModelRequest) GetParent ¶
func (m *CreateModelRequest) GetParent() string
func (*CreateModelRequest) ProtoMessage ¶
func (*CreateModelRequest) ProtoMessage()
func (*CreateModelRequest) Reset ¶
func (m *CreateModelRequest) Reset()
func (*CreateModelRequest) String ¶
func (m *CreateModelRequest) String() string
func (*CreateModelRequest) XXX_DiscardUnknown ¶
func (m *CreateModelRequest) XXX_DiscardUnknown()
func (*CreateModelRequest) XXX_Marshal ¶
func (m *CreateModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*CreateModelRequest) XXX_Merge ¶
func (m *CreateModelRequest) XXX_Merge(src proto.Message)
func (*CreateModelRequest) XXX_Size ¶
func (m *CreateModelRequest) XXX_Size() int
func (*CreateModelRequest) XXX_Unmarshal ¶
func (m *CreateModelRequest) XXX_Unmarshal(b []byte) error
type DataStats ¶
type DataStats struct { // The data statistics specific to a DataType. // // Types that are valid to be assigned to Stats: // *DataStats_Float64Stats // *DataStats_StringStats // *DataStats_TimestampStats // *DataStats_ArrayStats // *DataStats_StructStats // *DataStats_CategoryStats Stats isDataStats_Stats `protobuf_oneof:"stats"` // The number of distinct values. DistinctValueCount int64 `protobuf:"varint,1,opt,name=distinct_value_count,json=distinctValueCount,proto3" json:"distinct_value_count,omitempty"` // The number of values that are null. NullValueCount int64 `protobuf:"varint,2,opt,name=null_value_count,json=nullValueCount,proto3" json:"null_value_count,omitempty"` // The number of values that are valid. ValidValueCount int64 `protobuf:"varint,9,opt,name=valid_value_count,json=validValueCount,proto3" json:"valid_value_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of values that share the same DataType.
func (*DataStats) Descriptor ¶
func (*DataStats) GetArrayStats ¶
func (m *DataStats) GetArrayStats() *ArrayStats
func (*DataStats) GetCategoryStats ¶
func (m *DataStats) GetCategoryStats() *CategoryStats
func (*DataStats) GetDistinctValueCount ¶
func (*DataStats) GetFloat64Stats ¶
func (m *DataStats) GetFloat64Stats() *Float64Stats
func (*DataStats) GetNullValueCount ¶
func (*DataStats) GetStringStats ¶
func (m *DataStats) GetStringStats() *StringStats
func (*DataStats) GetStructStats ¶
func (m *DataStats) GetStructStats() *StructStats
func (*DataStats) GetTimestampStats ¶
func (m *DataStats) GetTimestampStats() *TimestampStats
func (*DataStats) GetValidValueCount ¶
func (*DataStats) ProtoMessage ¶
func (*DataStats) ProtoMessage()
func (*DataStats) XXX_DiscardUnknown ¶
func (m *DataStats) XXX_DiscardUnknown()
func (*DataStats) XXX_Marshal ¶
func (*DataStats) XXX_OneofWrappers ¶
func (*DataStats) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*DataStats) XXX_Unmarshal ¶
type DataStats_ArrayStats ¶
type DataStats_ArrayStats struct {
ArrayStats *ArrayStats `protobuf:"bytes,6,opt,name=array_stats,json=arrayStats,proto3,oneof"`
}
type DataStats_CategoryStats ¶
type DataStats_CategoryStats struct {
CategoryStats *CategoryStats `protobuf:"bytes,8,opt,name=category_stats,json=categoryStats,proto3,oneof"`
}
type DataStats_Float64Stats ¶
type DataStats_Float64Stats struct {
Float64Stats *Float64Stats `protobuf:"bytes,3,opt,name=float64_stats,json=float64Stats,proto3,oneof"`
}
type DataStats_StringStats ¶
type DataStats_StringStats struct {
StringStats *StringStats `protobuf:"bytes,4,opt,name=string_stats,json=stringStats,proto3,oneof"`
}
type DataStats_StructStats ¶
type DataStats_StructStats struct {
StructStats *StructStats `protobuf:"bytes,7,opt,name=struct_stats,json=structStats,proto3,oneof"`
}
type DataStats_TimestampStats ¶
type DataStats_TimestampStats struct {
TimestampStats *TimestampStats `protobuf:"bytes,5,opt,name=timestamp_stats,json=timestampStats,proto3,oneof"`
}
type DataType ¶
type DataType struct { // Details of DataType-s that need additional specification. // // Types that are valid to be assigned to Details: // *DataType_ListElementType // *DataType_StructType // *DataType_TimeFormat Details isDataType_Details `protobuf_oneof:"details"` // Required. The [TypeCode][google.cloud.automl.v1beta1.TypeCode] for this type. TypeCode TypeCode `` /* 128-byte string literal not displayed */ // If true, this DataType can also be `NULL`. In .CSV files `NULL` value is // expressed as an empty string. Nullable bool `protobuf:"varint,4,opt,name=nullable,proto3" json:"nullable,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Indicated the type of data that can be stored in a structured data entity (e.g. a table).
func (*DataType) Descriptor ¶
func (*DataType) GetDetails ¶
func (m *DataType) GetDetails() isDataType_Details
func (*DataType) GetListElementType ¶
func (*DataType) GetNullable ¶
func (*DataType) GetStructType ¶
func (m *DataType) GetStructType() *StructType
func (*DataType) GetTimeFormat ¶
func (*DataType) GetTypeCode ¶
func (*DataType) ProtoMessage ¶
func (*DataType) ProtoMessage()
func (*DataType) XXX_DiscardUnknown ¶
func (m *DataType) XXX_DiscardUnknown()
func (*DataType) XXX_Marshal ¶
func (*DataType) XXX_OneofWrappers ¶
func (*DataType) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*DataType) XXX_Unmarshal ¶
type DataType_ListElementType ¶
type DataType_ListElementType struct {
ListElementType *DataType `protobuf:"bytes,2,opt,name=list_element_type,json=listElementType,proto3,oneof"`
}
type DataType_StructType ¶
type DataType_StructType struct {
StructType *StructType `protobuf:"bytes,3,opt,name=struct_type,json=structType,proto3,oneof"`
}
type DataType_TimeFormat ¶
type DataType_TimeFormat struct {
TimeFormat string `protobuf:"bytes,5,opt,name=time_format,json=timeFormat,proto3,oneof"`
}
type Dataset ¶
type Dataset struct { // Required. // The dataset metadata that is specific to the problem type. // // Types that are valid to be assigned to DatasetMetadata: // *Dataset_TranslationDatasetMetadata // *Dataset_ImageClassificationDatasetMetadata // *Dataset_TextClassificationDatasetMetadata // *Dataset_ImageObjectDetectionDatasetMetadata // *Dataset_VideoClassificationDatasetMetadata // *Dataset_VideoObjectTrackingDatasetMetadata // *Dataset_TextExtractionDatasetMetadata // *Dataset_TextSentimentDatasetMetadata // *Dataset_TablesDatasetMetadata DatasetMetadata isDataset_DatasetMetadata `protobuf_oneof:"dataset_metadata"` // Output only. The resource name of the dataset. // Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The name of the dataset to show in the interface. The name can be // up to 32 characters long and can consist only of ASCII Latin letters A-Z // and a-z, underscores // (_), and ASCII digits 0-9. DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // User-provided description of the dataset. The description can be up to // 25000 characters long. Description string `protobuf:"bytes,3,opt,name=description,proto3" json:"description,omitempty"` // Output only. The number of examples in the dataset. ExampleCount int32 `protobuf:"varint,21,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"` // Output only. Timestamp when this dataset was created. CreateTime *timestamp.Timestamp `protobuf:"bytes,14,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"` // Used to perform consistent read-modify-write updates. If not set, a blind // "overwrite" update happens. Etag string `protobuf:"bytes,17,opt,name=etag,proto3" json:"etag,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
func (*Dataset) Descriptor ¶
func (*Dataset) GetCreateTime ¶
func (*Dataset) GetDatasetMetadata ¶
func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata
func (*Dataset) GetDescription ¶
func (*Dataset) GetDisplayName ¶
func (*Dataset) GetExampleCount ¶
func (*Dataset) GetImageClassificationDatasetMetadata ¶
func (m *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata
func (*Dataset) GetImageObjectDetectionDatasetMetadata ¶
func (m *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata
func (*Dataset) GetTablesDatasetMetadata ¶
func (m *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata
func (*Dataset) GetTextClassificationDatasetMetadata ¶
func (m *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata
func (*Dataset) GetTextExtractionDatasetMetadata ¶
func (m *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata
func (*Dataset) GetTextSentimentDatasetMetadata ¶
func (m *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata
func (*Dataset) GetTranslationDatasetMetadata ¶
func (m *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata
func (*Dataset) GetVideoClassificationDatasetMetadata ¶
func (m *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata
func (*Dataset) GetVideoObjectTrackingDatasetMetadata ¶
func (m *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata
func (*Dataset) ProtoMessage ¶
func (*Dataset) ProtoMessage()
func (*Dataset) XXX_DiscardUnknown ¶
func (m *Dataset) XXX_DiscardUnknown()
func (*Dataset) XXX_Marshal ¶
func (*Dataset) XXX_OneofWrappers ¶
func (*Dataset) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*Dataset) XXX_Unmarshal ¶
type Dataset_ImageClassificationDatasetMetadata ¶
type Dataset_ImageClassificationDatasetMetadata struct {
ImageClassificationDatasetMetadata *ImageClassificationDatasetMetadata `protobuf:"bytes,24,opt,name=image_classification_dataset_metadata,json=imageClassificationDatasetMetadata,proto3,oneof"`
}
type Dataset_ImageObjectDetectionDatasetMetadata ¶
type Dataset_ImageObjectDetectionDatasetMetadata struct {
ImageObjectDetectionDatasetMetadata *ImageObjectDetectionDatasetMetadata `protobuf:"bytes,26,opt,name=image_object_detection_dataset_metadata,json=imageObjectDetectionDatasetMetadata,proto3,oneof"`
}
type Dataset_TablesDatasetMetadata ¶
type Dataset_TablesDatasetMetadata struct {
TablesDatasetMetadata *TablesDatasetMetadata `protobuf:"bytes,33,opt,name=tables_dataset_metadata,json=tablesDatasetMetadata,proto3,oneof"`
}
type Dataset_TextClassificationDatasetMetadata ¶
type Dataset_TextClassificationDatasetMetadata struct {
TextClassificationDatasetMetadata *TextClassificationDatasetMetadata `protobuf:"bytes,25,opt,name=text_classification_dataset_metadata,json=textClassificationDatasetMetadata,proto3,oneof"`
}
type Dataset_TextExtractionDatasetMetadata ¶
type Dataset_TextExtractionDatasetMetadata struct {
TextExtractionDatasetMetadata *TextExtractionDatasetMetadata `protobuf:"bytes,28,opt,name=text_extraction_dataset_metadata,json=textExtractionDatasetMetadata,proto3,oneof"`
}
type Dataset_TextSentimentDatasetMetadata ¶
type Dataset_TextSentimentDatasetMetadata struct {
TextSentimentDatasetMetadata *TextSentimentDatasetMetadata `protobuf:"bytes,30,opt,name=text_sentiment_dataset_metadata,json=textSentimentDatasetMetadata,proto3,oneof"`
}
type Dataset_TranslationDatasetMetadata ¶
type Dataset_TranslationDatasetMetadata struct {
TranslationDatasetMetadata *TranslationDatasetMetadata `protobuf:"bytes,23,opt,name=translation_dataset_metadata,json=translationDatasetMetadata,proto3,oneof"`
}
type Dataset_VideoClassificationDatasetMetadata ¶
type Dataset_VideoClassificationDatasetMetadata struct {
VideoClassificationDatasetMetadata *VideoClassificationDatasetMetadata `protobuf:"bytes,31,opt,name=video_classification_dataset_metadata,json=videoClassificationDatasetMetadata,proto3,oneof"`
}
type Dataset_VideoObjectTrackingDatasetMetadata ¶
type Dataset_VideoObjectTrackingDatasetMetadata struct {
VideoObjectTrackingDatasetMetadata *VideoObjectTrackingDatasetMetadata `protobuf:"bytes,29,opt,name=video_object_tracking_dataset_metadata,json=videoObjectTrackingDatasetMetadata,proto3,oneof"`
}
type DeleteDatasetRequest ¶
type DeleteDatasetRequest struct { // Required. The resource name of the dataset to delete. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1beta1.AutoMl.DeleteDataset].
func (*DeleteDatasetRequest) Descriptor ¶
func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)
func (*DeleteDatasetRequest) GetName ¶
func (m *DeleteDatasetRequest) GetName() string
func (*DeleteDatasetRequest) ProtoMessage ¶
func (*DeleteDatasetRequest) ProtoMessage()
func (*DeleteDatasetRequest) Reset ¶
func (m *DeleteDatasetRequest) Reset()
func (*DeleteDatasetRequest) String ¶
func (m *DeleteDatasetRequest) String() string
func (*DeleteDatasetRequest) XXX_DiscardUnknown ¶
func (m *DeleteDatasetRequest) XXX_DiscardUnknown()
func (*DeleteDatasetRequest) XXX_Marshal ¶
func (m *DeleteDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DeleteDatasetRequest) XXX_Merge ¶
func (m *DeleteDatasetRequest) XXX_Merge(src proto.Message)
func (*DeleteDatasetRequest) XXX_Size ¶
func (m *DeleteDatasetRequest) XXX_Size() int
func (*DeleteDatasetRequest) XXX_Unmarshal ¶
func (m *DeleteDatasetRequest) XXX_Unmarshal(b []byte) error
type DeleteModelRequest ¶
type DeleteModelRequest struct { // Required. Resource name of the model being deleted. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.DeleteModel][google.cloud.automl.v1beta1.AutoMl.DeleteModel].
func (*DeleteModelRequest) Descriptor ¶
func (*DeleteModelRequest) Descriptor() ([]byte, []int)
func (*DeleteModelRequest) GetName ¶
func (m *DeleteModelRequest) GetName() string
func (*DeleteModelRequest) ProtoMessage ¶
func (*DeleteModelRequest) ProtoMessage()
func (*DeleteModelRequest) Reset ¶
func (m *DeleteModelRequest) Reset()
func (*DeleteModelRequest) String ¶
func (m *DeleteModelRequest) String() string
func (*DeleteModelRequest) XXX_DiscardUnknown ¶
func (m *DeleteModelRequest) XXX_DiscardUnknown()
func (*DeleteModelRequest) XXX_Marshal ¶
func (m *DeleteModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DeleteModelRequest) XXX_Merge ¶
func (m *DeleteModelRequest) XXX_Merge(src proto.Message)
func (*DeleteModelRequest) XXX_Size ¶
func (m *DeleteModelRequest) XXX_Size() int
func (*DeleteModelRequest) XXX_Unmarshal ¶
func (m *DeleteModelRequest) XXX_Unmarshal(b []byte) error
type DeleteOperationMetadata ¶
type DeleteOperationMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of operations that perform deletes of any entities.
func (*DeleteOperationMetadata) Descriptor ¶
func (*DeleteOperationMetadata) Descriptor() ([]byte, []int)
func (*DeleteOperationMetadata) ProtoMessage ¶
func (*DeleteOperationMetadata) ProtoMessage()
func (*DeleteOperationMetadata) Reset ¶
func (m *DeleteOperationMetadata) Reset()
func (*DeleteOperationMetadata) String ¶
func (m *DeleteOperationMetadata) String() string
func (*DeleteOperationMetadata) XXX_DiscardUnknown ¶
func (m *DeleteOperationMetadata) XXX_DiscardUnknown()
func (*DeleteOperationMetadata) XXX_Marshal ¶
func (m *DeleteOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DeleteOperationMetadata) XXX_Merge ¶
func (m *DeleteOperationMetadata) XXX_Merge(src proto.Message)
func (*DeleteOperationMetadata) XXX_Size ¶
func (m *DeleteOperationMetadata) XXX_Size() int
func (*DeleteOperationMetadata) XXX_Unmarshal ¶
func (m *DeleteOperationMetadata) XXX_Unmarshal(b []byte) error
type DeployModelOperationMetadata ¶
type DeployModelOperationMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of DeployModel operation.
func (*DeployModelOperationMetadata) Descriptor ¶
func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)
func (*DeployModelOperationMetadata) ProtoMessage ¶
func (*DeployModelOperationMetadata) ProtoMessage()
func (*DeployModelOperationMetadata) Reset ¶
func (m *DeployModelOperationMetadata) Reset()
func (*DeployModelOperationMetadata) String ¶
func (m *DeployModelOperationMetadata) String() string
func (*DeployModelOperationMetadata) XXX_DiscardUnknown ¶
func (m *DeployModelOperationMetadata) XXX_DiscardUnknown()
func (*DeployModelOperationMetadata) XXX_Marshal ¶
func (m *DeployModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DeployModelOperationMetadata) XXX_Merge ¶
func (m *DeployModelOperationMetadata) XXX_Merge(src proto.Message)
func (*DeployModelOperationMetadata) XXX_Size ¶
func (m *DeployModelOperationMetadata) XXX_Size() int
func (*DeployModelOperationMetadata) XXX_Unmarshal ¶
func (m *DeployModelOperationMetadata) XXX_Unmarshal(b []byte) error
type DeployModelRequest ¶
type DeployModelRequest struct { // The per-domain specific deployment parameters. // // Types that are valid to be assigned to ModelDeploymentMetadata: // *DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata // *DeployModelRequest_ImageClassificationModelDeploymentMetadata ModelDeploymentMetadata isDeployModelRequest_ModelDeploymentMetadata `protobuf_oneof:"model_deployment_metadata"` // Required. Resource name of the model to deploy. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.DeployModel][google.cloud.automl.v1beta1.AutoMl.DeployModel].
func (*DeployModelRequest) Descriptor ¶
func (*DeployModelRequest) Descriptor() ([]byte, []int)
func (*DeployModelRequest) GetImageClassificationModelDeploymentMetadata ¶
func (m *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata
func (*DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata ¶
func (m *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata
func (*DeployModelRequest) GetModelDeploymentMetadata ¶
func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata
func (*DeployModelRequest) GetName ¶
func (m *DeployModelRequest) GetName() string
func (*DeployModelRequest) ProtoMessage ¶
func (*DeployModelRequest) ProtoMessage()
func (*DeployModelRequest) Reset ¶
func (m *DeployModelRequest) Reset()
func (*DeployModelRequest) String ¶
func (m *DeployModelRequest) String() string
func (*DeployModelRequest) XXX_DiscardUnknown ¶
func (m *DeployModelRequest) XXX_DiscardUnknown()
func (*DeployModelRequest) XXX_Marshal ¶
func (m *DeployModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DeployModelRequest) XXX_Merge ¶
func (m *DeployModelRequest) XXX_Merge(src proto.Message)
func (*DeployModelRequest) XXX_OneofWrappers ¶
func (*DeployModelRequest) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*DeployModelRequest) XXX_Size ¶
func (m *DeployModelRequest) XXX_Size() int
func (*DeployModelRequest) XXX_Unmarshal ¶
func (m *DeployModelRequest) XXX_Unmarshal(b []byte) error
type DeployModelRequest_ImageClassificationModelDeploymentMetadata ¶
type DeployModelRequest_ImageClassificationModelDeploymentMetadata struct {
ImageClassificationModelDeploymentMetadata *ImageClassificationModelDeploymentMetadata `` /* 135-byte string literal not displayed */
}
type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata ¶
type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata struct {
ImageObjectDetectionModelDeploymentMetadata *ImageObjectDetectionModelDeploymentMetadata `` /* 138-byte string literal not displayed */
}
type Document ¶
type Document struct { // An input config specifying the content of the document. InputConfig *DocumentInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"` // The plain text version of this document. DocumentText *TextSnippet `protobuf:"bytes,2,opt,name=document_text,json=documentText,proto3" json:"document_text,omitempty"` // Describes the layout of the document. // Sorted by [page_number][]. Layout []*Document_Layout `protobuf:"bytes,3,rep,name=layout,proto3" json:"layout,omitempty"` // The dimensions of the page in the document. DocumentDimensions *DocumentDimensions `protobuf:"bytes,4,opt,name=document_dimensions,json=documentDimensions,proto3" json:"document_dimensions,omitempty"` // Number of pages in the document. PageCount int32 `protobuf:"varint,5,opt,name=page_count,json=pageCount,proto3" json:"page_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A structured text document e.g. a PDF.
func (*Document) Descriptor ¶
func (*Document) GetDocumentDimensions ¶
func (m *Document) GetDocumentDimensions() *DocumentDimensions
func (*Document) GetDocumentText ¶
func (m *Document) GetDocumentText() *TextSnippet
func (*Document) GetInputConfig ¶
func (m *Document) GetInputConfig() *DocumentInputConfig
func (*Document) GetLayout ¶
func (m *Document) GetLayout() []*Document_Layout
func (*Document) GetPageCount ¶
func (*Document) ProtoMessage ¶
func (*Document) ProtoMessage()
func (*Document) XXX_DiscardUnknown ¶
func (m *Document) XXX_DiscardUnknown()
func (*Document) XXX_Marshal ¶
func (*Document) XXX_Unmarshal ¶
type DocumentDimensions ¶
type DocumentDimensions struct { // Unit of the dimension. Unit DocumentDimensions_DocumentDimensionUnit `` /* 136-byte string literal not displayed */ // Width value of the document, works together with the unit. Width float32 `protobuf:"fixed32,2,opt,name=width,proto3" json:"width,omitempty"` // Height value of the document, works together with the unit. Height float32 `protobuf:"fixed32,3,opt,name=height,proto3" json:"height,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Message that describes dimension of a document.
func (*DocumentDimensions) Descriptor ¶
func (*DocumentDimensions) Descriptor() ([]byte, []int)
func (*DocumentDimensions) GetHeight ¶
func (m *DocumentDimensions) GetHeight() float32
func (*DocumentDimensions) GetUnit ¶
func (m *DocumentDimensions) GetUnit() DocumentDimensions_DocumentDimensionUnit
func (*DocumentDimensions) GetWidth ¶
func (m *DocumentDimensions) GetWidth() float32
func (*DocumentDimensions) ProtoMessage ¶
func (*DocumentDimensions) ProtoMessage()
func (*DocumentDimensions) Reset ¶
func (m *DocumentDimensions) Reset()
func (*DocumentDimensions) String ¶
func (m *DocumentDimensions) String() string
func (*DocumentDimensions) XXX_DiscardUnknown ¶
func (m *DocumentDimensions) XXX_DiscardUnknown()
func (*DocumentDimensions) XXX_Marshal ¶
func (m *DocumentDimensions) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DocumentDimensions) XXX_Merge ¶
func (m *DocumentDimensions) XXX_Merge(src proto.Message)
func (*DocumentDimensions) XXX_Size ¶
func (m *DocumentDimensions) XXX_Size() int
func (*DocumentDimensions) XXX_Unmarshal ¶
func (m *DocumentDimensions) XXX_Unmarshal(b []byte) error
type DocumentDimensions_DocumentDimensionUnit ¶
type DocumentDimensions_DocumentDimensionUnit int32
Unit of the document dimension.
const ( // Should not be used. DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED DocumentDimensions_DocumentDimensionUnit = 0 // Document dimension is measured in inches. DocumentDimensions_INCH DocumentDimensions_DocumentDimensionUnit = 1 // Document dimension is measured in centimeters. DocumentDimensions_CENTIMETER DocumentDimensions_DocumentDimensionUnit = 2 // Document dimension is measured in points. 72 points = 1 inch. DocumentDimensions_POINT DocumentDimensions_DocumentDimensionUnit = 3 )
func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor ¶
func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor() ([]byte, []int)
func (DocumentDimensions_DocumentDimensionUnit) String ¶
func (x DocumentDimensions_DocumentDimensionUnit) String() string
type DocumentInputConfig ¶
type DocumentInputConfig struct { // The Google Cloud Storage location of the document file. Only a single path // should be given. // Max supported size: 512MB. // Supported extensions: .PDF. GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3" json:"gcs_source,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Input configuration of a Document[google.cloud.automl.v1beta1.Document].
func (*DocumentInputConfig) Descriptor ¶
func (*DocumentInputConfig) Descriptor() ([]byte, []int)
func (*DocumentInputConfig) GetGcsSource ¶
func (m *DocumentInputConfig) GetGcsSource() *GcsSource
func (*DocumentInputConfig) ProtoMessage ¶
func (*DocumentInputConfig) ProtoMessage()
func (*DocumentInputConfig) Reset ¶
func (m *DocumentInputConfig) Reset()
func (*DocumentInputConfig) String ¶
func (m *DocumentInputConfig) String() string
func (*DocumentInputConfig) XXX_DiscardUnknown ¶
func (m *DocumentInputConfig) XXX_DiscardUnknown()
func (*DocumentInputConfig) XXX_Marshal ¶
func (m *DocumentInputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DocumentInputConfig) XXX_Merge ¶
func (m *DocumentInputConfig) XXX_Merge(src proto.Message)
func (*DocumentInputConfig) XXX_Size ¶
func (m *DocumentInputConfig) XXX_Size() int
func (*DocumentInputConfig) XXX_Unmarshal ¶
func (m *DocumentInputConfig) XXX_Unmarshal(b []byte) error
type Document_Layout ¶
type Document_Layout struct { // Text Segment that represents a segment in // [document_text][google.cloud.automl.v1beta1.Document.document_text]. TextSegment *TextSegment `protobuf:"bytes,1,opt,name=text_segment,json=textSegment,proto3" json:"text_segment,omitempty"` // Page number of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the original document, starts // from 1. PageNumber int32 `protobuf:"varint,2,opt,name=page_number,json=pageNumber,proto3" json:"page_number,omitempty"` // The position of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the page. // Contains exactly 4 // // [normalized_vertices][google.cloud.automl.v1beta1.BoundingPoly.normalized_vertices] // and they are connected by edges in the order provided, which will // represent a rectangle parallel to the frame. The // [NormalizedVertex-s][google.cloud.automl.v1beta1.NormalizedVertex] are // relative to the page. // Coordinates are based on top-left as point (0,0). BoundingPoly *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_poly,json=boundingPoly,proto3" json:"bounding_poly,omitempty"` // The type of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in document. TextSegmentType Document_Layout_TextSegmentType `` /* 174-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Describes the layout information of a [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the document.
func (*Document_Layout) Descriptor ¶
func (*Document_Layout) Descriptor() ([]byte, []int)
func (*Document_Layout) GetBoundingPoly ¶
func (m *Document_Layout) GetBoundingPoly() *BoundingPoly
func (*Document_Layout) GetPageNumber ¶
func (m *Document_Layout) GetPageNumber() int32
func (*Document_Layout) GetTextSegment ¶
func (m *Document_Layout) GetTextSegment() *TextSegment
func (*Document_Layout) GetTextSegmentType ¶
func (m *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType
func (*Document_Layout) ProtoMessage ¶
func (*Document_Layout) ProtoMessage()
func (*Document_Layout) Reset ¶
func (m *Document_Layout) Reset()
func (*Document_Layout) String ¶
func (m *Document_Layout) String() string
func (*Document_Layout) XXX_DiscardUnknown ¶
func (m *Document_Layout) XXX_DiscardUnknown()
func (*Document_Layout) XXX_Marshal ¶
func (m *Document_Layout) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*Document_Layout) XXX_Merge ¶
func (m *Document_Layout) XXX_Merge(src proto.Message)
func (*Document_Layout) XXX_Size ¶
func (m *Document_Layout) XXX_Size() int
func (*Document_Layout) XXX_Unmarshal ¶
func (m *Document_Layout) XXX_Unmarshal(b []byte) error
type Document_Layout_TextSegmentType ¶
type Document_Layout_TextSegmentType int32
The type of TextSegment in the context of the original document.
const ( // Should not be used. Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED Document_Layout_TextSegmentType = 0 // The text segment is a token. e.g. word. Document_Layout_TOKEN Document_Layout_TextSegmentType = 1 // The text segment is a paragraph. Document_Layout_PARAGRAPH Document_Layout_TextSegmentType = 2 // The text segment is a form field. Document_Layout_FORM_FIELD Document_Layout_TextSegmentType = 3 // The text segment is the name part of a form field. It will be treated // as child of another FORM_FIELD TextSegment if its span is subspan of // another TextSegment with type FORM_FIELD. Document_Layout_FORM_FIELD_NAME Document_Layout_TextSegmentType = 4 // The text segment is the text content part of a form field. It will be // treated as child of another FORM_FIELD TextSegment if its span is // subspan of another TextSegment with type FORM_FIELD. Document_Layout_FORM_FIELD_CONTENTS Document_Layout_TextSegmentType = 5 // The text segment is a whole table, including headers, and all rows. Document_Layout_TABLE Document_Layout_TextSegmentType = 6 // The text segment is a table's headers. It will be treated as child of // another TABLE TextSegment if its span is subspan of another TextSegment // with type TABLE. Document_Layout_TABLE_HEADER Document_Layout_TextSegmentType = 7 // The text segment is a row in table. It will be treated as child of // another TABLE TextSegment if its span is subspan of another TextSegment // with type TABLE. Document_Layout_TABLE_ROW Document_Layout_TextSegmentType = 8 // The text segment is a cell in table. It will be treated as child of // another TABLE_ROW TextSegment if its span is subspan of another // TextSegment with type TABLE_ROW. Document_Layout_TABLE_CELL Document_Layout_TextSegmentType = 9 )
func (Document_Layout_TextSegmentType) EnumDescriptor ¶
func (Document_Layout_TextSegmentType) EnumDescriptor() ([]byte, []int)
func (Document_Layout_TextSegmentType) String ¶
func (x Document_Layout_TextSegmentType) String() string
type DoubleRange ¶
type DoubleRange struct { // Start of the range, inclusive. Start float64 `protobuf:"fixed64,1,opt,name=start,proto3" json:"start,omitempty"` // End of the range, exclusive. End float64 `protobuf:"fixed64,2,opt,name=end,proto3" json:"end,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A range between two double numbers.
func (*DoubleRange) Descriptor ¶
func (*DoubleRange) Descriptor() ([]byte, []int)
func (*DoubleRange) GetEnd ¶
func (m *DoubleRange) GetEnd() float64
func (*DoubleRange) GetStart ¶
func (m *DoubleRange) GetStart() float64
func (*DoubleRange) ProtoMessage ¶
func (*DoubleRange) ProtoMessage()
func (*DoubleRange) Reset ¶
func (m *DoubleRange) Reset()
func (*DoubleRange) String ¶
func (m *DoubleRange) String() string
func (*DoubleRange) XXX_DiscardUnknown ¶
func (m *DoubleRange) XXX_DiscardUnknown()
func (*DoubleRange) XXX_Marshal ¶
func (m *DoubleRange) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*DoubleRange) XXX_Merge ¶
func (m *DoubleRange) XXX_Merge(src proto.Message)
func (*DoubleRange) XXX_Size ¶
func (m *DoubleRange) XXX_Size() int
func (*DoubleRange) XXX_Unmarshal ¶
func (m *DoubleRange) XXX_Unmarshal(b []byte) error
type ExamplePayload ¶
type ExamplePayload struct { // Required. Input only. The example data. // // Types that are valid to be assigned to Payload: // *ExamplePayload_Image // *ExamplePayload_TextSnippet // *ExamplePayload_Document // *ExamplePayload_Row Payload isExamplePayload_Payload `protobuf_oneof:"payload"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Example data used for training or prediction.
func (*ExamplePayload) Descriptor ¶
func (*ExamplePayload) Descriptor() ([]byte, []int)
func (*ExamplePayload) GetDocument ¶
func (m *ExamplePayload) GetDocument() *Document
func (*ExamplePayload) GetImage ¶
func (m *ExamplePayload) GetImage() *Image
func (*ExamplePayload) GetPayload ¶
func (m *ExamplePayload) GetPayload() isExamplePayload_Payload
func (*ExamplePayload) GetRow ¶
func (m *ExamplePayload) GetRow() *Row
func (*ExamplePayload) GetTextSnippet ¶
func (m *ExamplePayload) GetTextSnippet() *TextSnippet
func (*ExamplePayload) ProtoMessage ¶
func (*ExamplePayload) ProtoMessage()
func (*ExamplePayload) Reset ¶
func (m *ExamplePayload) Reset()
func (*ExamplePayload) String ¶
func (m *ExamplePayload) String() string
func (*ExamplePayload) XXX_DiscardUnknown ¶
func (m *ExamplePayload) XXX_DiscardUnknown()
func (*ExamplePayload) XXX_Marshal ¶
func (m *ExamplePayload) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExamplePayload) XXX_Merge ¶
func (m *ExamplePayload) XXX_Merge(src proto.Message)
func (*ExamplePayload) XXX_OneofWrappers ¶
func (*ExamplePayload) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*ExamplePayload) XXX_Size ¶
func (m *ExamplePayload) XXX_Size() int
func (*ExamplePayload) XXX_Unmarshal ¶
func (m *ExamplePayload) XXX_Unmarshal(b []byte) error
type ExamplePayload_Document ¶
type ExamplePayload_Document struct {
Document *Document `protobuf:"bytes,4,opt,name=document,proto3,oneof"`
}
type ExamplePayload_Image ¶
type ExamplePayload_Image struct {
Image *Image `protobuf:"bytes,1,opt,name=image,proto3,oneof"`
}
type ExamplePayload_Row ¶
type ExamplePayload_Row struct {
Row *Row `protobuf:"bytes,3,opt,name=row,proto3,oneof"`
}
type ExamplePayload_TextSnippet ¶
type ExamplePayload_TextSnippet struct {
TextSnippet *TextSnippet `protobuf:"bytes,2,opt,name=text_snippet,json=textSnippet,proto3,oneof"`
}
type ExportDataOperationMetadata ¶
type ExportDataOperationMetadata struct { // Output only. Information further describing this export data's output. OutputInfo *ExportDataOperationMetadata_ExportDataOutputInfo `protobuf:"bytes,1,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of ExportData operation.
func (*ExportDataOperationMetadata) Descriptor ¶
func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)
func (*ExportDataOperationMetadata) GetOutputInfo ¶
func (m *ExportDataOperationMetadata) GetOutputInfo() *ExportDataOperationMetadata_ExportDataOutputInfo
func (*ExportDataOperationMetadata) ProtoMessage ¶
func (*ExportDataOperationMetadata) ProtoMessage()
func (*ExportDataOperationMetadata) Reset ¶
func (m *ExportDataOperationMetadata) Reset()
func (*ExportDataOperationMetadata) String ¶
func (m *ExportDataOperationMetadata) String() string
func (*ExportDataOperationMetadata) XXX_DiscardUnknown ¶
func (m *ExportDataOperationMetadata) XXX_DiscardUnknown()
func (*ExportDataOperationMetadata) XXX_Marshal ¶
func (m *ExportDataOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportDataOperationMetadata) XXX_Merge ¶
func (m *ExportDataOperationMetadata) XXX_Merge(src proto.Message)
func (*ExportDataOperationMetadata) XXX_Size ¶
func (m *ExportDataOperationMetadata) XXX_Size() int
func (*ExportDataOperationMetadata) XXX_Unmarshal ¶
func (m *ExportDataOperationMetadata) XXX_Unmarshal(b []byte) error
type ExportDataOperationMetadata_ExportDataOutputInfo ¶
type ExportDataOperationMetadata_ExportDataOutputInfo struct { // The output location to which the exported data is written. // // Types that are valid to be assigned to OutputLocation: // *ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory // *ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset OutputLocation isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation `protobuf_oneof:"output_location"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Further describes this export data's output. Supplements OutputConfig[google.cloud.automl.v1beta1.OutputConfig].
func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor ¶
func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor() ([]byte, []int)
func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetBigqueryOutputDataset ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetBigqueryOutputDataset() string
func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory() string
func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation() isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation
func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage ¶
func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage()
func (*ExportDataOperationMetadata_ExportDataOutputInfo) Reset ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) Reset()
func (*ExportDataOperationMetadata_ExportDataOutputInfo) String ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) String() string
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_DiscardUnknown ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_DiscardUnknown()
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Marshal ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Merge ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Merge(src proto.Message)
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_OneofWrappers ¶
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Size ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Size() int
func (*ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Unmarshal ¶
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) XXX_Unmarshal(b []byte) error
type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset ¶
type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset struct {
BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"`
}
type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory ¶
type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory struct {
GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}
type ExportDataRequest ¶
type ExportDataRequest struct { // Required. The resource name of the dataset. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The desired output location. OutputConfig *OutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ExportData][google.cloud.automl.v1beta1.AutoMl.ExportData].
func (*ExportDataRequest) Descriptor ¶
func (*ExportDataRequest) Descriptor() ([]byte, []int)
func (*ExportDataRequest) GetName ¶
func (m *ExportDataRequest) GetName() string
func (*ExportDataRequest) GetOutputConfig ¶
func (m *ExportDataRequest) GetOutputConfig() *OutputConfig
func (*ExportDataRequest) ProtoMessage ¶
func (*ExportDataRequest) ProtoMessage()
func (*ExportDataRequest) Reset ¶
func (m *ExportDataRequest) Reset()
func (*ExportDataRequest) String ¶
func (m *ExportDataRequest) String() string
func (*ExportDataRequest) XXX_DiscardUnknown ¶
func (m *ExportDataRequest) XXX_DiscardUnknown()
func (*ExportDataRequest) XXX_Marshal ¶
func (m *ExportDataRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportDataRequest) XXX_Merge ¶
func (m *ExportDataRequest) XXX_Merge(src proto.Message)
func (*ExportDataRequest) XXX_Size ¶
func (m *ExportDataRequest) XXX_Size() int
func (*ExportDataRequest) XXX_Unmarshal ¶
func (m *ExportDataRequest) XXX_Unmarshal(b []byte) error
type ExportEvaluatedExamplesOperationMetadata ¶
type ExportEvaluatedExamplesOperationMetadata struct { // Output only. Information further describing the output of this evaluated // examples export. OutputInfo *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of EvaluatedExamples operation.
func (*ExportEvaluatedExamplesOperationMetadata) Descriptor ¶
func (*ExportEvaluatedExamplesOperationMetadata) Descriptor() ([]byte, []int)
func (*ExportEvaluatedExamplesOperationMetadata) GetOutputInfo ¶
func (*ExportEvaluatedExamplesOperationMetadata) ProtoMessage ¶
func (*ExportEvaluatedExamplesOperationMetadata) ProtoMessage()
func (*ExportEvaluatedExamplesOperationMetadata) Reset ¶
func (m *ExportEvaluatedExamplesOperationMetadata) Reset()
func (*ExportEvaluatedExamplesOperationMetadata) String ¶
func (m *ExportEvaluatedExamplesOperationMetadata) String() string
func (*ExportEvaluatedExamplesOperationMetadata) XXX_DiscardUnknown ¶
func (m *ExportEvaluatedExamplesOperationMetadata) XXX_DiscardUnknown()
func (*ExportEvaluatedExamplesOperationMetadata) XXX_Marshal ¶
func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportEvaluatedExamplesOperationMetadata) XXX_Merge ¶
func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Merge(src proto.Message)
func (*ExportEvaluatedExamplesOperationMetadata) XXX_Size ¶
func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Size() int
func (*ExportEvaluatedExamplesOperationMetadata) XXX_Unmarshal ¶
func (m *ExportEvaluatedExamplesOperationMetadata) XXX_Unmarshal(b []byte) error
type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo ¶
type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo struct { // The path of the BigQuery dataset created, in bq://projectId.bqDatasetId // format, into which the output of export evaluated examples is written. BigqueryOutputDataset string `` /* 126-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Further describes the output of the evaluated examples export. Supplements
ExportEvaluatedExamplesOutputConfig[google.cloud.automl.v1beta1.ExportEvaluatedExamplesOutputConfig].
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Descriptor ¶
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Descriptor() ([]byte, []int)
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) GetBigqueryOutputDataset ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) GetBigqueryOutputDataset() string
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoMessage ¶
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoMessage()
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) String ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) String() string
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_DiscardUnknown ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_DiscardUnknown()
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Marshal ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Merge ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Merge(src proto.Message)
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Size ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Size() int
func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Unmarshal ¶
func (m *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) XXX_Unmarshal(b []byte) error
type ExportEvaluatedExamplesOutputConfig ¶
type ExportEvaluatedExamplesOutputConfig struct { // Required. The destination of the output. // // Types that are valid to be assigned to Destination: // *ExportEvaluatedExamplesOutputConfig_BigqueryDestination Destination isExportEvaluatedExamplesOutputConfig_Destination `protobuf_oneof:"destination"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Output configuration for ExportEvaluatedExamples Action. Note that this call is available only for 30 days since the moment the model was evaluated. The output depends on the domain, as follows (note that only examples from the TEST set are exported):
- For Tables:
[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
pointing to a BigQuery project must be set. In the given project a new dataset will be created with name
`export_evaluated_examples_<model-display-name>_<timestamp-of-export-call>`
where <model-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset an `evaluated_examples` table will be created. It will have all the same columns as the
[primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id]
of the [dataset][google.cloud.automl.v1beta1.Model.dataset_id] from which the model was created, as they were at the moment of model's evaluation (this includes the target column with its ground truth), followed by a column called "predicted_<target_column>". That last column will contain the model's prediction result for each respective row, given as ARRAY of [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload], represented as STRUCT-s, containing [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
func (*ExportEvaluatedExamplesOutputConfig) Descriptor ¶
func (*ExportEvaluatedExamplesOutputConfig) Descriptor() ([]byte, []int)
func (*ExportEvaluatedExamplesOutputConfig) GetBigqueryDestination ¶
func (m *ExportEvaluatedExamplesOutputConfig) GetBigqueryDestination() *BigQueryDestination
func (*ExportEvaluatedExamplesOutputConfig) GetDestination ¶
func (m *ExportEvaluatedExamplesOutputConfig) GetDestination() isExportEvaluatedExamplesOutputConfig_Destination
func (*ExportEvaluatedExamplesOutputConfig) ProtoMessage ¶
func (*ExportEvaluatedExamplesOutputConfig) ProtoMessage()
func (*ExportEvaluatedExamplesOutputConfig) Reset ¶
func (m *ExportEvaluatedExamplesOutputConfig) Reset()
func (*ExportEvaluatedExamplesOutputConfig) String ¶
func (m *ExportEvaluatedExamplesOutputConfig) String() string
func (*ExportEvaluatedExamplesOutputConfig) XXX_DiscardUnknown ¶
func (m *ExportEvaluatedExamplesOutputConfig) XXX_DiscardUnknown()
func (*ExportEvaluatedExamplesOutputConfig) XXX_Marshal ¶
func (m *ExportEvaluatedExamplesOutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportEvaluatedExamplesOutputConfig) XXX_Merge ¶
func (m *ExportEvaluatedExamplesOutputConfig) XXX_Merge(src proto.Message)
func (*ExportEvaluatedExamplesOutputConfig) XXX_OneofWrappers ¶
func (*ExportEvaluatedExamplesOutputConfig) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*ExportEvaluatedExamplesOutputConfig) XXX_Size ¶
func (m *ExportEvaluatedExamplesOutputConfig) XXX_Size() int
func (*ExportEvaluatedExamplesOutputConfig) XXX_Unmarshal ¶
func (m *ExportEvaluatedExamplesOutputConfig) XXX_Unmarshal(b []byte) error
type ExportEvaluatedExamplesOutputConfig_BigqueryDestination ¶
type ExportEvaluatedExamplesOutputConfig_BigqueryDestination struct {
BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}
type ExportEvaluatedExamplesRequest ¶
type ExportEvaluatedExamplesRequest struct { // Required. The resource name of the model whose evaluated examples are to // be exported. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The desired output location and configuration. OutputConfig *ExportEvaluatedExamplesOutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ExportEvaluatedExamples][google.cloud.automl.v1beta1.AutoMl.ExportEvaluatedExamples].
func (*ExportEvaluatedExamplesRequest) Descriptor ¶
func (*ExportEvaluatedExamplesRequest) Descriptor() ([]byte, []int)
func (*ExportEvaluatedExamplesRequest) GetName ¶
func (m *ExportEvaluatedExamplesRequest) GetName() string
func (*ExportEvaluatedExamplesRequest) GetOutputConfig ¶
func (m *ExportEvaluatedExamplesRequest) GetOutputConfig() *ExportEvaluatedExamplesOutputConfig
func (*ExportEvaluatedExamplesRequest) ProtoMessage ¶
func (*ExportEvaluatedExamplesRequest) ProtoMessage()
func (*ExportEvaluatedExamplesRequest) Reset ¶
func (m *ExportEvaluatedExamplesRequest) Reset()
func (*ExportEvaluatedExamplesRequest) String ¶
func (m *ExportEvaluatedExamplesRequest) String() string
func (*ExportEvaluatedExamplesRequest) XXX_DiscardUnknown ¶
func (m *ExportEvaluatedExamplesRequest) XXX_DiscardUnknown()
func (*ExportEvaluatedExamplesRequest) XXX_Marshal ¶
func (m *ExportEvaluatedExamplesRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportEvaluatedExamplesRequest) XXX_Merge ¶
func (m *ExportEvaluatedExamplesRequest) XXX_Merge(src proto.Message)
func (*ExportEvaluatedExamplesRequest) XXX_Size ¶
func (m *ExportEvaluatedExamplesRequest) XXX_Size() int
func (*ExportEvaluatedExamplesRequest) XXX_Unmarshal ¶
func (m *ExportEvaluatedExamplesRequest) XXX_Unmarshal(b []byte) error
type ExportModelOperationMetadata ¶
type ExportModelOperationMetadata struct { // Output only. Information further describing the output of this model // export. OutputInfo *ExportModelOperationMetadata_ExportModelOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of ExportModel operation.
func (*ExportModelOperationMetadata) Descriptor ¶
func (*ExportModelOperationMetadata) Descriptor() ([]byte, []int)
func (*ExportModelOperationMetadata) GetOutputInfo ¶
func (m *ExportModelOperationMetadata) GetOutputInfo() *ExportModelOperationMetadata_ExportModelOutputInfo
func (*ExportModelOperationMetadata) ProtoMessage ¶
func (*ExportModelOperationMetadata) ProtoMessage()
func (*ExportModelOperationMetadata) Reset ¶
func (m *ExportModelOperationMetadata) Reset()
func (*ExportModelOperationMetadata) String ¶
func (m *ExportModelOperationMetadata) String() string
func (*ExportModelOperationMetadata) XXX_DiscardUnknown ¶
func (m *ExportModelOperationMetadata) XXX_DiscardUnknown()
func (*ExportModelOperationMetadata) XXX_Marshal ¶
func (m *ExportModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportModelOperationMetadata) XXX_Merge ¶
func (m *ExportModelOperationMetadata) XXX_Merge(src proto.Message)
func (*ExportModelOperationMetadata) XXX_Size ¶
func (m *ExportModelOperationMetadata) XXX_Size() int
func (*ExportModelOperationMetadata) XXX_Unmarshal ¶
func (m *ExportModelOperationMetadata) XXX_Unmarshal(b []byte) error
type ExportModelOperationMetadata_ExportModelOutputInfo ¶
type ExportModelOperationMetadata_ExportModelOutputInfo struct { // The full path of the Google Cloud Storage directory created, into which // the model will be exported. GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3" json:"gcs_output_directory,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Further describes the output of model export. Supplements
ModelExportOutputConfig[google.cloud.automl.v1beta1.ModelExportOutputConfig].
func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor ¶
func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor() ([]byte, []int)
func (*ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory() string
func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage ¶
func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage()
func (*ExportModelOperationMetadata_ExportModelOutputInfo) Reset ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) Reset()
func (*ExportModelOperationMetadata_ExportModelOutputInfo) String ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) String() string
func (*ExportModelOperationMetadata_ExportModelOutputInfo) XXX_DiscardUnknown ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_DiscardUnknown()
func (*ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Marshal ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Merge ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Merge(src proto.Message)
func (*ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Size ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Size() int
func (*ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Unmarshal ¶
func (m *ExportModelOperationMetadata_ExportModelOutputInfo) XXX_Unmarshal(b []byte) error
type ExportModelRequest ¶
type ExportModelRequest struct { // Required. The resource name of the model to export. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The desired output location and configuration. OutputConfig *ModelExportOutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.
func (*ExportModelRequest) Descriptor ¶
func (*ExportModelRequest) Descriptor() ([]byte, []int)
func (*ExportModelRequest) GetName ¶
func (m *ExportModelRequest) GetName() string
func (*ExportModelRequest) GetOutputConfig ¶
func (m *ExportModelRequest) GetOutputConfig() *ModelExportOutputConfig
func (*ExportModelRequest) ProtoMessage ¶
func (*ExportModelRequest) ProtoMessage()
func (*ExportModelRequest) Reset ¶
func (m *ExportModelRequest) Reset()
func (*ExportModelRequest) String ¶
func (m *ExportModelRequest) String() string
func (*ExportModelRequest) XXX_DiscardUnknown ¶
func (m *ExportModelRequest) XXX_DiscardUnknown()
func (*ExportModelRequest) XXX_Marshal ¶
func (m *ExportModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ExportModelRequest) XXX_Merge ¶
func (m *ExportModelRequest) XXX_Merge(src proto.Message)
func (*ExportModelRequest) XXX_Size ¶
func (m *ExportModelRequest) XXX_Size() int
func (*ExportModelRequest) XXX_Unmarshal ¶
func (m *ExportModelRequest) XXX_Unmarshal(b []byte) error
type Float64Stats ¶
type Float64Stats struct { // The mean of the series. Mean float64 `protobuf:"fixed64,1,opt,name=mean,proto3" json:"mean,omitempty"` // The standard deviation of the series. StandardDeviation float64 `protobuf:"fixed64,2,opt,name=standard_deviation,json=standardDeviation,proto3" json:"standard_deviation,omitempty"` // Ordered from 0 to k k-quantile values of the data series of n values. // The value at index i is, approximately, the i*n/k-th smallest value in the // series; for i = 0 and i = k these are, respectively, the min and max // values. Quantiles []float64 `protobuf:"fixed64,3,rep,packed,name=quantiles,proto3" json:"quantiles,omitempty"` // Histogram buckets of the data series. Sorted by the min value of the // bucket, ascendingly, and the number of the buckets is dynamically // generated. The buckets are non-overlapping and completely cover whole // FLOAT64 range with min of first bucket being `"-Infinity"`, and max of // the last one being `"Infinity"`. HistogramBuckets []*Float64Stats_HistogramBucket `protobuf:"bytes,4,rep,name=histogram_buckets,json=histogramBuckets,proto3" json:"histogram_buckets,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of FLOAT64 values.
func (*Float64Stats) Descriptor ¶
func (*Float64Stats) Descriptor() ([]byte, []int)
func (*Float64Stats) GetHistogramBuckets ¶
func (m *Float64Stats) GetHistogramBuckets() []*Float64Stats_HistogramBucket
func (*Float64Stats) GetMean ¶
func (m *Float64Stats) GetMean() float64
func (*Float64Stats) GetQuantiles ¶
func (m *Float64Stats) GetQuantiles() []float64
func (*Float64Stats) GetStandardDeviation ¶
func (m *Float64Stats) GetStandardDeviation() float64
func (*Float64Stats) ProtoMessage ¶
func (*Float64Stats) ProtoMessage()
func (*Float64Stats) Reset ¶
func (m *Float64Stats) Reset()
func (*Float64Stats) String ¶
func (m *Float64Stats) String() string
func (*Float64Stats) XXX_DiscardUnknown ¶
func (m *Float64Stats) XXX_DiscardUnknown()
func (*Float64Stats) XXX_Marshal ¶
func (m *Float64Stats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*Float64Stats) XXX_Merge ¶
func (m *Float64Stats) XXX_Merge(src proto.Message)
func (*Float64Stats) XXX_Size ¶
func (m *Float64Stats) XXX_Size() int
func (*Float64Stats) XXX_Unmarshal ¶
func (m *Float64Stats) XXX_Unmarshal(b []byte) error
type Float64Stats_HistogramBucket ¶
type Float64Stats_HistogramBucket struct { // The minimum value of the bucket, inclusive. Min float64 `protobuf:"fixed64,1,opt,name=min,proto3" json:"min,omitempty"` // The maximum value of the bucket, exclusive unless max = `"Infinity"`, in // which case it's inclusive. Max float64 `protobuf:"fixed64,2,opt,name=max,proto3" json:"max,omitempty"` // The number of data values that are in the bucket, i.e. are between // min and max values. Count int64 `protobuf:"varint,3,opt,name=count,proto3" json:"count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A bucket of a histogram.
func (*Float64Stats_HistogramBucket) Descriptor ¶
func (*Float64Stats_HistogramBucket) Descriptor() ([]byte, []int)
func (*Float64Stats_HistogramBucket) GetCount ¶
func (m *Float64Stats_HistogramBucket) GetCount() int64
func (*Float64Stats_HistogramBucket) GetMax ¶
func (m *Float64Stats_HistogramBucket) GetMax() float64
func (*Float64Stats_HistogramBucket) GetMin ¶
func (m *Float64Stats_HistogramBucket) GetMin() float64
func (*Float64Stats_HistogramBucket) ProtoMessage ¶
func (*Float64Stats_HistogramBucket) ProtoMessage()
func (*Float64Stats_HistogramBucket) Reset ¶
func (m *Float64Stats_HistogramBucket) Reset()
func (*Float64Stats_HistogramBucket) String ¶
func (m *Float64Stats_HistogramBucket) String() string
func (*Float64Stats_HistogramBucket) XXX_DiscardUnknown ¶
func (m *Float64Stats_HistogramBucket) XXX_DiscardUnknown()
func (*Float64Stats_HistogramBucket) XXX_Marshal ¶
func (m *Float64Stats_HistogramBucket) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*Float64Stats_HistogramBucket) XXX_Merge ¶
func (m *Float64Stats_HistogramBucket) XXX_Merge(src proto.Message)
func (*Float64Stats_HistogramBucket) XXX_Size ¶
func (m *Float64Stats_HistogramBucket) XXX_Size() int
func (*Float64Stats_HistogramBucket) XXX_Unmarshal ¶
func (m *Float64Stats_HistogramBucket) XXX_Unmarshal(b []byte) error
type GcrDestination ¶
type GcrDestination struct { // Required. Google Contained Registry URI of the new image, up to 2000 // characters long. See // // https: // //cloud.google.com/container-registry/do // // cs/pushing-and-pulling#pushing_an_image_to_a_registry // Accepted forms: // * [HOSTNAME]/[PROJECT-ID]/[IMAGE] // * [HOSTNAME]/[PROJECT-ID]/[IMAGE]:[TAG] // // The requesting user must have permission to push images the project. OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The GCR location where the image must be pushed to.
func (*GcrDestination) Descriptor ¶
func (*GcrDestination) Descriptor() ([]byte, []int)
func (*GcrDestination) GetOutputUri ¶
func (m *GcrDestination) GetOutputUri() string
func (*GcrDestination) ProtoMessage ¶
func (*GcrDestination) ProtoMessage()
func (*GcrDestination) Reset ¶
func (m *GcrDestination) Reset()
func (*GcrDestination) String ¶
func (m *GcrDestination) String() string
func (*GcrDestination) XXX_DiscardUnknown ¶
func (m *GcrDestination) XXX_DiscardUnknown()
func (*GcrDestination) XXX_Marshal ¶
func (m *GcrDestination) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GcrDestination) XXX_Merge ¶
func (m *GcrDestination) XXX_Merge(src proto.Message)
func (*GcrDestination) XXX_Size ¶
func (m *GcrDestination) XXX_Size() int
func (*GcrDestination) XXX_Unmarshal ¶
func (m *GcrDestination) XXX_Unmarshal(b []byte) error
type GcsDestination ¶
type GcsDestination struct { // Required. Google Cloud Storage URI to output directory, up to 2000 // characters long. // Accepted forms: // * Prefix path: gs://bucket/directory // The requesting user must have write permission to the bucket. // The directory is created if it doesn't exist. OutputUriPrefix string `protobuf:"bytes,1,opt,name=output_uri_prefix,json=outputUriPrefix,proto3" json:"output_uri_prefix,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The Google Cloud Storage location where the output is to be written to.
func (*GcsDestination) Descriptor ¶
func (*GcsDestination) Descriptor() ([]byte, []int)
func (*GcsDestination) GetOutputUriPrefix ¶
func (m *GcsDestination) GetOutputUriPrefix() string
func (*GcsDestination) ProtoMessage ¶
func (*GcsDestination) ProtoMessage()
func (*GcsDestination) Reset ¶
func (m *GcsDestination) Reset()
func (*GcsDestination) String ¶
func (m *GcsDestination) String() string
func (*GcsDestination) XXX_DiscardUnknown ¶
func (m *GcsDestination) XXX_DiscardUnknown()
func (*GcsDestination) XXX_Marshal ¶
func (m *GcsDestination) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GcsDestination) XXX_Merge ¶
func (m *GcsDestination) XXX_Merge(src proto.Message)
func (*GcsDestination) XXX_Size ¶
func (m *GcsDestination) XXX_Size() int
func (*GcsDestination) XXX_Unmarshal ¶
func (m *GcsDestination) XXX_Unmarshal(b []byte) error
type GcsSource ¶
type GcsSource struct { // Required. Google Cloud Storage URIs to input files, up to 2000 characters // long. Accepted forms: // * Full object path, e.g. gs://bucket/directory/object.csv InputUris []string `protobuf:"bytes,1,rep,name=input_uris,json=inputUris,proto3" json:"input_uris,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The Google Cloud Storage location for the input content.
func (*GcsSource) Descriptor ¶
func (*GcsSource) GetInputUris ¶
func (*GcsSource) ProtoMessage ¶
func (*GcsSource) ProtoMessage()
func (*GcsSource) XXX_DiscardUnknown ¶
func (m *GcsSource) XXX_DiscardUnknown()
func (*GcsSource) XXX_Marshal ¶
func (*GcsSource) XXX_Unmarshal ¶
type GetAnnotationSpecRequest ¶
type GetAnnotationSpecRequest struct { // Required. The resource name of the annotation spec to retrieve. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1beta1.AutoMl.GetAnnotationSpec].
func (*GetAnnotationSpecRequest) Descriptor ¶
func (*GetAnnotationSpecRequest) Descriptor() ([]byte, []int)
func (*GetAnnotationSpecRequest) GetName ¶
func (m *GetAnnotationSpecRequest) GetName() string
func (*GetAnnotationSpecRequest) ProtoMessage ¶
func (*GetAnnotationSpecRequest) ProtoMessage()
func (*GetAnnotationSpecRequest) Reset ¶
func (m *GetAnnotationSpecRequest) Reset()
func (*GetAnnotationSpecRequest) String ¶
func (m *GetAnnotationSpecRequest) String() string
func (*GetAnnotationSpecRequest) XXX_DiscardUnknown ¶
func (m *GetAnnotationSpecRequest) XXX_DiscardUnknown()
func (*GetAnnotationSpecRequest) XXX_Marshal ¶
func (m *GetAnnotationSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GetAnnotationSpecRequest) XXX_Merge ¶
func (m *GetAnnotationSpecRequest) XXX_Merge(src proto.Message)
func (*GetAnnotationSpecRequest) XXX_Size ¶
func (m *GetAnnotationSpecRequest) XXX_Size() int
func (*GetAnnotationSpecRequest) XXX_Unmarshal ¶
func (m *GetAnnotationSpecRequest) XXX_Unmarshal(b []byte) error
type GetColumnSpecRequest ¶
type GetColumnSpecRequest struct { // Required. The resource name of the column spec to retrieve. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Mask specifying which fields to read. FieldMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.GetColumnSpec][google.cloud.automl.v1beta1.AutoMl.GetColumnSpec].
func (*GetColumnSpecRequest) Descriptor ¶
func (*GetColumnSpecRequest) Descriptor() ([]byte, []int)
func (*GetColumnSpecRequest) GetFieldMask ¶
func (m *GetColumnSpecRequest) GetFieldMask() *field_mask.FieldMask
func (*GetColumnSpecRequest) GetName ¶
func (m *GetColumnSpecRequest) GetName() string
func (*GetColumnSpecRequest) ProtoMessage ¶
func (*GetColumnSpecRequest) ProtoMessage()
func (*GetColumnSpecRequest) Reset ¶
func (m *GetColumnSpecRequest) Reset()
func (*GetColumnSpecRequest) String ¶
func (m *GetColumnSpecRequest) String() string
func (*GetColumnSpecRequest) XXX_DiscardUnknown ¶
func (m *GetColumnSpecRequest) XXX_DiscardUnknown()
func (*GetColumnSpecRequest) XXX_Marshal ¶
func (m *GetColumnSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GetColumnSpecRequest) XXX_Merge ¶
func (m *GetColumnSpecRequest) XXX_Merge(src proto.Message)
func (*GetColumnSpecRequest) XXX_Size ¶
func (m *GetColumnSpecRequest) XXX_Size() int
func (*GetColumnSpecRequest) XXX_Unmarshal ¶
func (m *GetColumnSpecRequest) XXX_Unmarshal(b []byte) error
type GetDatasetRequest ¶
type GetDatasetRequest struct { // Required. The resource name of the dataset to retrieve. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.GetDataset][google.cloud.automl.v1beta1.AutoMl.GetDataset].
func (*GetDatasetRequest) Descriptor ¶
func (*GetDatasetRequest) Descriptor() ([]byte, []int)
func (*GetDatasetRequest) GetName ¶
func (m *GetDatasetRequest) GetName() string
func (*GetDatasetRequest) ProtoMessage ¶
func (*GetDatasetRequest) ProtoMessage()
func (*GetDatasetRequest) Reset ¶
func (m *GetDatasetRequest) Reset()
func (*GetDatasetRequest) String ¶
func (m *GetDatasetRequest) String() string
func (*GetDatasetRequest) XXX_DiscardUnknown ¶
func (m *GetDatasetRequest) XXX_DiscardUnknown()
func (*GetDatasetRequest) XXX_Marshal ¶
func (m *GetDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GetDatasetRequest) XXX_Merge ¶
func (m *GetDatasetRequest) XXX_Merge(src proto.Message)
func (*GetDatasetRequest) XXX_Size ¶
func (m *GetDatasetRequest) XXX_Size() int
func (*GetDatasetRequest) XXX_Unmarshal ¶
func (m *GetDatasetRequest) XXX_Unmarshal(b []byte) error
type GetModelEvaluationRequest ¶
type GetModelEvaluationRequest struct { // Required. Resource name for the model evaluation. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1beta1.AutoMl.GetModelEvaluation].
func (*GetModelEvaluationRequest) Descriptor ¶
func (*GetModelEvaluationRequest) Descriptor() ([]byte, []int)
func (*GetModelEvaluationRequest) GetName ¶
func (m *GetModelEvaluationRequest) GetName() string
func (*GetModelEvaluationRequest) ProtoMessage ¶
func (*GetModelEvaluationRequest) ProtoMessage()
func (*GetModelEvaluationRequest) Reset ¶
func (m *GetModelEvaluationRequest) Reset()
func (*GetModelEvaluationRequest) String ¶
func (m *GetModelEvaluationRequest) String() string
func (*GetModelEvaluationRequest) XXX_DiscardUnknown ¶
func (m *GetModelEvaluationRequest) XXX_DiscardUnknown()
func (*GetModelEvaluationRequest) XXX_Marshal ¶
func (m *GetModelEvaluationRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GetModelEvaluationRequest) XXX_Merge ¶
func (m *GetModelEvaluationRequest) XXX_Merge(src proto.Message)
func (*GetModelEvaluationRequest) XXX_Size ¶
func (m *GetModelEvaluationRequest) XXX_Size() int
func (*GetModelEvaluationRequest) XXX_Unmarshal ¶
func (m *GetModelEvaluationRequest) XXX_Unmarshal(b []byte) error
type GetModelRequest ¶
type GetModelRequest struct { // Required. Resource name of the model. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.GetModel][google.cloud.automl.v1beta1.AutoMl.GetModel].
func (*GetModelRequest) Descriptor ¶
func (*GetModelRequest) Descriptor() ([]byte, []int)
func (*GetModelRequest) GetName ¶
func (m *GetModelRequest) GetName() string
func (*GetModelRequest) ProtoMessage ¶
func (*GetModelRequest) ProtoMessage()
func (*GetModelRequest) Reset ¶
func (m *GetModelRequest) Reset()
func (*GetModelRequest) String ¶
func (m *GetModelRequest) String() string
func (*GetModelRequest) XXX_DiscardUnknown ¶
func (m *GetModelRequest) XXX_DiscardUnknown()
func (*GetModelRequest) XXX_Marshal ¶
func (m *GetModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GetModelRequest) XXX_Merge ¶
func (m *GetModelRequest) XXX_Merge(src proto.Message)
func (*GetModelRequest) XXX_Size ¶
func (m *GetModelRequest) XXX_Size() int
func (*GetModelRequest) XXX_Unmarshal ¶
func (m *GetModelRequest) XXX_Unmarshal(b []byte) error
type GetTableSpecRequest ¶
type GetTableSpecRequest struct { // Required. The resource name of the table spec to retrieve. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Mask specifying which fields to read. FieldMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.GetTableSpec][google.cloud.automl.v1beta1.AutoMl.GetTableSpec].
func (*GetTableSpecRequest) Descriptor ¶
func (*GetTableSpecRequest) Descriptor() ([]byte, []int)
func (*GetTableSpecRequest) GetFieldMask ¶
func (m *GetTableSpecRequest) GetFieldMask() *field_mask.FieldMask
func (*GetTableSpecRequest) GetName ¶
func (m *GetTableSpecRequest) GetName() string
func (*GetTableSpecRequest) ProtoMessage ¶
func (*GetTableSpecRequest) ProtoMessage()
func (*GetTableSpecRequest) Reset ¶
func (m *GetTableSpecRequest) Reset()
func (*GetTableSpecRequest) String ¶
func (m *GetTableSpecRequest) String() string
func (*GetTableSpecRequest) XXX_DiscardUnknown ¶
func (m *GetTableSpecRequest) XXX_DiscardUnknown()
func (*GetTableSpecRequest) XXX_Marshal ¶
func (m *GetTableSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*GetTableSpecRequest) XXX_Merge ¶
func (m *GetTableSpecRequest) XXX_Merge(src proto.Message)
func (*GetTableSpecRequest) XXX_Size ¶
func (m *GetTableSpecRequest) XXX_Size() int
func (*GetTableSpecRequest) XXX_Unmarshal ¶
func (m *GetTableSpecRequest) XXX_Unmarshal(b []byte) error
type Image ¶
type Image struct { // Input only. The data representing the image. // For Predict calls [image_bytes][google.cloud.automl.v1beta1.Image.image_bytes] must be set, as other options are not // currently supported by prediction API. You can read the contents of an // uploaded image by using the [content_uri][google.cloud.automl.v1beta1.Image.content_uri] field. // // Types that are valid to be assigned to Data: // *Image_ImageBytes // *Image_InputConfig Data isImage_Data `protobuf_oneof:"data"` // Output only. HTTP URI to the thumbnail image. ThumbnailUri string `protobuf:"bytes,4,opt,name=thumbnail_uri,json=thumbnailUri,proto3" json:"thumbnail_uri,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A representation of an image. Only images up to 30MB in size are supported.
func (*Image) Descriptor ¶
func (*Image) GetImageBytes ¶
func (*Image) GetInputConfig ¶
func (m *Image) GetInputConfig() *InputConfig
func (*Image) GetThumbnailUri ¶
func (*Image) ProtoMessage ¶
func (*Image) ProtoMessage()
func (*Image) XXX_DiscardUnknown ¶
func (m *Image) XXX_DiscardUnknown()
func (*Image) XXX_Marshal ¶
func (*Image) XXX_OneofWrappers ¶
func (*Image) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*Image) XXX_Unmarshal ¶
type ImageClassificationDatasetMetadata ¶
type ImageClassificationDatasetMetadata struct { // Required. Type of the classification problem. ClassificationType ClassificationType `` /* 168-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata that is specific to image classification.
func (*ImageClassificationDatasetMetadata) Descriptor ¶
func (*ImageClassificationDatasetMetadata) Descriptor() ([]byte, []int)
func (*ImageClassificationDatasetMetadata) GetClassificationType ¶
func (m *ImageClassificationDatasetMetadata) GetClassificationType() ClassificationType
func (*ImageClassificationDatasetMetadata) ProtoMessage ¶
func (*ImageClassificationDatasetMetadata) ProtoMessage()
func (*ImageClassificationDatasetMetadata) Reset ¶
func (m *ImageClassificationDatasetMetadata) Reset()
func (*ImageClassificationDatasetMetadata) String ¶
func (m *ImageClassificationDatasetMetadata) String() string
func (*ImageClassificationDatasetMetadata) XXX_DiscardUnknown ¶
func (m *ImageClassificationDatasetMetadata) XXX_DiscardUnknown()
func (*ImageClassificationDatasetMetadata) XXX_Marshal ¶
func (m *ImageClassificationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageClassificationDatasetMetadata) XXX_Merge ¶
func (m *ImageClassificationDatasetMetadata) XXX_Merge(src proto.Message)
func (*ImageClassificationDatasetMetadata) XXX_Size ¶
func (m *ImageClassificationDatasetMetadata) XXX_Size() int
func (*ImageClassificationDatasetMetadata) XXX_Unmarshal ¶
func (m *ImageClassificationDatasetMetadata) XXX_Unmarshal(b []byte) error
type ImageClassificationModelDeploymentMetadata ¶
type ImageClassificationModelDeploymentMetadata struct { // Input only. The number of nodes to deploy the model on. A node is an // abstraction of a machine resource, which can handle online prediction QPS // as given in the model's // // [node_qps][google.cloud.automl.v1beta1.ImageClassificationModelMetadata.node_qps]. // Must be between 1 and 100, inclusive on both ends. NodeCount int64 `protobuf:"varint,1,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model deployment metadata specific to Image Classification.
func (*ImageClassificationModelDeploymentMetadata) Descriptor ¶
func (*ImageClassificationModelDeploymentMetadata) Descriptor() ([]byte, []int)
func (*ImageClassificationModelDeploymentMetadata) GetNodeCount ¶
func (m *ImageClassificationModelDeploymentMetadata) GetNodeCount() int64
func (*ImageClassificationModelDeploymentMetadata) ProtoMessage ¶
func (*ImageClassificationModelDeploymentMetadata) ProtoMessage()
func (*ImageClassificationModelDeploymentMetadata) Reset ¶
func (m *ImageClassificationModelDeploymentMetadata) Reset()
func (*ImageClassificationModelDeploymentMetadata) String ¶
func (m *ImageClassificationModelDeploymentMetadata) String() string
func (*ImageClassificationModelDeploymentMetadata) XXX_DiscardUnknown ¶
func (m *ImageClassificationModelDeploymentMetadata) XXX_DiscardUnknown()
func (*ImageClassificationModelDeploymentMetadata) XXX_Marshal ¶
func (m *ImageClassificationModelDeploymentMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageClassificationModelDeploymentMetadata) XXX_Merge ¶
func (m *ImageClassificationModelDeploymentMetadata) XXX_Merge(src proto.Message)
func (*ImageClassificationModelDeploymentMetadata) XXX_Size ¶
func (m *ImageClassificationModelDeploymentMetadata) XXX_Size() int
func (*ImageClassificationModelDeploymentMetadata) XXX_Unmarshal ¶
func (m *ImageClassificationModelDeploymentMetadata) XXX_Unmarshal(b []byte) error
type ImageClassificationModelMetadata ¶
type ImageClassificationModelMetadata struct { // Optional. The ID of the `base` model. If it is specified, the new model // will be created based on the `base` model. Otherwise, the new model will be // created from scratch. The `base` model must be in the same // `project` and `location` as the new model to create, and have the same // `model_type`. BaseModelId string `protobuf:"bytes,1,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"` // Required. The train budget of creating this model, expressed in hours. The // actual `train_cost` will be equal or less than this value. TrainBudget int64 `protobuf:"varint,2,opt,name=train_budget,json=trainBudget,proto3" json:"train_budget,omitempty"` // Output only. The actual train cost of creating this model, expressed in // hours. If this model is created from a `base` model, the train cost used // to create the `base` model are not included. TrainCost int64 `protobuf:"varint,3,opt,name=train_cost,json=trainCost,proto3" json:"train_cost,omitempty"` // Output only. The reason that this create model operation stopped, // e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`. StopReason string `protobuf:"bytes,5,opt,name=stop_reason,json=stopReason,proto3" json:"stop_reason,omitempty"` // Optional. Type of the model. The available values are: // * `cloud` - Model to be used via prediction calls to AutoML API. // This is the default value. // * `mobile-low-latency-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device // with TensorFlow afterwards. Expected to have low latency, but // may have lower prediction quality than other models. // * `mobile-versatile-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device // with TensorFlow afterwards. // * `mobile-high-accuracy-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device // with TensorFlow afterwards. Expected to have a higher // latency, but should also have a higher prediction quality // than other models. // * `mobile-core-ml-low-latency-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with Core // ML afterwards. Expected to have low latency, but may have // lower prediction quality than other models. // * `mobile-core-ml-versatile-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with Core // ML afterwards. // * `mobile-core-ml-high-accuracy-1` - A model that, in addition to // providing prediction via AutoML API, can also be exported // (see [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with // Core ML afterwards. Expected to have a higher latency, but // should also have a higher prediction quality than other // models. ModelType string `protobuf:"bytes,7,opt,name=model_type,json=modelType,proto3" json:"model_type,omitempty"` // Output only. An approximate number of online prediction QPS that can // be supported by this model per each node on which it is deployed. NodeQps float64 `protobuf:"fixed64,13,opt,name=node_qps,json=nodeQps,proto3" json:"node_qps,omitempty"` // Output only. The number of nodes this model is deployed on. A node is an // abstraction of a machine resource, which can handle online prediction QPS // as given in the node_qps field. NodeCount int64 `protobuf:"varint,14,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata for image classification.
func (*ImageClassificationModelMetadata) Descriptor ¶
func (*ImageClassificationModelMetadata) Descriptor() ([]byte, []int)
func (*ImageClassificationModelMetadata) GetBaseModelId ¶
func (m *ImageClassificationModelMetadata) GetBaseModelId() string
func (*ImageClassificationModelMetadata) GetModelType ¶
func (m *ImageClassificationModelMetadata) GetModelType() string
func (*ImageClassificationModelMetadata) GetNodeCount ¶
func (m *ImageClassificationModelMetadata) GetNodeCount() int64
func (*ImageClassificationModelMetadata) GetNodeQps ¶
func (m *ImageClassificationModelMetadata) GetNodeQps() float64
func (*ImageClassificationModelMetadata) GetStopReason ¶
func (m *ImageClassificationModelMetadata) GetStopReason() string
func (*ImageClassificationModelMetadata) GetTrainBudget ¶
func (m *ImageClassificationModelMetadata) GetTrainBudget() int64
func (*ImageClassificationModelMetadata) GetTrainCost ¶
func (m *ImageClassificationModelMetadata) GetTrainCost() int64
func (*ImageClassificationModelMetadata) ProtoMessage ¶
func (*ImageClassificationModelMetadata) ProtoMessage()
func (*ImageClassificationModelMetadata) Reset ¶
func (m *ImageClassificationModelMetadata) Reset()
func (*ImageClassificationModelMetadata) String ¶
func (m *ImageClassificationModelMetadata) String() string
func (*ImageClassificationModelMetadata) XXX_DiscardUnknown ¶
func (m *ImageClassificationModelMetadata) XXX_DiscardUnknown()
func (*ImageClassificationModelMetadata) XXX_Marshal ¶
func (m *ImageClassificationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageClassificationModelMetadata) XXX_Merge ¶
func (m *ImageClassificationModelMetadata) XXX_Merge(src proto.Message)
func (*ImageClassificationModelMetadata) XXX_Size ¶
func (m *ImageClassificationModelMetadata) XXX_Size() int
func (*ImageClassificationModelMetadata) XXX_Unmarshal ¶
func (m *ImageClassificationModelMetadata) XXX_Unmarshal(b []byte) error
type ImageObjectDetectionAnnotation ¶
type ImageObjectDetectionAnnotation struct { // Output only. The rectangle representing the object location. BoundingBox *BoundingPoly `protobuf:"bytes,1,opt,name=bounding_box,json=boundingBox,proto3" json:"bounding_box,omitempty"` // Output only. The confidence that this annotation is positive for the parent example, // value in [0, 1], higher means higher positivity confidence. Score float32 `protobuf:"fixed32,2,opt,name=score,proto3" json:"score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Annotation details for image object detection.
func (*ImageObjectDetectionAnnotation) Descriptor ¶
func (*ImageObjectDetectionAnnotation) Descriptor() ([]byte, []int)
func (*ImageObjectDetectionAnnotation) GetBoundingBox ¶
func (m *ImageObjectDetectionAnnotation) GetBoundingBox() *BoundingPoly
func (*ImageObjectDetectionAnnotation) GetScore ¶
func (m *ImageObjectDetectionAnnotation) GetScore() float32
func (*ImageObjectDetectionAnnotation) ProtoMessage ¶
func (*ImageObjectDetectionAnnotation) ProtoMessage()
func (*ImageObjectDetectionAnnotation) Reset ¶
func (m *ImageObjectDetectionAnnotation) Reset()
func (*ImageObjectDetectionAnnotation) String ¶
func (m *ImageObjectDetectionAnnotation) String() string
func (*ImageObjectDetectionAnnotation) XXX_DiscardUnknown ¶
func (m *ImageObjectDetectionAnnotation) XXX_DiscardUnknown()
func (*ImageObjectDetectionAnnotation) XXX_Marshal ¶
func (m *ImageObjectDetectionAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageObjectDetectionAnnotation) XXX_Merge ¶
func (m *ImageObjectDetectionAnnotation) XXX_Merge(src proto.Message)
func (*ImageObjectDetectionAnnotation) XXX_Size ¶
func (m *ImageObjectDetectionAnnotation) XXX_Size() int
func (*ImageObjectDetectionAnnotation) XXX_Unmarshal ¶
func (m *ImageObjectDetectionAnnotation) XXX_Unmarshal(b []byte) error
type ImageObjectDetectionDatasetMetadata ¶
type ImageObjectDetectionDatasetMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata specific to image object detection.
func (*ImageObjectDetectionDatasetMetadata) Descriptor ¶
func (*ImageObjectDetectionDatasetMetadata) Descriptor() ([]byte, []int)
func (*ImageObjectDetectionDatasetMetadata) ProtoMessage ¶
func (*ImageObjectDetectionDatasetMetadata) ProtoMessage()
func (*ImageObjectDetectionDatasetMetadata) Reset ¶
func (m *ImageObjectDetectionDatasetMetadata) Reset()
func (*ImageObjectDetectionDatasetMetadata) String ¶
func (m *ImageObjectDetectionDatasetMetadata) String() string
func (*ImageObjectDetectionDatasetMetadata) XXX_DiscardUnknown ¶
func (m *ImageObjectDetectionDatasetMetadata) XXX_DiscardUnknown()
func (*ImageObjectDetectionDatasetMetadata) XXX_Marshal ¶
func (m *ImageObjectDetectionDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageObjectDetectionDatasetMetadata) XXX_Merge ¶
func (m *ImageObjectDetectionDatasetMetadata) XXX_Merge(src proto.Message)
func (*ImageObjectDetectionDatasetMetadata) XXX_Size ¶
func (m *ImageObjectDetectionDatasetMetadata) XXX_Size() int
func (*ImageObjectDetectionDatasetMetadata) XXX_Unmarshal ¶
func (m *ImageObjectDetectionDatasetMetadata) XXX_Unmarshal(b []byte) error
type ImageObjectDetectionEvaluationMetrics ¶
type ImageObjectDetectionEvaluationMetrics struct { // Output only. The total number of bounding boxes (i.e. summed over all // images) the ground truth used to create this evaluation had. EvaluatedBoundingBoxCount int32 `` /* 141-byte string literal not displayed */ // Output only. The bounding boxes match metrics for each // Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 // and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 // pair. BoundingBoxMetricsEntries []*BoundingBoxMetricsEntry `` /* 140-byte string literal not displayed */ // Output only. The single metric for bounding boxes evaluation: // the mean_average_precision averaged over all bounding_box_metrics_entries. BoundingBoxMeanAveragePrecision float32 `` /* 162-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.
func (*ImageObjectDetectionEvaluationMetrics) Descriptor ¶
func (*ImageObjectDetectionEvaluationMetrics) Descriptor() ([]byte, []int)
func (*ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision ¶
func (m *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
func (*ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries ¶
func (m *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
func (*ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount ¶
func (m *ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage ¶
func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage()
func (*ImageObjectDetectionEvaluationMetrics) Reset ¶
func (m *ImageObjectDetectionEvaluationMetrics) Reset()
func (*ImageObjectDetectionEvaluationMetrics) String ¶
func (m *ImageObjectDetectionEvaluationMetrics) String() string
func (*ImageObjectDetectionEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *ImageObjectDetectionEvaluationMetrics) XXX_DiscardUnknown()
func (*ImageObjectDetectionEvaluationMetrics) XXX_Marshal ¶
func (m *ImageObjectDetectionEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageObjectDetectionEvaluationMetrics) XXX_Merge ¶
func (m *ImageObjectDetectionEvaluationMetrics) XXX_Merge(src proto.Message)
func (*ImageObjectDetectionEvaluationMetrics) XXX_Size ¶
func (m *ImageObjectDetectionEvaluationMetrics) XXX_Size() int
func (*ImageObjectDetectionEvaluationMetrics) XXX_Unmarshal ¶
func (m *ImageObjectDetectionEvaluationMetrics) XXX_Unmarshal(b []byte) error
type ImageObjectDetectionModelDeploymentMetadata ¶
type ImageObjectDetectionModelDeploymentMetadata struct { // Input only. The number of nodes to deploy the model on. A node is an // abstraction of a machine resource, which can handle online prediction QPS // as given in the model's // // [qps_per_node][google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.qps_per_node]. // Must be between 1 and 100, inclusive on both ends. NodeCount int64 `protobuf:"varint,1,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model deployment metadata specific to Image Object Detection.
func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor ¶
func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor() ([]byte, []int)
func (*ImageObjectDetectionModelDeploymentMetadata) GetNodeCount ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) GetNodeCount() int64
func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage ¶
func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage()
func (*ImageObjectDetectionModelDeploymentMetadata) Reset ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) Reset()
func (*ImageObjectDetectionModelDeploymentMetadata) String ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) String() string
func (*ImageObjectDetectionModelDeploymentMetadata) XXX_DiscardUnknown ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_DiscardUnknown()
func (*ImageObjectDetectionModelDeploymentMetadata) XXX_Marshal ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageObjectDetectionModelDeploymentMetadata) XXX_Merge ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Merge(src proto.Message)
func (*ImageObjectDetectionModelDeploymentMetadata) XXX_Size ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Size() int
func (*ImageObjectDetectionModelDeploymentMetadata) XXX_Unmarshal ¶
func (m *ImageObjectDetectionModelDeploymentMetadata) XXX_Unmarshal(b []byte) error
type ImageObjectDetectionModelMetadata ¶
type ImageObjectDetectionModelMetadata struct { // Optional. Type of the model. The available values are: // * `cloud-high-accuracy-1` - (default) A model to be used via prediction // calls to AutoML API. Expected to have a higher latency, but // should also have a higher prediction quality than other // models. // * `cloud-low-latency-1` - A model to be used via prediction // calls to AutoML API. Expected to have low latency, but may // have lower prediction quality than other models. // * `mobile-low-latency-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device // with TensorFlow afterwards. Expected to have low latency, but // may have lower prediction quality than other models. // * `mobile-versatile-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device // with TensorFlow afterwards. // * `mobile-high-accuracy-1` - A model that, in addition to providing // prediction via AutoML API, can also be exported (see // [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device // with TensorFlow afterwards. Expected to have a higher // latency, but should also have a higher prediction quality // than other models. ModelType string `protobuf:"bytes,1,opt,name=model_type,json=modelType,proto3" json:"model_type,omitempty"` // Output only. The number of nodes this model is deployed on. A node is an // abstraction of a machine resource, which can handle online prediction QPS // as given in the qps_per_node field. NodeCount int64 `protobuf:"varint,3,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"` // Output only. An approximate number of online prediction QPS that can // be supported by this model per each node on which it is deployed. NodeQps float64 `protobuf:"fixed64,4,opt,name=node_qps,json=nodeQps,proto3" json:"node_qps,omitempty"` // Output only. The reason that this create model operation stopped, // e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`. StopReason string `protobuf:"bytes,5,opt,name=stop_reason,json=stopReason,proto3" json:"stop_reason,omitempty"` // The train budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. The actual // `train_cost` will be equal or less than this value. If further model // training ceases to provide any improvements, it will stop without using // full budget and the stop_reason will be `MODEL_CONVERGED`. // Note, node_hour = actual_hour * number_of_nodes_invovled. // For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`, // the train budget must be between 20,000 and 900,000 milli node hours, // inclusive. The default value is 216, 000 which represents one day in // wall time. // For model type `mobile-low-latency-1`, `mobile-versatile-1`, // `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`, // `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train // budget must be between 1,000 and 100,000 milli node hours, inclusive. // The default value is 24, 000 which represents one day in wall time. TrainBudgetMilliNodeHours int64 `` /* 143-byte string literal not displayed */ // Output only. The actual train cost of creating this model, expressed in // milli node hours, i.e. 1,000 value in this field means 1 node hour. // Guaranteed to not exceed the train budget. TrainCostMilliNodeHours int64 `` /* 137-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata specific to image object detection.
func (*ImageObjectDetectionModelMetadata) Descriptor ¶
func (*ImageObjectDetectionModelMetadata) Descriptor() ([]byte, []int)
func (*ImageObjectDetectionModelMetadata) GetModelType ¶
func (m *ImageObjectDetectionModelMetadata) GetModelType() string
func (*ImageObjectDetectionModelMetadata) GetNodeCount ¶
func (m *ImageObjectDetectionModelMetadata) GetNodeCount() int64
func (*ImageObjectDetectionModelMetadata) GetNodeQps ¶
func (m *ImageObjectDetectionModelMetadata) GetNodeQps() float64
func (*ImageObjectDetectionModelMetadata) GetStopReason ¶
func (m *ImageObjectDetectionModelMetadata) GetStopReason() string
func (*ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours ¶
func (m *ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours() int64
func (*ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours ¶
func (m *ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours() int64
func (*ImageObjectDetectionModelMetadata) ProtoMessage ¶
func (*ImageObjectDetectionModelMetadata) ProtoMessage()
func (*ImageObjectDetectionModelMetadata) Reset ¶
func (m *ImageObjectDetectionModelMetadata) Reset()
func (*ImageObjectDetectionModelMetadata) String ¶
func (m *ImageObjectDetectionModelMetadata) String() string
func (*ImageObjectDetectionModelMetadata) XXX_DiscardUnknown ¶
func (m *ImageObjectDetectionModelMetadata) XXX_DiscardUnknown()
func (*ImageObjectDetectionModelMetadata) XXX_Marshal ¶
func (m *ImageObjectDetectionModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImageObjectDetectionModelMetadata) XXX_Merge ¶
func (m *ImageObjectDetectionModelMetadata) XXX_Merge(src proto.Message)
func (*ImageObjectDetectionModelMetadata) XXX_Size ¶
func (m *ImageObjectDetectionModelMetadata) XXX_Size() int
func (*ImageObjectDetectionModelMetadata) XXX_Unmarshal ¶
func (m *ImageObjectDetectionModelMetadata) XXX_Unmarshal(b []byte) error
type Image_ImageBytes ¶
type Image_ImageBytes struct {
ImageBytes []byte `protobuf:"bytes,1,opt,name=image_bytes,json=imageBytes,proto3,oneof"`
}
type Image_InputConfig ¶
type Image_InputConfig struct {
InputConfig *InputConfig `protobuf:"bytes,6,opt,name=input_config,json=inputConfig,proto3,oneof"`
}
type ImportDataOperationMetadata ¶
type ImportDataOperationMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of ImportData operation.
func (*ImportDataOperationMetadata) Descriptor ¶
func (*ImportDataOperationMetadata) Descriptor() ([]byte, []int)
func (*ImportDataOperationMetadata) ProtoMessage ¶
func (*ImportDataOperationMetadata) ProtoMessage()
func (*ImportDataOperationMetadata) Reset ¶
func (m *ImportDataOperationMetadata) Reset()
func (*ImportDataOperationMetadata) String ¶
func (m *ImportDataOperationMetadata) String() string
func (*ImportDataOperationMetadata) XXX_DiscardUnknown ¶
func (m *ImportDataOperationMetadata) XXX_DiscardUnknown()
func (*ImportDataOperationMetadata) XXX_Marshal ¶
func (m *ImportDataOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImportDataOperationMetadata) XXX_Merge ¶
func (m *ImportDataOperationMetadata) XXX_Merge(src proto.Message)
func (*ImportDataOperationMetadata) XXX_Size ¶
func (m *ImportDataOperationMetadata) XXX_Size() int
func (*ImportDataOperationMetadata) XXX_Unmarshal ¶
func (m *ImportDataOperationMetadata) XXX_Unmarshal(b []byte) error
type ImportDataRequest ¶
type ImportDataRequest struct { // Required. Dataset name. Dataset must already exist. All imported // annotations and examples will be added. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The desired input location and its domain specific semantics, // if any. InputConfig *InputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData].
func (*ImportDataRequest) Descriptor ¶
func (*ImportDataRequest) Descriptor() ([]byte, []int)
func (*ImportDataRequest) GetInputConfig ¶
func (m *ImportDataRequest) GetInputConfig() *InputConfig
func (*ImportDataRequest) GetName ¶
func (m *ImportDataRequest) GetName() string
func (*ImportDataRequest) ProtoMessage ¶
func (*ImportDataRequest) ProtoMessage()
func (*ImportDataRequest) Reset ¶
func (m *ImportDataRequest) Reset()
func (*ImportDataRequest) String ¶
func (m *ImportDataRequest) String() string
func (*ImportDataRequest) XXX_DiscardUnknown ¶
func (m *ImportDataRequest) XXX_DiscardUnknown()
func (*ImportDataRequest) XXX_Marshal ¶
func (m *ImportDataRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ImportDataRequest) XXX_Merge ¶
func (m *ImportDataRequest) XXX_Merge(src proto.Message)
func (*ImportDataRequest) XXX_Size ¶
func (m *ImportDataRequest) XXX_Size() int
func (*ImportDataRequest) XXX_Unmarshal ¶
func (m *ImportDataRequest) XXX_Unmarshal(b []byte) error
type InputConfig ¶
type InputConfig struct { // The source of the input. // // Types that are valid to be assigned to Source: // *InputConfig_GcsSource // *InputConfig_BigquerySource Source isInputConfig_Source `protobuf_oneof:"source"` // Additional domain-specific parameters describing the semantic of the // imported data, any string must be up to 25000 // characters long. // // * For Tables: // `schema_inference_version` - (integer) Required. The version of the // algorithm that should be used for the initial inference of the // schema (columns' DataTypes) of the table the data is being imported // into. Allowed values: "1". Params map[string]string `` /* 153-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Input configuration for ImportData Action.
The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different GCS_FILE_PATH) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same ML_USE and GCS_FILE_PATH, if it is not, then these values are nondeterministically selected from the given ones.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
For Image Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,LABEL,LABEL,... GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO For MULTICLASS classification type, at most one LABEL is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no LABEL. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy TEST,gs://folder/image2.jpg,dandelion,tulip,rose UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg
For Image Object Detection: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,) GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled. The minimum allowed BOUNDING_BOX edge length is 0.01, and no more than 500 BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined per line). If an image has not yet been labeled, then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the BOUNDING_BOX. For images which are known to not contain any bounding boxes, they should be labelled explictly as "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the BOUNDING_BOX. Sample rows: TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 TEST,gs://folder/im3.png,,,,,,,,, TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,,
For Video Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using the following row format: GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it shuold be mentioned just once with ",," in place of LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,120,180.000021 gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5 gs://folder/vid3.avi,,,
For Video Object Tracking: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using one of the following row format: GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or GCS_FILE_PATH,,,,,,,,,, Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing INSTANCE_IDs can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same INSTANCE_ID is given to it. TIMESTAMP must be within the length of the video, the BOUNDING_BOX is assumed to be drawn on the closest video's frame to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, gs://folder/video2.avi,,,,,,,,,,,
For Text Extraction: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which either imports text in-line or as documents. Any given .JSONL file must be 100MB or smaller. The in-line .JSONL file contains, per line, a proto that wraps a TextSnippet proto (in json representation) followed by one or more AnnotationPayload protos (called annotations), which have display_name and text_extraction detail populated. The given text is expected to be annotated exhaustively, for example, if you look for animals and text contains "dolphin" that is not labeled, then "dolphin" is assumed to not be an animal. Any given text snippet content must be 10KB or smaller, and also be UTF-8 NFC encoded (ASCII already is). The document .JSONL file contains, per line, a proto that wraps a Document proto. The Document proto must have either document_text or input_config set. In document_text case, the Document proto may also contain the spatial information of the document, including layout, document dimension and page number. In input_config case, only PDF documents are supported now, and each document may be up to 2MB large. Currently, annotations on documents cannot be specified at import. Three sample CSV rows: TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl TEST,gs://folder/file3.jsonl Sample in-line JSON Lines file for entity extraction (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "document_text": {"content": "dog cat"} "layout": [ { "text_segment": { "start_offset": 0, "end_offset": 3, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], }, "text_segment_type": TOKEN, }, { "text_segment": { "start_offset": 4, "end_offset": 7, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.4, "y": 0.1}, {"x": 0.4, "y": 0.3}, {"x": 0.8, "y": 0.3}, {"x": 0.8, "y": 0.1}, ], }, "text_segment_type": TOKEN, }
], "document_dimensions": { "width": 8.27, "height": 11.69, "unit": INCH, } "page_count": 1, }, "annotations": [ { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 0, "end_offset": 3}} }, { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 4, "end_offset": 7}} } ], }\n { "text_snippet": { "content": "This dog is good." }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 5, "end_offset": 8} } } ] } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }
For Text Classification: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, i.e. prefixed by "gs://", it will be treated as a GCS_FILE_PATH, else if the content is enclosed within double quotes (""), it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content excluding quotes is treated as to be imported text snippet. In both cases, the text snippet/file size must be within 128kB. Maximum 100 unique labels are allowed per CSV row. Sample rows: TRAIN,"They have bad food and very rude",RudeService,BadFood TRAIN,gs://folder/content.txt,SlowService TEST,"Typically always bad service there.",RudeService VALIDATE,"Stomach ache to go.",BadFood
For Text Sentiment: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content itself is treated as to be imported text snippet. In both cases, the text snippet must be up to 500 characters long. Sample rows: TRAIN,"@freewrytin this is way too good for your product",2 TRAIN,"I need this product so bad",3 TEST,"Thank you for this product.",4 VALIDATE,gs://folder/content.txt,2
For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source]
can be used. All inputs is concatenated into a single
[primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_name]
For gcs_source: CSV file(s), where the first row of the first file is the header, containing unique column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. Each .CSV file by itself must be 10GB or smaller, and their total size must be 100GB or smaller. First three sample rows of a CSV file: "Id","First Name","Last Name","Dob","Addresses"
"1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
For bigquery_source: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. An imported table must have between 2 and 1,000 columns, inclusive, and between 1000 and 100,000,000 rows, inclusive. There are at most 5 import data running in parallel. Definitions: ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED" Describes how the given example (file) should be used for model training. "UNASSIGNED" can be used when user has no preference. GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png". LABEL = A display name of an object on an image, video etc., e.g. "dog". Must be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. For each label an AnnotationSpec is created which display_name becomes the label; AnnotationSpecs are given back in predictions. INSTANCE_ID = A positive integer that identifies a specific instance of a labeled entity on an example. Used e.g. to track two cars on a video while being able to tell apart which one is which. BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,, A rectangle parallel to the frame of the example (image, video). If 4 vertices are given they are connected by edges in the order provided, if 2 are given they are recognized as diagonally opposite vertices of the rectangle. VERTEX = COORDINATE,COORDINATE First coordinate is horizontal (x), the second is vertical (y). COORDINATE = A float in 0 to 1 range, relative to total length of image or video in given dimension. For fractions the leading non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left. TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example. TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes (""). SENTIMENT = An integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive). Describes the ordinal of the sentiment - higher value means a more positive sentiment. All the values are completely relative, i.e. neither 0 needs to mean a negative or neutral sentiment nor sentiment_max needs to mean a positive one - it is just required that 0 is the least positive sentiment in the data, and sentiment_max is the most positive one. The SENTIMENT shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API. All SENTIMENT values between 0 and sentiment_max must be represented in the imported data. On prediction the same 0 to sentiment_max range will be used. The difference between neighboring sentiment values needs not to be uniform, e.g. 1 and 2 may be similar whereas the difference between 2 and 3 may be huge. Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and nothing is imported. Regardless of overall success or failure the per-row failures, up to a certain count cap, is listed in Operation.metadata.partial_failures.
func (*InputConfig) Descriptor ¶
func (*InputConfig) Descriptor() ([]byte, []int)
func (*InputConfig) GetBigquerySource ¶
func (m *InputConfig) GetBigquerySource() *BigQuerySource
func (*InputConfig) GetGcsSource ¶
func (m *InputConfig) GetGcsSource() *GcsSource
func (*InputConfig) GetParams ¶
func (m *InputConfig) GetParams() map[string]string
func (*InputConfig) GetSource ¶
func (m *InputConfig) GetSource() isInputConfig_Source
func (*InputConfig) ProtoMessage ¶
func (*InputConfig) ProtoMessage()
func (*InputConfig) Reset ¶
func (m *InputConfig) Reset()
func (*InputConfig) String ¶
func (m *InputConfig) String() string
func (*InputConfig) XXX_DiscardUnknown ¶
func (m *InputConfig) XXX_DiscardUnknown()
func (*InputConfig) XXX_Marshal ¶
func (m *InputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*InputConfig) XXX_Merge ¶
func (m *InputConfig) XXX_Merge(src proto.Message)
func (*InputConfig) XXX_OneofWrappers ¶
func (*InputConfig) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*InputConfig) XXX_Size ¶
func (m *InputConfig) XXX_Size() int
func (*InputConfig) XXX_Unmarshal ¶
func (m *InputConfig) XXX_Unmarshal(b []byte) error
type InputConfig_BigquerySource ¶
type InputConfig_BigquerySource struct {
BigquerySource *BigQuerySource `protobuf:"bytes,3,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"`
}
type InputConfig_GcsSource ¶
type InputConfig_GcsSource struct {
GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}
type ListColumnSpecsRequest ¶
type ListColumnSpecsRequest struct { // Required. The resource name of the table spec to list column specs from. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // Mask specifying which fields to read. FieldMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"` // Filter expression, see go/filtering. Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"` // Requested page size. The server can return fewer results than requested. // If unspecified, the server will pick a default size. PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"` // A token identifying a page of results for the server to return. // Typically obtained from the // [ListColumnSpecsResponse.next_page_token][google.cloud.automl.v1beta1.ListColumnSpecsResponse.next_page_token] field of the previous // [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs] call. PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].
func (*ListColumnSpecsRequest) Descriptor ¶
func (*ListColumnSpecsRequest) Descriptor() ([]byte, []int)
func (*ListColumnSpecsRequest) GetFieldMask ¶
func (m *ListColumnSpecsRequest) GetFieldMask() *field_mask.FieldMask
func (*ListColumnSpecsRequest) GetFilter ¶
func (m *ListColumnSpecsRequest) GetFilter() string
func (*ListColumnSpecsRequest) GetPageSize ¶
func (m *ListColumnSpecsRequest) GetPageSize() int32
func (*ListColumnSpecsRequest) GetPageToken ¶
func (m *ListColumnSpecsRequest) GetPageToken() string
func (*ListColumnSpecsRequest) GetParent ¶
func (m *ListColumnSpecsRequest) GetParent() string
func (*ListColumnSpecsRequest) ProtoMessage ¶
func (*ListColumnSpecsRequest) ProtoMessage()
func (*ListColumnSpecsRequest) Reset ¶
func (m *ListColumnSpecsRequest) Reset()
func (*ListColumnSpecsRequest) String ¶
func (m *ListColumnSpecsRequest) String() string
func (*ListColumnSpecsRequest) XXX_DiscardUnknown ¶
func (m *ListColumnSpecsRequest) XXX_DiscardUnknown()
func (*ListColumnSpecsRequest) XXX_Marshal ¶
func (m *ListColumnSpecsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListColumnSpecsRequest) XXX_Merge ¶
func (m *ListColumnSpecsRequest) XXX_Merge(src proto.Message)
func (*ListColumnSpecsRequest) XXX_Size ¶
func (m *ListColumnSpecsRequest) XXX_Size() int
func (*ListColumnSpecsRequest) XXX_Unmarshal ¶
func (m *ListColumnSpecsRequest) XXX_Unmarshal(b []byte) error
type ListColumnSpecsResponse ¶
type ListColumnSpecsResponse struct { // The column specs read. ColumnSpecs []*ColumnSpec `protobuf:"bytes,1,rep,name=column_specs,json=columnSpecs,proto3" json:"column_specs,omitempty"` // A token to retrieve next page of results. // Pass to [ListColumnSpecsRequest.page_token][google.cloud.automl.v1beta1.ListColumnSpecsRequest.page_token] to obtain that page. NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Response message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].
func (*ListColumnSpecsResponse) Descriptor ¶
func (*ListColumnSpecsResponse) Descriptor() ([]byte, []int)
func (*ListColumnSpecsResponse) GetColumnSpecs ¶
func (m *ListColumnSpecsResponse) GetColumnSpecs() []*ColumnSpec
func (*ListColumnSpecsResponse) GetNextPageToken ¶
func (m *ListColumnSpecsResponse) GetNextPageToken() string
func (*ListColumnSpecsResponse) ProtoMessage ¶
func (*ListColumnSpecsResponse) ProtoMessage()
func (*ListColumnSpecsResponse) Reset ¶
func (m *ListColumnSpecsResponse) Reset()
func (*ListColumnSpecsResponse) String ¶
func (m *ListColumnSpecsResponse) String() string
func (*ListColumnSpecsResponse) XXX_DiscardUnknown ¶
func (m *ListColumnSpecsResponse) XXX_DiscardUnknown()
func (*ListColumnSpecsResponse) XXX_Marshal ¶
func (m *ListColumnSpecsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListColumnSpecsResponse) XXX_Merge ¶
func (m *ListColumnSpecsResponse) XXX_Merge(src proto.Message)
func (*ListColumnSpecsResponse) XXX_Size ¶
func (m *ListColumnSpecsResponse) XXX_Size() int
func (*ListColumnSpecsResponse) XXX_Unmarshal ¶
func (m *ListColumnSpecsResponse) XXX_Unmarshal(b []byte) error
type ListDatasetsRequest ¶
type ListDatasetsRequest struct { // Required. The resource name of the project from which to list datasets. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // An expression for filtering the results of the request. // // * `dataset_metadata` - for existence of the case (e.g. // image_classification_dataset_metadata:*). Some examples of using the filter are: // // * `translation_dataset_metadata:*` --> The dataset has // translation_dataset_metadata. Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"` // Requested page size. Server may return fewer results than requested. // If unspecified, server will pick a default size. PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"` // A token identifying a page of results for the server to return // Typically obtained via // [ListDatasetsResponse.next_page_token][google.cloud.automl.v1beta1.ListDatasetsResponse.next_page_token] of the previous // [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets] call. PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].
func (*ListDatasetsRequest) Descriptor ¶
func (*ListDatasetsRequest) Descriptor() ([]byte, []int)
func (*ListDatasetsRequest) GetFilter ¶
func (m *ListDatasetsRequest) GetFilter() string
func (*ListDatasetsRequest) GetPageSize ¶
func (m *ListDatasetsRequest) GetPageSize() int32
func (*ListDatasetsRequest) GetPageToken ¶
func (m *ListDatasetsRequest) GetPageToken() string
func (*ListDatasetsRequest) GetParent ¶
func (m *ListDatasetsRequest) GetParent() string
func (*ListDatasetsRequest) ProtoMessage ¶
func (*ListDatasetsRequest) ProtoMessage()
func (*ListDatasetsRequest) Reset ¶
func (m *ListDatasetsRequest) Reset()
func (*ListDatasetsRequest) String ¶
func (m *ListDatasetsRequest) String() string
func (*ListDatasetsRequest) XXX_DiscardUnknown ¶
func (m *ListDatasetsRequest) XXX_DiscardUnknown()
func (*ListDatasetsRequest) XXX_Marshal ¶
func (m *ListDatasetsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListDatasetsRequest) XXX_Merge ¶
func (m *ListDatasetsRequest) XXX_Merge(src proto.Message)
func (*ListDatasetsRequest) XXX_Size ¶
func (m *ListDatasetsRequest) XXX_Size() int
func (*ListDatasetsRequest) XXX_Unmarshal ¶
func (m *ListDatasetsRequest) XXX_Unmarshal(b []byte) error
type ListDatasetsResponse ¶
type ListDatasetsResponse struct { // The datasets read. Datasets []*Dataset `protobuf:"bytes,1,rep,name=datasets,proto3" json:"datasets,omitempty"` // A token to retrieve next page of results. // Pass to [ListDatasetsRequest.page_token][google.cloud.automl.v1beta1.ListDatasetsRequest.page_token] to obtain that page. NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Response message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].
func (*ListDatasetsResponse) Descriptor ¶
func (*ListDatasetsResponse) Descriptor() ([]byte, []int)
func (*ListDatasetsResponse) GetDatasets ¶
func (m *ListDatasetsResponse) GetDatasets() []*Dataset
func (*ListDatasetsResponse) GetNextPageToken ¶
func (m *ListDatasetsResponse) GetNextPageToken() string
func (*ListDatasetsResponse) ProtoMessage ¶
func (*ListDatasetsResponse) ProtoMessage()
func (*ListDatasetsResponse) Reset ¶
func (m *ListDatasetsResponse) Reset()
func (*ListDatasetsResponse) String ¶
func (m *ListDatasetsResponse) String() string
func (*ListDatasetsResponse) XXX_DiscardUnknown ¶
func (m *ListDatasetsResponse) XXX_DiscardUnknown()
func (*ListDatasetsResponse) XXX_Marshal ¶
func (m *ListDatasetsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListDatasetsResponse) XXX_Merge ¶
func (m *ListDatasetsResponse) XXX_Merge(src proto.Message)
func (*ListDatasetsResponse) XXX_Size ¶
func (m *ListDatasetsResponse) XXX_Size() int
func (*ListDatasetsResponse) XXX_Unmarshal ¶
func (m *ListDatasetsResponse) XXX_Unmarshal(b []byte) error
type ListModelEvaluationsRequest ¶
type ListModelEvaluationsRequest struct { // Required. Resource name of the model to list the model evaluations for. // If modelId is set as "-", this will list model evaluations from across all // models of the parent location. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // An expression for filtering the results of the request. // // * `annotation_spec_id` - for =, != or existence. See example below for // the last. // // Some examples of using the filter are: // // * `annotation_spec_id!=4` --> The model evaluation was done for // annotation spec with ID different than 4. // * `NOT annotation_spec_id:*` --> The model evaluation was done for // aggregate of all annotation specs. Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"` // Requested page size. PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"` // A token identifying a page of results for the server to return. // Typically obtained via // [ListModelEvaluationsResponse.next_page_token][google.cloud.automl.v1beta1.ListModelEvaluationsResponse.next_page_token] of the previous // [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations] call. PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].
func (*ListModelEvaluationsRequest) Descriptor ¶
func (*ListModelEvaluationsRequest) Descriptor() ([]byte, []int)
func (*ListModelEvaluationsRequest) GetFilter ¶
func (m *ListModelEvaluationsRequest) GetFilter() string
func (*ListModelEvaluationsRequest) GetPageSize ¶
func (m *ListModelEvaluationsRequest) GetPageSize() int32
func (*ListModelEvaluationsRequest) GetPageToken ¶
func (m *ListModelEvaluationsRequest) GetPageToken() string
func (*ListModelEvaluationsRequest) GetParent ¶
func (m *ListModelEvaluationsRequest) GetParent() string
func (*ListModelEvaluationsRequest) ProtoMessage ¶
func (*ListModelEvaluationsRequest) ProtoMessage()
func (*ListModelEvaluationsRequest) Reset ¶
func (m *ListModelEvaluationsRequest) Reset()
func (*ListModelEvaluationsRequest) String ¶
func (m *ListModelEvaluationsRequest) String() string
func (*ListModelEvaluationsRequest) XXX_DiscardUnknown ¶
func (m *ListModelEvaluationsRequest) XXX_DiscardUnknown()
func (*ListModelEvaluationsRequest) XXX_Marshal ¶
func (m *ListModelEvaluationsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListModelEvaluationsRequest) XXX_Merge ¶
func (m *ListModelEvaluationsRequest) XXX_Merge(src proto.Message)
func (*ListModelEvaluationsRequest) XXX_Size ¶
func (m *ListModelEvaluationsRequest) XXX_Size() int
func (*ListModelEvaluationsRequest) XXX_Unmarshal ¶
func (m *ListModelEvaluationsRequest) XXX_Unmarshal(b []byte) error
type ListModelEvaluationsResponse ¶
type ListModelEvaluationsResponse struct { // List of model evaluations in the requested page. ModelEvaluation []*ModelEvaluation `protobuf:"bytes,1,rep,name=model_evaluation,json=modelEvaluation,proto3" json:"model_evaluation,omitempty"` // A token to retrieve next page of results. // Pass to the [ListModelEvaluationsRequest.page_token][google.cloud.automl.v1beta1.ListModelEvaluationsRequest.page_token] field of a new // [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations] request to obtain that page. NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].
func (*ListModelEvaluationsResponse) Descriptor ¶
func (*ListModelEvaluationsResponse) Descriptor() ([]byte, []int)
func (*ListModelEvaluationsResponse) GetModelEvaluation ¶
func (m *ListModelEvaluationsResponse) GetModelEvaluation() []*ModelEvaluation
func (*ListModelEvaluationsResponse) GetNextPageToken ¶
func (m *ListModelEvaluationsResponse) GetNextPageToken() string
func (*ListModelEvaluationsResponse) ProtoMessage ¶
func (*ListModelEvaluationsResponse) ProtoMessage()
func (*ListModelEvaluationsResponse) Reset ¶
func (m *ListModelEvaluationsResponse) Reset()
func (*ListModelEvaluationsResponse) String ¶
func (m *ListModelEvaluationsResponse) String() string
func (*ListModelEvaluationsResponse) XXX_DiscardUnknown ¶
func (m *ListModelEvaluationsResponse) XXX_DiscardUnknown()
func (*ListModelEvaluationsResponse) XXX_Marshal ¶
func (m *ListModelEvaluationsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListModelEvaluationsResponse) XXX_Merge ¶
func (m *ListModelEvaluationsResponse) XXX_Merge(src proto.Message)
func (*ListModelEvaluationsResponse) XXX_Size ¶
func (m *ListModelEvaluationsResponse) XXX_Size() int
func (*ListModelEvaluationsResponse) XXX_Unmarshal ¶
func (m *ListModelEvaluationsResponse) XXX_Unmarshal(b []byte) error
type ListModelsRequest ¶
type ListModelsRequest struct { // Required. Resource name of the project, from which to list the models. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // An expression for filtering the results of the request. // // * `model_metadata` - for existence of the case (e.g. // video_classification_model_metadata:*). // * `dataset_id` - for = or !=. Some examples of using the filter are: // // * `image_classification_model_metadata:*` --> The model has // image_classification_model_metadata. // * `dataset_id=5` --> The model was created from a dataset with ID 5. Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"` // Requested page size. PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"` // A token identifying a page of results for the server to return // Typically obtained via // [ListModelsResponse.next_page_token][google.cloud.automl.v1beta1.ListModelsResponse.next_page_token] of the previous // [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels] call. PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].
func (*ListModelsRequest) Descriptor ¶
func (*ListModelsRequest) Descriptor() ([]byte, []int)
func (*ListModelsRequest) GetFilter ¶
func (m *ListModelsRequest) GetFilter() string
func (*ListModelsRequest) GetPageSize ¶
func (m *ListModelsRequest) GetPageSize() int32
func (*ListModelsRequest) GetPageToken ¶
func (m *ListModelsRequest) GetPageToken() string
func (*ListModelsRequest) GetParent ¶
func (m *ListModelsRequest) GetParent() string
func (*ListModelsRequest) ProtoMessage ¶
func (*ListModelsRequest) ProtoMessage()
func (*ListModelsRequest) Reset ¶
func (m *ListModelsRequest) Reset()
func (*ListModelsRequest) String ¶
func (m *ListModelsRequest) String() string
func (*ListModelsRequest) XXX_DiscardUnknown ¶
func (m *ListModelsRequest) XXX_DiscardUnknown()
func (*ListModelsRequest) XXX_Marshal ¶
func (m *ListModelsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListModelsRequest) XXX_Merge ¶
func (m *ListModelsRequest) XXX_Merge(src proto.Message)
func (*ListModelsRequest) XXX_Size ¶
func (m *ListModelsRequest) XXX_Size() int
func (*ListModelsRequest) XXX_Unmarshal ¶
func (m *ListModelsRequest) XXX_Unmarshal(b []byte) error
type ListModelsResponse ¶
type ListModelsResponse struct { // List of models in the requested page. Model []*Model `protobuf:"bytes,1,rep,name=model,proto3" json:"model,omitempty"` // A token to retrieve next page of results. // Pass to [ListModelsRequest.page_token][google.cloud.automl.v1beta1.ListModelsRequest.page_token] to obtain that page. NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Response message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].
func (*ListModelsResponse) Descriptor ¶
func (*ListModelsResponse) Descriptor() ([]byte, []int)
func (*ListModelsResponse) GetModel ¶
func (m *ListModelsResponse) GetModel() []*Model
func (*ListModelsResponse) GetNextPageToken ¶
func (m *ListModelsResponse) GetNextPageToken() string
func (*ListModelsResponse) ProtoMessage ¶
func (*ListModelsResponse) ProtoMessage()
func (*ListModelsResponse) Reset ¶
func (m *ListModelsResponse) Reset()
func (*ListModelsResponse) String ¶
func (m *ListModelsResponse) String() string
func (*ListModelsResponse) XXX_DiscardUnknown ¶
func (m *ListModelsResponse) XXX_DiscardUnknown()
func (*ListModelsResponse) XXX_Marshal ¶
func (m *ListModelsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListModelsResponse) XXX_Merge ¶
func (m *ListModelsResponse) XXX_Merge(src proto.Message)
func (*ListModelsResponse) XXX_Size ¶
func (m *ListModelsResponse) XXX_Size() int
func (*ListModelsResponse) XXX_Unmarshal ¶
func (m *ListModelsResponse) XXX_Unmarshal(b []byte) error
type ListTableSpecsRequest ¶
type ListTableSpecsRequest struct { // Required. The resource name of the dataset to list table specs from. Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"` // Mask specifying which fields to read. FieldMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"` // Filter expression, see go/filtering. Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"` // Requested page size. The server can return fewer results than requested. // If unspecified, the server will pick a default size. PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"` // A token identifying a page of results for the server to return. // Typically obtained from the // [ListTableSpecsResponse.next_page_token][google.cloud.automl.v1beta1.ListTableSpecsResponse.next_page_token] field of the previous // [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs] call. PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].
func (*ListTableSpecsRequest) Descriptor ¶
func (*ListTableSpecsRequest) Descriptor() ([]byte, []int)
func (*ListTableSpecsRequest) GetFieldMask ¶
func (m *ListTableSpecsRequest) GetFieldMask() *field_mask.FieldMask
func (*ListTableSpecsRequest) GetFilter ¶
func (m *ListTableSpecsRequest) GetFilter() string
func (*ListTableSpecsRequest) GetPageSize ¶
func (m *ListTableSpecsRequest) GetPageSize() int32
func (*ListTableSpecsRequest) GetPageToken ¶
func (m *ListTableSpecsRequest) GetPageToken() string
func (*ListTableSpecsRequest) GetParent ¶
func (m *ListTableSpecsRequest) GetParent() string
func (*ListTableSpecsRequest) ProtoMessage ¶
func (*ListTableSpecsRequest) ProtoMessage()
func (*ListTableSpecsRequest) Reset ¶
func (m *ListTableSpecsRequest) Reset()
func (*ListTableSpecsRequest) String ¶
func (m *ListTableSpecsRequest) String() string
func (*ListTableSpecsRequest) XXX_DiscardUnknown ¶
func (m *ListTableSpecsRequest) XXX_DiscardUnknown()
func (*ListTableSpecsRequest) XXX_Marshal ¶
func (m *ListTableSpecsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListTableSpecsRequest) XXX_Merge ¶
func (m *ListTableSpecsRequest) XXX_Merge(src proto.Message)
func (*ListTableSpecsRequest) XXX_Size ¶
func (m *ListTableSpecsRequest) XXX_Size() int
func (*ListTableSpecsRequest) XXX_Unmarshal ¶
func (m *ListTableSpecsRequest) XXX_Unmarshal(b []byte) error
type ListTableSpecsResponse ¶
type ListTableSpecsResponse struct { // The table specs read. TableSpecs []*TableSpec `protobuf:"bytes,1,rep,name=table_specs,json=tableSpecs,proto3" json:"table_specs,omitempty"` // A token to retrieve next page of results. // Pass to [ListTableSpecsRequest.page_token][google.cloud.automl.v1beta1.ListTableSpecsRequest.page_token] to obtain that page. NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Response message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].
func (*ListTableSpecsResponse) Descriptor ¶
func (*ListTableSpecsResponse) Descriptor() ([]byte, []int)
func (*ListTableSpecsResponse) GetNextPageToken ¶
func (m *ListTableSpecsResponse) GetNextPageToken() string
func (*ListTableSpecsResponse) GetTableSpecs ¶
func (m *ListTableSpecsResponse) GetTableSpecs() []*TableSpec
func (*ListTableSpecsResponse) ProtoMessage ¶
func (*ListTableSpecsResponse) ProtoMessage()
func (*ListTableSpecsResponse) Reset ¶
func (m *ListTableSpecsResponse) Reset()
func (*ListTableSpecsResponse) String ¶
func (m *ListTableSpecsResponse) String() string
func (*ListTableSpecsResponse) XXX_DiscardUnknown ¶
func (m *ListTableSpecsResponse) XXX_DiscardUnknown()
func (*ListTableSpecsResponse) XXX_Marshal ¶
func (m *ListTableSpecsResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ListTableSpecsResponse) XXX_Merge ¶
func (m *ListTableSpecsResponse) XXX_Merge(src proto.Message)
func (*ListTableSpecsResponse) XXX_Size ¶
func (m *ListTableSpecsResponse) XXX_Size() int
func (*ListTableSpecsResponse) XXX_Unmarshal ¶
func (m *ListTableSpecsResponse) XXX_Unmarshal(b []byte) error
type Model ¶
type Model struct { // Required. // The model metadata that is specific to the problem type. // Must match the metadata type of the dataset used to train the model. // // Types that are valid to be assigned to ModelMetadata: // *Model_TranslationModelMetadata // *Model_ImageClassificationModelMetadata // *Model_TextClassificationModelMetadata // *Model_ImageObjectDetectionModelMetadata // *Model_VideoClassificationModelMetadata // *Model_VideoObjectTrackingModelMetadata // *Model_TextExtractionModelMetadata // *Model_TablesModelMetadata // *Model_TextSentimentModelMetadata ModelMetadata isModel_ModelMetadata `protobuf_oneof:"model_metadata"` // Output only. Resource name of the model. // Format: `projects/{project_id}/locations/{location_id}/models/{model_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. The name of the model to show in the interface. The name can be // up to 32 characters long and can consist only of ASCII Latin letters A-Z // and a-z, underscores // (_), and ASCII digits 0-9. It must start with a letter. DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Required. The resource ID of the dataset used to create the model. The dataset must // come from the same ancestor project and location. DatasetId string `protobuf:"bytes,3,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"` // Output only. Timestamp when the model training finished and can be used for prediction. CreateTime *timestamp.Timestamp `protobuf:"bytes,7,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"` // Output only. Timestamp when this model was last updated. UpdateTime *timestamp.Timestamp `protobuf:"bytes,11,opt,name=update_time,json=updateTime,proto3" json:"update_time,omitempty"` // Output only. Deployment state of the model. A model can only serve // prediction requests after it gets deployed. DeploymentState Model_DeploymentState `` /* 162-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
API proto representing a trained machine learning model.
func (*Model) Descriptor ¶
func (*Model) GetCreateTime ¶
func (*Model) GetDatasetId ¶
func (*Model) GetDeploymentState ¶
func (m *Model) GetDeploymentState() Model_DeploymentState
func (*Model) GetDisplayName ¶
func (*Model) GetImageClassificationModelMetadata ¶
func (m *Model) GetImageClassificationModelMetadata() *ImageClassificationModelMetadata
func (*Model) GetImageObjectDetectionModelMetadata ¶
func (m *Model) GetImageObjectDetectionModelMetadata() *ImageObjectDetectionModelMetadata
func (*Model) GetModelMetadata ¶
func (m *Model) GetModelMetadata() isModel_ModelMetadata
func (*Model) GetTablesModelMetadata ¶
func (m *Model) GetTablesModelMetadata() *TablesModelMetadata
func (*Model) GetTextClassificationModelMetadata ¶
func (m *Model) GetTextClassificationModelMetadata() *TextClassificationModelMetadata
func (*Model) GetTextExtractionModelMetadata ¶
func (m *Model) GetTextExtractionModelMetadata() *TextExtractionModelMetadata
func (*Model) GetTextSentimentModelMetadata ¶
func (m *Model) GetTextSentimentModelMetadata() *TextSentimentModelMetadata
func (*Model) GetTranslationModelMetadata ¶
func (m *Model) GetTranslationModelMetadata() *TranslationModelMetadata
func (*Model) GetUpdateTime ¶
func (*Model) GetVideoClassificationModelMetadata ¶
func (m *Model) GetVideoClassificationModelMetadata() *VideoClassificationModelMetadata
func (*Model) GetVideoObjectTrackingModelMetadata ¶
func (m *Model) GetVideoObjectTrackingModelMetadata() *VideoObjectTrackingModelMetadata
func (*Model) ProtoMessage ¶
func (*Model) ProtoMessage()
func (*Model) XXX_DiscardUnknown ¶
func (m *Model) XXX_DiscardUnknown()
func (*Model) XXX_Marshal ¶
func (*Model) XXX_OneofWrappers ¶
func (*Model) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*Model) XXX_Unmarshal ¶
type ModelEvaluation ¶
type ModelEvaluation struct { // Output only. Problem type specific evaluation metrics. // // Types that are valid to be assigned to Metrics: // *ModelEvaluation_ClassificationEvaluationMetrics // *ModelEvaluation_RegressionEvaluationMetrics // *ModelEvaluation_TranslationEvaluationMetrics // *ModelEvaluation_ImageObjectDetectionEvaluationMetrics // *ModelEvaluation_VideoObjectTrackingEvaluationMetrics // *ModelEvaluation_TextSentimentEvaluationMetrics // *ModelEvaluation_TextExtractionEvaluationMetrics Metrics isModelEvaluation_Metrics `protobuf_oneof:"metrics"` // Output only. Resource name of the model evaluation. // Format: // // `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Output only. The ID of the annotation spec that the model evaluation applies to. The // The ID is empty for the overall model evaluation. // For Tables annotation specs in the dataset do not exist and this ID is // always not set, but for CLASSIFICATION // // [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] // the // [display_name][google.cloud.automl.v1beta1.ModelEvaluation.display_name] // field is used. AnnotationSpecId string `protobuf:"bytes,2,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // Output only. The value of // [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] at // the moment when the model was trained. Because this field returns a value // at model training time, for different models trained from the same dataset, // the values may differ, since display names could had been changed between // the two model's trainings. // For Tables CLASSIFICATION // // [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type] // distinct values of the target column at the moment of the model evaluation // are populated here. // The display_name is empty for the overall model evaluation. DisplayName string `protobuf:"bytes,15,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"` // Output only. Timestamp when this model evaluation was created. CreateTime *timestamp.Timestamp `protobuf:"bytes,5,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"` // Output only. The number of examples used for model evaluation, i.e. for // which ground truth from time of model creation is compared against the // predicted annotations created by the model. // For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is // the total number of all examples used for evaluation. // Otherwise, this is the count of examples that according to the ground // truth were annotated by the // // [annotation_spec_id][google.cloud.automl.v1beta1.ModelEvaluation.annotation_spec_id]. EvaluatedExampleCount int32 `` /* 127-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Evaluation results of a model.
func (*ModelEvaluation) Descriptor ¶
func (*ModelEvaluation) Descriptor() ([]byte, []int)
func (*ModelEvaluation) GetAnnotationSpecId ¶
func (m *ModelEvaluation) GetAnnotationSpecId() string
func (*ModelEvaluation) GetClassificationEvaluationMetrics ¶
func (m *ModelEvaluation) GetClassificationEvaluationMetrics() *ClassificationEvaluationMetrics
func (*ModelEvaluation) GetCreateTime ¶
func (m *ModelEvaluation) GetCreateTime() *timestamp.Timestamp
func (*ModelEvaluation) GetDisplayName ¶
func (m *ModelEvaluation) GetDisplayName() string
func (*ModelEvaluation) GetEvaluatedExampleCount ¶
func (m *ModelEvaluation) GetEvaluatedExampleCount() int32
func (*ModelEvaluation) GetImageObjectDetectionEvaluationMetrics ¶
func (m *ModelEvaluation) GetImageObjectDetectionEvaluationMetrics() *ImageObjectDetectionEvaluationMetrics
func (*ModelEvaluation) GetMetrics ¶
func (m *ModelEvaluation) GetMetrics() isModelEvaluation_Metrics
func (*ModelEvaluation) GetName ¶
func (m *ModelEvaluation) GetName() string
func (*ModelEvaluation) GetRegressionEvaluationMetrics ¶
func (m *ModelEvaluation) GetRegressionEvaluationMetrics() *RegressionEvaluationMetrics
func (*ModelEvaluation) GetTextExtractionEvaluationMetrics ¶
func (m *ModelEvaluation) GetTextExtractionEvaluationMetrics() *TextExtractionEvaluationMetrics
func (*ModelEvaluation) GetTextSentimentEvaluationMetrics ¶
func (m *ModelEvaluation) GetTextSentimentEvaluationMetrics() *TextSentimentEvaluationMetrics
func (*ModelEvaluation) GetTranslationEvaluationMetrics ¶
func (m *ModelEvaluation) GetTranslationEvaluationMetrics() *TranslationEvaluationMetrics
func (*ModelEvaluation) GetVideoObjectTrackingEvaluationMetrics ¶
func (m *ModelEvaluation) GetVideoObjectTrackingEvaluationMetrics() *VideoObjectTrackingEvaluationMetrics
func (*ModelEvaluation) ProtoMessage ¶
func (*ModelEvaluation) ProtoMessage()
func (*ModelEvaluation) Reset ¶
func (m *ModelEvaluation) Reset()
func (*ModelEvaluation) String ¶
func (m *ModelEvaluation) String() string
func (*ModelEvaluation) XXX_DiscardUnknown ¶
func (m *ModelEvaluation) XXX_DiscardUnknown()
func (*ModelEvaluation) XXX_Marshal ¶
func (m *ModelEvaluation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ModelEvaluation) XXX_Merge ¶
func (m *ModelEvaluation) XXX_Merge(src proto.Message)
func (*ModelEvaluation) XXX_OneofWrappers ¶
func (*ModelEvaluation) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*ModelEvaluation) XXX_Size ¶
func (m *ModelEvaluation) XXX_Size() int
func (*ModelEvaluation) XXX_Unmarshal ¶
func (m *ModelEvaluation) XXX_Unmarshal(b []byte) error
type ModelEvaluation_ClassificationEvaluationMetrics ¶
type ModelEvaluation_ClassificationEvaluationMetrics struct {
ClassificationEvaluationMetrics *ClassificationEvaluationMetrics `protobuf:"bytes,8,opt,name=classification_evaluation_metrics,json=classificationEvaluationMetrics,proto3,oneof"`
}
type ModelEvaluation_ImageObjectDetectionEvaluationMetrics ¶
type ModelEvaluation_ImageObjectDetectionEvaluationMetrics struct {
ImageObjectDetectionEvaluationMetrics *ImageObjectDetectionEvaluationMetrics `` /* 126-byte string literal not displayed */
}
type ModelEvaluation_RegressionEvaluationMetrics ¶
type ModelEvaluation_RegressionEvaluationMetrics struct {
RegressionEvaluationMetrics *RegressionEvaluationMetrics `protobuf:"bytes,24,opt,name=regression_evaluation_metrics,json=regressionEvaluationMetrics,proto3,oneof"`
}
type ModelEvaluation_TextExtractionEvaluationMetrics ¶
type ModelEvaluation_TextExtractionEvaluationMetrics struct {
TextExtractionEvaluationMetrics *TextExtractionEvaluationMetrics `protobuf:"bytes,13,opt,name=text_extraction_evaluation_metrics,json=textExtractionEvaluationMetrics,proto3,oneof"`
}
type ModelEvaluation_TextSentimentEvaluationMetrics ¶
type ModelEvaluation_TextSentimentEvaluationMetrics struct {
TextSentimentEvaluationMetrics *TextSentimentEvaluationMetrics `protobuf:"bytes,11,opt,name=text_sentiment_evaluation_metrics,json=textSentimentEvaluationMetrics,proto3,oneof"`
}
type ModelEvaluation_TranslationEvaluationMetrics ¶
type ModelEvaluation_TranslationEvaluationMetrics struct {
TranslationEvaluationMetrics *TranslationEvaluationMetrics `protobuf:"bytes,9,opt,name=translation_evaluation_metrics,json=translationEvaluationMetrics,proto3,oneof"`
}
type ModelEvaluation_VideoObjectTrackingEvaluationMetrics ¶
type ModelEvaluation_VideoObjectTrackingEvaluationMetrics struct {
VideoObjectTrackingEvaluationMetrics *VideoObjectTrackingEvaluationMetrics `protobuf:"bytes,14,opt,name=video_object_tracking_evaluation_metrics,json=videoObjectTrackingEvaluationMetrics,proto3,oneof"`
}
type ModelExportOutputConfig ¶
type ModelExportOutputConfig struct { // Required. The destination of the output. // // Types that are valid to be assigned to Destination: // *ModelExportOutputConfig_GcsDestination // *ModelExportOutputConfig_GcrDestination Destination isModelExportOutputConfig_Destination `protobuf_oneof:"destination"` // The format in which the model must be exported. The available, and default, // formats depend on the problem and model type (if given problem and type // combination doesn't have a format listed, it means its models are not // exportable): // // * For Image Classification mobile-low-latency-1, mobile-versatile-1, // mobile-high-accuracy-1: // "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", // "docker". // // * For Image Classification mobile-core-ml-low-latency-1, // mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: // "core_ml" (default). // Formats description: // // * tflite - Used for Android mobile devices. // * edgetpu_tflite - Used for [Edge TPU](https://cloud.google.com/edge-tpu/) // devices. // * tf_saved_model - A tensorflow model in SavedModel format. // * tf_js - A [TensorFlow.js](https://www.tensorflow.org/js) model that can // be used in the browser and in Node.js using JavaScript. // * docker - Used for Docker containers. Use the params field to customize // the container. The container is verified to work correctly on // ubuntu 16.04 operating system. See more at // [containers // // quickstart](https: // //cloud.google.com/vision/automl/docs/containers-gcs-quickstart) // * core_ml - Used for iOS mobile devices. ModelFormat string `protobuf:"bytes,4,opt,name=model_format,json=modelFormat,proto3" json:"model_format,omitempty"` // Additional model-type and format specific parameters describing the // requirements for the to be exported model files, any string must be up to // 25000 characters long. // // * For `docker` format: // `cpu_architecture` - (string) "x86_64" (default). // `gpu_architecture` - (string) "none" (default), "nvidia". Params map[string]string `` /* 153-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Output configuration for ModelExport Action.
func (*ModelExportOutputConfig) Descriptor ¶
func (*ModelExportOutputConfig) Descriptor() ([]byte, []int)
func (*ModelExportOutputConfig) GetDestination ¶
func (m *ModelExportOutputConfig) GetDestination() isModelExportOutputConfig_Destination
func (*ModelExportOutputConfig) GetGcrDestination ¶
func (m *ModelExportOutputConfig) GetGcrDestination() *GcrDestination
func (*ModelExportOutputConfig) GetGcsDestination ¶
func (m *ModelExportOutputConfig) GetGcsDestination() *GcsDestination
func (*ModelExportOutputConfig) GetModelFormat ¶
func (m *ModelExportOutputConfig) GetModelFormat() string
func (*ModelExportOutputConfig) GetParams ¶
func (m *ModelExportOutputConfig) GetParams() map[string]string
func (*ModelExportOutputConfig) ProtoMessage ¶
func (*ModelExportOutputConfig) ProtoMessage()
func (*ModelExportOutputConfig) Reset ¶
func (m *ModelExportOutputConfig) Reset()
func (*ModelExportOutputConfig) String ¶
func (m *ModelExportOutputConfig) String() string
func (*ModelExportOutputConfig) XXX_DiscardUnknown ¶
func (m *ModelExportOutputConfig) XXX_DiscardUnknown()
func (*ModelExportOutputConfig) XXX_Marshal ¶
func (m *ModelExportOutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*ModelExportOutputConfig) XXX_Merge ¶
func (m *ModelExportOutputConfig) XXX_Merge(src proto.Message)
func (*ModelExportOutputConfig) XXX_OneofWrappers ¶
func (*ModelExportOutputConfig) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*ModelExportOutputConfig) XXX_Size ¶
func (m *ModelExportOutputConfig) XXX_Size() int
func (*ModelExportOutputConfig) XXX_Unmarshal ¶
func (m *ModelExportOutputConfig) XXX_Unmarshal(b []byte) error
type ModelExportOutputConfig_GcrDestination ¶
type ModelExportOutputConfig_GcrDestination struct {
GcrDestination *GcrDestination `protobuf:"bytes,3,opt,name=gcr_destination,json=gcrDestination,proto3,oneof"`
}
type ModelExportOutputConfig_GcsDestination ¶
type ModelExportOutputConfig_GcsDestination struct {
GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}
type Model_DeploymentState ¶
type Model_DeploymentState int32
Deployment state of the model.
const ( // Should not be used, an un-set enum has this value by default. Model_DEPLOYMENT_STATE_UNSPECIFIED Model_DeploymentState = 0 // Model is deployed. Model_DEPLOYED Model_DeploymentState = 1 // Model is not deployed. Model_UNDEPLOYED Model_DeploymentState = 2 )
func (Model_DeploymentState) EnumDescriptor ¶
func (Model_DeploymentState) EnumDescriptor() ([]byte, []int)
func (Model_DeploymentState) String ¶
func (x Model_DeploymentState) String() string
type Model_ImageClassificationModelMetadata ¶
type Model_ImageClassificationModelMetadata struct {
ImageClassificationModelMetadata *ImageClassificationModelMetadata `protobuf:"bytes,13,opt,name=image_classification_model_metadata,json=imageClassificationModelMetadata,proto3,oneof"`
}
type Model_ImageObjectDetectionModelMetadata ¶
type Model_ImageObjectDetectionModelMetadata struct {
ImageObjectDetectionModelMetadata *ImageObjectDetectionModelMetadata `protobuf:"bytes,20,opt,name=image_object_detection_model_metadata,json=imageObjectDetectionModelMetadata,proto3,oneof"`
}
type Model_TablesModelMetadata ¶
type Model_TablesModelMetadata struct {
TablesModelMetadata *TablesModelMetadata `protobuf:"bytes,24,opt,name=tables_model_metadata,json=tablesModelMetadata,proto3,oneof"`
}
type Model_TextClassificationModelMetadata ¶
type Model_TextClassificationModelMetadata struct {
TextClassificationModelMetadata *TextClassificationModelMetadata `protobuf:"bytes,14,opt,name=text_classification_model_metadata,json=textClassificationModelMetadata,proto3,oneof"`
}
type Model_TextExtractionModelMetadata ¶
type Model_TextExtractionModelMetadata struct {
TextExtractionModelMetadata *TextExtractionModelMetadata `protobuf:"bytes,19,opt,name=text_extraction_model_metadata,json=textExtractionModelMetadata,proto3,oneof"`
}
type Model_TextSentimentModelMetadata ¶
type Model_TextSentimentModelMetadata struct {
TextSentimentModelMetadata *TextSentimentModelMetadata `protobuf:"bytes,22,opt,name=text_sentiment_model_metadata,json=textSentimentModelMetadata,proto3,oneof"`
}
type Model_TranslationModelMetadata ¶
type Model_TranslationModelMetadata struct {
TranslationModelMetadata *TranslationModelMetadata `protobuf:"bytes,15,opt,name=translation_model_metadata,json=translationModelMetadata,proto3,oneof"`
}
type Model_VideoClassificationModelMetadata ¶
type Model_VideoClassificationModelMetadata struct {
VideoClassificationModelMetadata *VideoClassificationModelMetadata `protobuf:"bytes,23,opt,name=video_classification_model_metadata,json=videoClassificationModelMetadata,proto3,oneof"`
}
type Model_VideoObjectTrackingModelMetadata ¶
type Model_VideoObjectTrackingModelMetadata struct {
VideoObjectTrackingModelMetadata *VideoObjectTrackingModelMetadata `protobuf:"bytes,21,opt,name=video_object_tracking_model_metadata,json=videoObjectTrackingModelMetadata,proto3,oneof"`
}
type NormalizedVertex ¶
type NormalizedVertex struct { // Required. Horizontal coordinate. X float32 `protobuf:"fixed32,1,opt,name=x,proto3" json:"x,omitempty"` // Required. Vertical coordinate. Y float32 `protobuf:"fixed32,2,opt,name=y,proto3" json:"y,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.
func (*NormalizedVertex) Descriptor ¶
func (*NormalizedVertex) Descriptor() ([]byte, []int)
func (*NormalizedVertex) GetX ¶
func (m *NormalizedVertex) GetX() float32
func (*NormalizedVertex) GetY ¶
func (m *NormalizedVertex) GetY() float32
func (*NormalizedVertex) ProtoMessage ¶
func (*NormalizedVertex) ProtoMessage()
func (*NormalizedVertex) Reset ¶
func (m *NormalizedVertex) Reset()
func (*NormalizedVertex) String ¶
func (m *NormalizedVertex) String() string
func (*NormalizedVertex) XXX_DiscardUnknown ¶
func (m *NormalizedVertex) XXX_DiscardUnknown()
func (*NormalizedVertex) XXX_Marshal ¶
func (m *NormalizedVertex) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*NormalizedVertex) XXX_Merge ¶
func (m *NormalizedVertex) XXX_Merge(src proto.Message)
func (*NormalizedVertex) XXX_Size ¶
func (m *NormalizedVertex) XXX_Size() int
func (*NormalizedVertex) XXX_Unmarshal ¶
func (m *NormalizedVertex) XXX_Unmarshal(b []byte) error
type OperationMetadata ¶
type OperationMetadata struct { // Ouptut only. Details of specific operation. Even if this field is empty, // the presence allows to distinguish different types of operations. // // Types that are valid to be assigned to Details: // *OperationMetadata_DeleteDetails // *OperationMetadata_DeployModelDetails // *OperationMetadata_UndeployModelDetails // *OperationMetadata_CreateModelDetails // *OperationMetadata_ImportDataDetails // *OperationMetadata_BatchPredictDetails // *OperationMetadata_ExportDataDetails // *OperationMetadata_ExportModelDetails // *OperationMetadata_ExportEvaluatedExamplesDetails Details isOperationMetadata_Details `protobuf_oneof:"details"` // Output only. Progress of operation. Range: [0, 100]. // Not used currently. ProgressPercent int32 `protobuf:"varint,13,opt,name=progress_percent,json=progressPercent,proto3" json:"progress_percent,omitempty"` // Output only. Partial failures encountered. // E.g. single files that couldn't be read. // This field should never exceed 20 entries. // Status details field will contain standard GCP error details. PartialFailures []*status.Status `protobuf:"bytes,2,rep,name=partial_failures,json=partialFailures,proto3" json:"partial_failures,omitempty"` // Output only. Time when the operation was created. CreateTime *timestamp.Timestamp `protobuf:"bytes,3,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"` // Output only. Time when the operation was updated for the last time. UpdateTime *timestamp.Timestamp `protobuf:"bytes,4,opt,name=update_time,json=updateTime,proto3" json:"update_time,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Metadata used across all long running operations returned by AutoML API.
func (*OperationMetadata) Descriptor ¶
func (*OperationMetadata) Descriptor() ([]byte, []int)
func (*OperationMetadata) GetBatchPredictDetails ¶
func (m *OperationMetadata) GetBatchPredictDetails() *BatchPredictOperationMetadata
func (*OperationMetadata) GetCreateModelDetails ¶
func (m *OperationMetadata) GetCreateModelDetails() *CreateModelOperationMetadata
func (*OperationMetadata) GetCreateTime ¶
func (m *OperationMetadata) GetCreateTime() *timestamp.Timestamp
func (*OperationMetadata) GetDeleteDetails ¶
func (m *OperationMetadata) GetDeleteDetails() *DeleteOperationMetadata
func (*OperationMetadata) GetDeployModelDetails ¶
func (m *OperationMetadata) GetDeployModelDetails() *DeployModelOperationMetadata
func (*OperationMetadata) GetDetails ¶
func (m *OperationMetadata) GetDetails() isOperationMetadata_Details
func (*OperationMetadata) GetExportDataDetails ¶
func (m *OperationMetadata) GetExportDataDetails() *ExportDataOperationMetadata
func (*OperationMetadata) GetExportEvaluatedExamplesDetails ¶
func (m *OperationMetadata) GetExportEvaluatedExamplesDetails() *ExportEvaluatedExamplesOperationMetadata
func (*OperationMetadata) GetExportModelDetails ¶
func (m *OperationMetadata) GetExportModelDetails() *ExportModelOperationMetadata
func (*OperationMetadata) GetImportDataDetails ¶
func (m *OperationMetadata) GetImportDataDetails() *ImportDataOperationMetadata
func (*OperationMetadata) GetPartialFailures ¶
func (m *OperationMetadata) GetPartialFailures() []*status.Status
func (*OperationMetadata) GetProgressPercent ¶
func (m *OperationMetadata) GetProgressPercent() int32
func (*OperationMetadata) GetUndeployModelDetails ¶
func (m *OperationMetadata) GetUndeployModelDetails() *UndeployModelOperationMetadata
func (*OperationMetadata) GetUpdateTime ¶
func (m *OperationMetadata) GetUpdateTime() *timestamp.Timestamp
func (*OperationMetadata) ProtoMessage ¶
func (*OperationMetadata) ProtoMessage()
func (*OperationMetadata) Reset ¶
func (m *OperationMetadata) Reset()
func (*OperationMetadata) String ¶
func (m *OperationMetadata) String() string
func (*OperationMetadata) XXX_DiscardUnknown ¶
func (m *OperationMetadata) XXX_DiscardUnknown()
func (*OperationMetadata) XXX_Marshal ¶
func (m *OperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*OperationMetadata) XXX_Merge ¶
func (m *OperationMetadata) XXX_Merge(src proto.Message)
func (*OperationMetadata) XXX_OneofWrappers ¶
func (*OperationMetadata) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*OperationMetadata) XXX_Size ¶
func (m *OperationMetadata) XXX_Size() int
func (*OperationMetadata) XXX_Unmarshal ¶
func (m *OperationMetadata) XXX_Unmarshal(b []byte) error
type OperationMetadata_BatchPredictDetails ¶
type OperationMetadata_BatchPredictDetails struct {
BatchPredictDetails *BatchPredictOperationMetadata `protobuf:"bytes,16,opt,name=batch_predict_details,json=batchPredictDetails,proto3,oneof"`
}
type OperationMetadata_CreateModelDetails ¶
type OperationMetadata_CreateModelDetails struct {
CreateModelDetails *CreateModelOperationMetadata `protobuf:"bytes,10,opt,name=create_model_details,json=createModelDetails,proto3,oneof"`
}
type OperationMetadata_DeleteDetails ¶
type OperationMetadata_DeleteDetails struct {
DeleteDetails *DeleteOperationMetadata `protobuf:"bytes,8,opt,name=delete_details,json=deleteDetails,proto3,oneof"`
}
type OperationMetadata_DeployModelDetails ¶
type OperationMetadata_DeployModelDetails struct {
DeployModelDetails *DeployModelOperationMetadata `protobuf:"bytes,24,opt,name=deploy_model_details,json=deployModelDetails,proto3,oneof"`
}
type OperationMetadata_ExportDataDetails ¶
type OperationMetadata_ExportDataDetails struct {
ExportDataDetails *ExportDataOperationMetadata `protobuf:"bytes,21,opt,name=export_data_details,json=exportDataDetails,proto3,oneof"`
}
type OperationMetadata_ExportEvaluatedExamplesDetails ¶
type OperationMetadata_ExportEvaluatedExamplesDetails struct {
ExportEvaluatedExamplesDetails *ExportEvaluatedExamplesOperationMetadata `protobuf:"bytes,26,opt,name=export_evaluated_examples_details,json=exportEvaluatedExamplesDetails,proto3,oneof"`
}
type OperationMetadata_ExportModelDetails ¶
type OperationMetadata_ExportModelDetails struct {
ExportModelDetails *ExportModelOperationMetadata `protobuf:"bytes,22,opt,name=export_model_details,json=exportModelDetails,proto3,oneof"`
}
type OperationMetadata_ImportDataDetails ¶
type OperationMetadata_ImportDataDetails struct {
ImportDataDetails *ImportDataOperationMetadata `protobuf:"bytes,15,opt,name=import_data_details,json=importDataDetails,proto3,oneof"`
}
type OperationMetadata_UndeployModelDetails ¶
type OperationMetadata_UndeployModelDetails struct {
UndeployModelDetails *UndeployModelOperationMetadata `protobuf:"bytes,25,opt,name=undeploy_model_details,json=undeployModelDetails,proto3,oneof"`
}
type OutputConfig ¶
type OutputConfig struct { // Required. The destination of the output. // // Types that are valid to be assigned to Destination: // *OutputConfig_GcsDestination // *OutputConfig_BigqueryDestination Destination isOutputConfig_Destination `protobuf_oneof:"destination"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
For Translation: CSV file `translation.csv`, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language)
For Tables: Output depends on whether the dataset was imported from GCS or BigQuery. GCS case:
[gcs_destination][google.cloud.automl.v1beta1.OutputConfig.gcs_destination]
must be set. Exported are CSV file(s) `tables_1.csv`, `tables_2.csv`,...,`tables_N.csv` with each having as header line the table's column names, and all other lines contain values for the header columns. BigQuery case:
[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
pointing to a BigQuery project must be set. In the given project a new dataset will be created with name
`export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`
where <automl-dataset-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that dataset a new table called `primary_table` will be created, and filled with precisely the same data as this obtained on import.
func (*OutputConfig) Descriptor ¶
func (*OutputConfig) Descriptor() ([]byte, []int)
func (*OutputConfig) GetBigqueryDestination ¶
func (m *OutputConfig) GetBigqueryDestination() *BigQueryDestination
func (*OutputConfig) GetDestination ¶
func (m *OutputConfig) GetDestination() isOutputConfig_Destination
func (*OutputConfig) GetGcsDestination ¶
func (m *OutputConfig) GetGcsDestination() *GcsDestination
func (*OutputConfig) ProtoMessage ¶
func (*OutputConfig) ProtoMessage()
func (*OutputConfig) Reset ¶
func (m *OutputConfig) Reset()
func (*OutputConfig) String ¶
func (m *OutputConfig) String() string
func (*OutputConfig) XXX_DiscardUnknown ¶
func (m *OutputConfig) XXX_DiscardUnknown()
func (*OutputConfig) XXX_Marshal ¶
func (m *OutputConfig) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*OutputConfig) XXX_Merge ¶
func (m *OutputConfig) XXX_Merge(src proto.Message)
func (*OutputConfig) XXX_OneofWrappers ¶
func (*OutputConfig) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*OutputConfig) XXX_Size ¶
func (m *OutputConfig) XXX_Size() int
func (*OutputConfig) XXX_Unmarshal ¶
func (m *OutputConfig) XXX_Unmarshal(b []byte) error
type OutputConfig_BigqueryDestination ¶
type OutputConfig_BigqueryDestination struct {
BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}
type OutputConfig_GcsDestination ¶
type OutputConfig_GcsDestination struct {
GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}
type PredictRequest ¶
type PredictRequest struct { // Required. Name of the model requested to serve the prediction. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // Required. Payload to perform a prediction on. The payload must match the // problem type that the model was trained to solve. Payload *ExamplePayload `protobuf:"bytes,2,opt,name=payload,proto3" json:"payload,omitempty"` // Additional domain-specific parameters, any string must be up to 25000 // characters long. // // * For Image Classification: // // `score_threshold` - (float) A value from 0.0 to 1.0. When the model // makes predictions for an image, it will only produce results that have // at least this confidence score. The default is 0.5. // // * For Image Object Detection: // `score_threshold` - (float) When Model detects objects on the image, // it will only produce bounding boxes which have at least this // confidence score. Value in 0 to 1 range, default is 0.5. // `max_bounding_box_count` - (int64) No more than this number of bounding // boxes will be returned in the response. Default is 100, the // requested value may be limited by server. // * For Tables: // feature_imp<span>ortan</span>ce - (boolean) Whether feature importance // should be populated in the returned TablesAnnotation. // The default is false. Params map[string]string `` /* 153-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
func (*PredictRequest) Descriptor ¶
func (*PredictRequest) Descriptor() ([]byte, []int)
func (*PredictRequest) GetName ¶
func (m *PredictRequest) GetName() string
func (*PredictRequest) GetParams ¶
func (m *PredictRequest) GetParams() map[string]string
func (*PredictRequest) GetPayload ¶
func (m *PredictRequest) GetPayload() *ExamplePayload
func (*PredictRequest) ProtoMessage ¶
func (*PredictRequest) ProtoMessage()
func (*PredictRequest) Reset ¶
func (m *PredictRequest) Reset()
func (*PredictRequest) String ¶
func (m *PredictRequest) String() string
func (*PredictRequest) XXX_DiscardUnknown ¶
func (m *PredictRequest) XXX_DiscardUnknown()
func (*PredictRequest) XXX_Marshal ¶
func (m *PredictRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*PredictRequest) XXX_Merge ¶
func (m *PredictRequest) XXX_Merge(src proto.Message)
func (*PredictRequest) XXX_Size ¶
func (m *PredictRequest) XXX_Size() int
func (*PredictRequest) XXX_Unmarshal ¶
func (m *PredictRequest) XXX_Unmarshal(b []byte) error
type PredictResponse ¶
type PredictResponse struct { // Prediction result. // Translation and Text Sentiment will return precisely one payload. Payload []*AnnotationPayload `protobuf:"bytes,1,rep,name=payload,proto3" json:"payload,omitempty"` // The preprocessed example that AutoML actually makes prediction on. // Empty if AutoML does not preprocess the input example. // * For Text Extraction: // If the input is a .pdf file, the OCR'ed text will be provided in // [document_text][google.cloud.automl.v1beta1.Document.document_text]. PreprocessedInput *ExamplePayload `protobuf:"bytes,3,opt,name=preprocessed_input,json=preprocessedInput,proto3" json:"preprocessed_input,omitempty"` // Additional domain-specific prediction response metadata. // // * For Image Object Detection: // `max_bounding_box_count` - (int64) At most that many bounding boxes per // image could have been returned. // // * For Text Sentiment: // `sentiment_score` - (float, deprecated) A value between -1 and 1, // -1 maps to least positive sentiment, while 1 maps to the most positive // one and the higher the score, the more positive the sentiment in the // document is. Yet these values are relative to the training data, so // e.g. if all data was positive then -1 will be also positive (though // the least). // The sentiment_score shouldn't be confused with "score" or "magnitude" // from the previous Natural Language Sentiment Analysis API. Metadata map[string]string `` /* 157-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
func (*PredictResponse) Descriptor ¶
func (*PredictResponse) Descriptor() ([]byte, []int)
func (*PredictResponse) GetMetadata ¶
func (m *PredictResponse) GetMetadata() map[string]string
func (*PredictResponse) GetPayload ¶
func (m *PredictResponse) GetPayload() []*AnnotationPayload
func (*PredictResponse) GetPreprocessedInput ¶
func (m *PredictResponse) GetPreprocessedInput() *ExamplePayload
func (*PredictResponse) ProtoMessage ¶
func (*PredictResponse) ProtoMessage()
func (*PredictResponse) Reset ¶
func (m *PredictResponse) Reset()
func (*PredictResponse) String ¶
func (m *PredictResponse) String() string
func (*PredictResponse) XXX_DiscardUnknown ¶
func (m *PredictResponse) XXX_DiscardUnknown()
func (*PredictResponse) XXX_Marshal ¶
func (m *PredictResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*PredictResponse) XXX_Merge ¶
func (m *PredictResponse) XXX_Merge(src proto.Message)
func (*PredictResponse) XXX_Size ¶
func (m *PredictResponse) XXX_Size() int
func (*PredictResponse) XXX_Unmarshal ¶
func (m *PredictResponse) XXX_Unmarshal(b []byte) error
type PredictionServiceClient ¶
type PredictionServiceClient interface { // Perform an online prediction. The prediction result will be directly // returned in the response. // Available for following ML problems, and their expected request payloads: // * Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes // up to 30MB. // * Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes // up to 30MB. // * Text Classification - TextSnippet, content up to 60,000 characters, // UTF-8 encoded. // * Text Extraction - TextSnippet, content up to 30,000 characters, // UTF-8 NFC encoded. // * Translation - TextSnippet, content up to 25,000 characters, UTF-8 // encoded. // * Tables - Row, with column values matching the columns of the model, // up to 5MB. Not available for FORECASTING // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]. // * Text Sentiment - TextSnippet, content up 500 characters, UTF-8 // encoded. Predict(ctx context.Context, in *PredictRequest, opts ...grpc.CallOption) (*PredictResponse, error) // Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1beta1.PredictionService.Predict], batch // prediction result won't be immediately available in the response. Instead, // a long running operation object is returned. User can poll the operation // result via [GetOperation][google.longrunning.Operations.GetOperation] // method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1beta1.BatchPredictResult] is returned in // the [response][google.longrunning.Operation.response] field. // Available for following ML problems: // * Image Classification // * Image Object Detection // * Video Classification // * Video Object Tracking * Text Extraction // * Tables BatchPredict(ctx context.Context, in *BatchPredictRequest, opts ...grpc.CallOption) (*longrunning.Operation, error) }
PredictionServiceClient is the client API for PredictionService service.
For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
func NewPredictionServiceClient ¶
func NewPredictionServiceClient(cc grpc.ClientConnInterface) PredictionServiceClient
type PredictionServiceServer ¶
type PredictionServiceServer interface { // Perform an online prediction. The prediction result will be directly // returned in the response. // Available for following ML problems, and their expected request payloads: // * Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes // up to 30MB. // * Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes // up to 30MB. // * Text Classification - TextSnippet, content up to 60,000 characters, // UTF-8 encoded. // * Text Extraction - TextSnippet, content up to 30,000 characters, // UTF-8 NFC encoded. // * Translation - TextSnippet, content up to 25,000 characters, UTF-8 // encoded. // * Tables - Row, with column values matching the columns of the model, // up to 5MB. Not available for FORECASTING // // [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]. // * Text Sentiment - TextSnippet, content up 500 characters, UTF-8 // encoded. Predict(context.Context, *PredictRequest) (*PredictResponse, error) // Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1beta1.PredictionService.Predict], batch // prediction result won't be immediately available in the response. Instead, // a long running operation object is returned. User can poll the operation // result via [GetOperation][google.longrunning.Operations.GetOperation] // method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1beta1.BatchPredictResult] is returned in // the [response][google.longrunning.Operation.response] field. // Available for following ML problems: // * Image Classification // * Image Object Detection // * Video Classification // * Video Object Tracking * Text Extraction // * Tables BatchPredict(context.Context, *BatchPredictRequest) (*longrunning.Operation, error) }
PredictionServiceServer is the server API for PredictionService service.
type RegressionEvaluationMetrics ¶
type RegressionEvaluationMetrics struct { // Output only. Root Mean Squared Error (RMSE). RootMeanSquaredError float32 `` /* 127-byte string literal not displayed */ // Output only. Mean Absolute Error (MAE). MeanAbsoluteError float32 `protobuf:"fixed32,2,opt,name=mean_absolute_error,json=meanAbsoluteError,proto3" json:"mean_absolute_error,omitempty"` // Output only. Mean absolute percentage error. Only set if all ground truth // values are are positive. MeanAbsolutePercentageError float32 `` /* 148-byte string literal not displayed */ // Output only. R squared. RSquared float32 `protobuf:"fixed32,4,opt,name=r_squared,json=rSquared,proto3" json:"r_squared,omitempty"` // Output only. Root mean squared log error. RootMeanSquaredLogError float32 `` /* 138-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Metrics for regression problems.
func (*RegressionEvaluationMetrics) Descriptor ¶
func (*RegressionEvaluationMetrics) Descriptor() ([]byte, []int)
func (*RegressionEvaluationMetrics) GetMeanAbsoluteError ¶
func (m *RegressionEvaluationMetrics) GetMeanAbsoluteError() float32
func (*RegressionEvaluationMetrics) GetMeanAbsolutePercentageError ¶
func (m *RegressionEvaluationMetrics) GetMeanAbsolutePercentageError() float32
func (*RegressionEvaluationMetrics) GetRSquared ¶
func (m *RegressionEvaluationMetrics) GetRSquared() float32
func (*RegressionEvaluationMetrics) GetRootMeanSquaredError ¶
func (m *RegressionEvaluationMetrics) GetRootMeanSquaredError() float32
func (*RegressionEvaluationMetrics) GetRootMeanSquaredLogError ¶
func (m *RegressionEvaluationMetrics) GetRootMeanSquaredLogError() float32
func (*RegressionEvaluationMetrics) ProtoMessage ¶
func (*RegressionEvaluationMetrics) ProtoMessage()
func (*RegressionEvaluationMetrics) Reset ¶
func (m *RegressionEvaluationMetrics) Reset()
func (*RegressionEvaluationMetrics) String ¶
func (m *RegressionEvaluationMetrics) String() string
func (*RegressionEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *RegressionEvaluationMetrics) XXX_DiscardUnknown()
func (*RegressionEvaluationMetrics) XXX_Marshal ¶
func (m *RegressionEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*RegressionEvaluationMetrics) XXX_Merge ¶
func (m *RegressionEvaluationMetrics) XXX_Merge(src proto.Message)
func (*RegressionEvaluationMetrics) XXX_Size ¶
func (m *RegressionEvaluationMetrics) XXX_Size() int
func (*RegressionEvaluationMetrics) XXX_Unmarshal ¶
func (m *RegressionEvaluationMetrics) XXX_Unmarshal(b []byte) error
type Row ¶
type Row struct { // The resource IDs of the column specs describing the columns of the row. // If set must contain, but possibly in a different order, all input // feature // // [column_spec_ids][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // of the Model this row is being passed to. // Note: The below `values` field must match order of this field, if this // field is set. ColumnSpecIds []string `protobuf:"bytes,2,rep,name=column_spec_ids,json=columnSpecIds,proto3" json:"column_spec_ids,omitempty"` // Required. The values of the row cells, given in the same order as the // column_spec_ids, or, if not set, then in the same order as input // feature // // [column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // of the Model this row is being passed to. Values []*_struct.Value `protobuf:"bytes,3,rep,name=values,proto3" json:"values,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A representation of a row in a relational table.
func (*Row) Descriptor ¶
func (*Row) GetColumnSpecIds ¶
func (*Row) ProtoMessage ¶
func (*Row) ProtoMessage()
func (*Row) XXX_DiscardUnknown ¶
func (m *Row) XXX_DiscardUnknown()
func (*Row) XXX_Unmarshal ¶
type StringStats ¶
type StringStats struct { // The statistics of the top 20 unigrams, ordered by // [count][google.cloud.automl.v1beta1.StringStats.UnigramStats.count]. TopUnigramStats []*StringStats_UnigramStats `protobuf:"bytes,1,rep,name=top_unigram_stats,json=topUnigramStats,proto3" json:"top_unigram_stats,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of STRING values.
func (*StringStats) Descriptor ¶
func (*StringStats) Descriptor() ([]byte, []int)
func (*StringStats) GetTopUnigramStats ¶
func (m *StringStats) GetTopUnigramStats() []*StringStats_UnigramStats
func (*StringStats) ProtoMessage ¶
func (*StringStats) ProtoMessage()
func (*StringStats) Reset ¶
func (m *StringStats) Reset()
func (*StringStats) String ¶
func (m *StringStats) String() string
func (*StringStats) XXX_DiscardUnknown ¶
func (m *StringStats) XXX_DiscardUnknown()
func (*StringStats) XXX_Marshal ¶
func (m *StringStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*StringStats) XXX_Merge ¶
func (m *StringStats) XXX_Merge(src proto.Message)
func (*StringStats) XXX_Size ¶
func (m *StringStats) XXX_Size() int
func (*StringStats) XXX_Unmarshal ¶
func (m *StringStats) XXX_Unmarshal(b []byte) error
type StringStats_UnigramStats ¶
type StringStats_UnigramStats struct { // The unigram. Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"` // The number of occurrences of this unigram in the series. Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The statistics of a unigram.
func (*StringStats_UnigramStats) Descriptor ¶
func (*StringStats_UnigramStats) Descriptor() ([]byte, []int)
func (*StringStats_UnigramStats) GetCount ¶
func (m *StringStats_UnigramStats) GetCount() int64
func (*StringStats_UnigramStats) GetValue ¶
func (m *StringStats_UnigramStats) GetValue() string
func (*StringStats_UnigramStats) ProtoMessage ¶
func (*StringStats_UnigramStats) ProtoMessage()
func (*StringStats_UnigramStats) Reset ¶
func (m *StringStats_UnigramStats) Reset()
func (*StringStats_UnigramStats) String ¶
func (m *StringStats_UnigramStats) String() string
func (*StringStats_UnigramStats) XXX_DiscardUnknown ¶
func (m *StringStats_UnigramStats) XXX_DiscardUnknown()
func (*StringStats_UnigramStats) XXX_Marshal ¶
func (m *StringStats_UnigramStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*StringStats_UnigramStats) XXX_Merge ¶
func (m *StringStats_UnigramStats) XXX_Merge(src proto.Message)
func (*StringStats_UnigramStats) XXX_Size ¶
func (m *StringStats_UnigramStats) XXX_Size() int
func (*StringStats_UnigramStats) XXX_Unmarshal ¶
func (m *StringStats_UnigramStats) XXX_Unmarshal(b []byte) error
type StructStats ¶
type StructStats struct { // Map from a field name of the struct to data stats aggregated over series // of all data in that field across all the structs. FieldStats map[string]*DataStats `` /* 179-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of STRUCT values.
func (*StructStats) Descriptor ¶
func (*StructStats) Descriptor() ([]byte, []int)
func (*StructStats) GetFieldStats ¶
func (m *StructStats) GetFieldStats() map[string]*DataStats
func (*StructStats) ProtoMessage ¶
func (*StructStats) ProtoMessage()
func (*StructStats) Reset ¶
func (m *StructStats) Reset()
func (*StructStats) String ¶
func (m *StructStats) String() string
func (*StructStats) XXX_DiscardUnknown ¶
func (m *StructStats) XXX_DiscardUnknown()
func (*StructStats) XXX_Marshal ¶
func (m *StructStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*StructStats) XXX_Merge ¶
func (m *StructStats) XXX_Merge(src proto.Message)
func (*StructStats) XXX_Size ¶
func (m *StructStats) XXX_Size() int
func (*StructStats) XXX_Unmarshal ¶
func (m *StructStats) XXX_Unmarshal(b []byte) error
type StructType ¶
type StructType struct { // Unordered map of struct field names to their data types. // Fields cannot be added or removed via Update. Their names and // data types are still mutable. Fields map[string]*DataType `` /* 153-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
`StructType` defines the DataType-s of a [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT] type.
func (*StructType) Descriptor ¶
func (*StructType) Descriptor() ([]byte, []int)
func (*StructType) GetFields ¶
func (m *StructType) GetFields() map[string]*DataType
func (*StructType) ProtoMessage ¶
func (*StructType) ProtoMessage()
func (*StructType) Reset ¶
func (m *StructType) Reset()
func (*StructType) String ¶
func (m *StructType) String() string
func (*StructType) XXX_DiscardUnknown ¶
func (m *StructType) XXX_DiscardUnknown()
func (*StructType) XXX_Marshal ¶
func (m *StructType) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*StructType) XXX_Merge ¶
func (m *StructType) XXX_Merge(src proto.Message)
func (*StructType) XXX_Size ¶
func (m *StructType) XXX_Size() int
func (*StructType) XXX_Unmarshal ¶
func (m *StructType) XXX_Unmarshal(b []byte) error
type TableSpec ¶
type TableSpec struct { // Output only. The resource name of the table spec. // Form: // // `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}` Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` // column_spec_id of the time column. Only used if the parent dataset's // ml_use_column_spec_id is not set. Used to split rows into TRAIN, VALIDATE // and TEST sets such that oldest rows go to TRAIN set, newest to TEST, and // those in between to VALIDATE. // Required type: TIMESTAMP. // If both this column and ml_use_column are not set, then ML use of all rows // will be assigned by AutoML. NOTE: Updates of this field will instantly // affect any other users concurrently working with the dataset. TimeColumnSpecId string `protobuf:"bytes,2,opt,name=time_column_spec_id,json=timeColumnSpecId,proto3" json:"time_column_spec_id,omitempty"` // Output only. The number of rows (i.e. examples) in the table. RowCount int64 `protobuf:"varint,3,opt,name=row_count,json=rowCount,proto3" json:"row_count,omitempty"` // Output only. The number of valid rows (i.e. without values that don't match // DataType-s of their columns). ValidRowCount int64 `protobuf:"varint,4,opt,name=valid_row_count,json=validRowCount,proto3" json:"valid_row_count,omitempty"` // Output only. The number of columns of the table. That is, the number of // child ColumnSpec-s. ColumnCount int64 `protobuf:"varint,7,opt,name=column_count,json=columnCount,proto3" json:"column_count,omitempty"` // Output only. Input configs via which data currently residing in the table // had been imported. InputConfigs []*InputConfig `protobuf:"bytes,5,rep,name=input_configs,json=inputConfigs,proto3" json:"input_configs,omitempty"` // Used to perform consistent read-modify-write updates. If not set, a blind // "overwrite" update happens. Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A specification of a relational table. The table's schema is represented via its child column specs. It is pre-populated as part of ImportData by schema inference algorithm, the version of which is a required parameter of ImportData InputConfig. Note: While working with a table, at times the schema may be inconsistent with the data in the table (e.g. string in a FLOAT64 column). The consistency validation is done upon creation of a model. Used by:
- Tables
func (*TableSpec) Descriptor ¶
func (*TableSpec) GetColumnCount ¶
func (*TableSpec) GetInputConfigs ¶
func (m *TableSpec) GetInputConfigs() []*InputConfig
func (*TableSpec) GetRowCount ¶
func (*TableSpec) GetTimeColumnSpecId ¶
func (*TableSpec) GetValidRowCount ¶
func (*TableSpec) ProtoMessage ¶
func (*TableSpec) ProtoMessage()
func (*TableSpec) XXX_DiscardUnknown ¶
func (m *TableSpec) XXX_DiscardUnknown()
func (*TableSpec) XXX_Marshal ¶
func (*TableSpec) XXX_Unmarshal ¶
type TablesAnnotation ¶
type TablesAnnotation struct { // Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher // value means greater confidence in the returned value. // For // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // of FLOAT64 data type the score is not populated. Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"` // Output only. Only populated when // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // has FLOAT64 data type. An interval in which the exactly correct target // value has 95% chance to be in. PredictionInterval *DoubleRange `protobuf:"bytes,4,opt,name=prediction_interval,json=predictionInterval,proto3" json:"prediction_interval,omitempty"` // The predicted value of the row's // // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]. // The value depends on the column's DataType: // // * CATEGORY - the predicted (with the above confidence `score`) CATEGORY // value. // // * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value. Value *_struct.Value `protobuf:"bytes,2,opt,name=value,proto3" json:"value,omitempty"` // Output only. Auxiliary information for each of the model's // // [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // with respect to this particular prediction. // If no other fields than // // [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] // and // // [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] // would be populated, then this whole field is not. TablesModelColumnInfo []*TablesModelColumnInfo `` /* 128-byte string literal not displayed */ // Output only. Stores the prediction score for the baseline example, which // is defined as the example with all values set to their baseline values. // This is used as part of the Sampled Shapley explanation of the model's // prediction. This field is populated only when feature importance is // requested. For regression models, this holds the baseline prediction for // the baseline example. For classification models, this holds the baseline // prediction for the baseline example for the argmax class. BaselineScore float32 `protobuf:"fixed32,5,opt,name=baseline_score,json=baselineScore,proto3" json:"baseline_score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Contains annotation details specific to Tables.
func (*TablesAnnotation) Descriptor ¶
func (*TablesAnnotation) Descriptor() ([]byte, []int)
func (*TablesAnnotation) GetBaselineScore ¶
func (m *TablesAnnotation) GetBaselineScore() float32
func (*TablesAnnotation) GetPredictionInterval ¶
func (m *TablesAnnotation) GetPredictionInterval() *DoubleRange
func (*TablesAnnotation) GetScore ¶
func (m *TablesAnnotation) GetScore() float32
func (*TablesAnnotation) GetTablesModelColumnInfo ¶
func (m *TablesAnnotation) GetTablesModelColumnInfo() []*TablesModelColumnInfo
func (*TablesAnnotation) GetValue ¶
func (m *TablesAnnotation) GetValue() *_struct.Value
func (*TablesAnnotation) ProtoMessage ¶
func (*TablesAnnotation) ProtoMessage()
func (*TablesAnnotation) Reset ¶
func (m *TablesAnnotation) Reset()
func (*TablesAnnotation) String ¶
func (m *TablesAnnotation) String() string
func (*TablesAnnotation) XXX_DiscardUnknown ¶
func (m *TablesAnnotation) XXX_DiscardUnknown()
func (*TablesAnnotation) XXX_Marshal ¶
func (m *TablesAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TablesAnnotation) XXX_Merge ¶
func (m *TablesAnnotation) XXX_Merge(src proto.Message)
func (*TablesAnnotation) XXX_Size ¶
func (m *TablesAnnotation) XXX_Size() int
func (*TablesAnnotation) XXX_Unmarshal ¶
func (m *TablesAnnotation) XXX_Unmarshal(b []byte) error
type TablesDatasetMetadata ¶
type TablesDatasetMetadata struct { // Output only. The table_spec_id of the primary table of this dataset. PrimaryTableSpecId string `protobuf:"bytes,1,opt,name=primary_table_spec_id,json=primaryTableSpecId,proto3" json:"primary_table_spec_id,omitempty"` // column_spec_id of the primary table's column that should be used as the // training & prediction target. // This column must be non-nullable and have one of following data types // (otherwise model creation will error): // // * CATEGORY // // * FLOAT64 // // If the type is CATEGORY , only up to // 100 unique values may exist in that column across all rows. // // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. TargetColumnSpecId string `protobuf:"bytes,2,opt,name=target_column_spec_id,json=targetColumnSpecId,proto3" json:"target_column_spec_id,omitempty"` // column_spec_id of the primary table's column that should be used as the // weight column, i.e. the higher the value the more important the row will be // during model training. // Required type: FLOAT64. // Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is // ignored for training. // If not set all rows are assumed to have equal weight of 1. // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. WeightColumnSpecId string `protobuf:"bytes,3,opt,name=weight_column_spec_id,json=weightColumnSpecId,proto3" json:"weight_column_spec_id,omitempty"` // column_spec_id of the primary table column which specifies a possible ML // use of the row, i.e. the column will be used to split the rows into TRAIN, // VALIDATE and TEST sets. // Required type: STRING. // This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST` // among its values, or only have `TEST`, `UNASSIGNED` values. In the latter // case the rows with `UNASSIGNED` value will be assigned by AutoML. Note // that if a given ml use distribution makes it impossible to create a "good" // model, that call will error describing the issue. // If both this column_spec_id and primary table's time_column_spec_id are not // set, then all rows are treated as `UNASSIGNED`. // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. MlUseColumnSpecId string `protobuf:"bytes,4,opt,name=ml_use_column_spec_id,json=mlUseColumnSpecId,proto3" json:"ml_use_column_spec_id,omitempty"` // Output only. Correlations between // // [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id], // and other columns of the // // [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id]. // Only set if the target column is set. Mapping from other column spec id to // its CorrelationStats with the target column. // This field may be stale, see the stats_update_time field for // for the timestamp at which these stats were last updated. TargetColumnCorrelations map[string]*CorrelationStats `` /* 223-byte string literal not displayed */ // Output only. The most recent timestamp when target_column_correlations // field and all descendant ColumnSpec.data_stats and // ColumnSpec.top_correlated_columns fields were last (re-)generated. Any // changes that happened to the dataset afterwards are not reflected in these // fields values. The regeneration happens in the background on a best effort // basis. StatsUpdateTime *timestamp.Timestamp `protobuf:"bytes,7,opt,name=stats_update_time,json=statsUpdateTime,proto3" json:"stats_update_time,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Metadata for a dataset used for AutoML Tables.
func (*TablesDatasetMetadata) Descriptor ¶
func (*TablesDatasetMetadata) Descriptor() ([]byte, []int)
func (*TablesDatasetMetadata) GetMlUseColumnSpecId ¶
func (m *TablesDatasetMetadata) GetMlUseColumnSpecId() string
func (*TablesDatasetMetadata) GetPrimaryTableSpecId ¶
func (m *TablesDatasetMetadata) GetPrimaryTableSpecId() string
func (*TablesDatasetMetadata) GetStatsUpdateTime ¶
func (m *TablesDatasetMetadata) GetStatsUpdateTime() *timestamp.Timestamp
func (*TablesDatasetMetadata) GetTargetColumnCorrelations ¶
func (m *TablesDatasetMetadata) GetTargetColumnCorrelations() map[string]*CorrelationStats
func (*TablesDatasetMetadata) GetTargetColumnSpecId ¶
func (m *TablesDatasetMetadata) GetTargetColumnSpecId() string
func (*TablesDatasetMetadata) GetWeightColumnSpecId ¶
func (m *TablesDatasetMetadata) GetWeightColumnSpecId() string
func (*TablesDatasetMetadata) ProtoMessage ¶
func (*TablesDatasetMetadata) ProtoMessage()
func (*TablesDatasetMetadata) Reset ¶
func (m *TablesDatasetMetadata) Reset()
func (*TablesDatasetMetadata) String ¶
func (m *TablesDatasetMetadata) String() string
func (*TablesDatasetMetadata) XXX_DiscardUnknown ¶
func (m *TablesDatasetMetadata) XXX_DiscardUnknown()
func (*TablesDatasetMetadata) XXX_Marshal ¶
func (m *TablesDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TablesDatasetMetadata) XXX_Merge ¶
func (m *TablesDatasetMetadata) XXX_Merge(src proto.Message)
func (*TablesDatasetMetadata) XXX_Size ¶
func (m *TablesDatasetMetadata) XXX_Size() int
func (*TablesDatasetMetadata) XXX_Unmarshal ¶
func (m *TablesDatasetMetadata) XXX_Unmarshal(b []byte) error
type TablesModelColumnInfo ¶
type TablesModelColumnInfo struct { // Output only. The name of the ColumnSpec describing the column. Not // populated when this proto is outputted to BigQuery. ColumnSpecName string `protobuf:"bytes,1,opt,name=column_spec_name,json=columnSpecName,proto3" json:"column_spec_name,omitempty"` // Output only. The display name of the column (same as the display_name of // its ColumnSpec). ColumnDisplayName string `protobuf:"bytes,2,opt,name=column_display_name,json=columnDisplayName,proto3" json:"column_display_name,omitempty"` // Output only. When given as part of a Model (always populated): // Measurement of how much model predictions correctness on the TEST data // depend on values in this column. A value between 0 and 1, higher means // higher influence. These values are normalized - for all input feature // columns of a given model they add to 1. // // When given back by Predict (populated iff // [feature_importance // param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch // Predict (populated iff // [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params] // param is set): // Measurement of how impactful for the prediction returned for the given row // the value in this column was. Specifically, the feature importance // specifies the marginal contribution that the feature made to the prediction // score compared to the baseline score. These values are computed using the // Sampled Shapley method. FeatureImportance float32 `protobuf:"fixed32,3,opt,name=feature_importance,json=featureImportance,proto3" json:"feature_importance,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
An information specific to given column and Tables Model, in context of the Model and the predictions created by it.
func (*TablesModelColumnInfo) Descriptor ¶
func (*TablesModelColumnInfo) Descriptor() ([]byte, []int)
func (*TablesModelColumnInfo) GetColumnDisplayName ¶
func (m *TablesModelColumnInfo) GetColumnDisplayName() string
func (*TablesModelColumnInfo) GetColumnSpecName ¶
func (m *TablesModelColumnInfo) GetColumnSpecName() string
func (*TablesModelColumnInfo) GetFeatureImportance ¶
func (m *TablesModelColumnInfo) GetFeatureImportance() float32
func (*TablesModelColumnInfo) ProtoMessage ¶
func (*TablesModelColumnInfo) ProtoMessage()
func (*TablesModelColumnInfo) Reset ¶
func (m *TablesModelColumnInfo) Reset()
func (*TablesModelColumnInfo) String ¶
func (m *TablesModelColumnInfo) String() string
func (*TablesModelColumnInfo) XXX_DiscardUnknown ¶
func (m *TablesModelColumnInfo) XXX_DiscardUnknown()
func (*TablesModelColumnInfo) XXX_Marshal ¶
func (m *TablesModelColumnInfo) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TablesModelColumnInfo) XXX_Merge ¶
func (m *TablesModelColumnInfo) XXX_Merge(src proto.Message)
func (*TablesModelColumnInfo) XXX_Size ¶
func (m *TablesModelColumnInfo) XXX_Size() int
func (*TablesModelColumnInfo) XXX_Unmarshal ¶
func (m *TablesModelColumnInfo) XXX_Unmarshal(b []byte) error
type TablesModelMetadata ¶
type TablesModelMetadata struct { // Additional optimization objective configuration. Required for // `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`, // otherwise unused. // // Types that are valid to be assigned to AdditionalOptimizationObjectiveConfig: // *TablesModelMetadata_OptimizationObjectiveRecallValue // *TablesModelMetadata_OptimizationObjectivePrecisionValue AdditionalOptimizationObjectiveConfig isTablesModelMetadata_AdditionalOptimizationObjectiveConfig `protobuf_oneof:"additional_optimization_objective_config"` // Column spec of the dataset's primary table's column the model is // predicting. Snapshotted when model creation started. // Only 3 fields are used: // name - May be set on CreateModel, if it's not then the ColumnSpec // corresponding to the current target_column_spec_id of the dataset // the model is trained from is used. // If neither is set, CreateModel will error. // display_name - Output only. // data_type - Output only. TargetColumnSpec *ColumnSpec `protobuf:"bytes,2,opt,name=target_column_spec,json=targetColumnSpec,proto3" json:"target_column_spec,omitempty"` // Column specs of the dataset's primary table's columns, on which // the model is trained and which are used as the input for predictions. // The // // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // as well as, according to dataset's state upon model creation, // // [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], // and // // [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] // must never be included here. // // Only 3 fields are used: // // * name - May be set on CreateModel, if set only the columns specified are // used, otherwise all primary table's columns (except the ones listed // above) are used for the training and prediction input. // // * display_name - Output only. // // * data_type - Output only. InputFeatureColumnSpecs []*ColumnSpec `` /* 134-byte string literal not displayed */ // Objective function the model is optimizing towards. The training process // creates a model that maximizes/minimizes the value of the objective // function over the validation set. // // The supported optimization objectives depend on the prediction type. // If the field is not set, a default objective function is used. // // CLASSIFICATION_BINARY: // "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver // operating characteristic (ROC) curve. // "MINIMIZE_LOG_LOSS" - Minimize log loss. // "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. // "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified // recall value. // "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified // precision value. // // CLASSIFICATION_MULTI_CLASS : // "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. // // // REGRESSION: // "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). // "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). // "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE). OptimizationObjective string `protobuf:"bytes,4,opt,name=optimization_objective,json=optimizationObjective,proto3" json:"optimization_objective,omitempty"` // Output only. Auxiliary information for each of the // input_feature_column_specs with respect to this particular model. TablesModelColumnInfo []*TablesModelColumnInfo `` /* 128-byte string literal not displayed */ // Required. The train budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. // // The training cost of the model will not exceed this budget. The final cost // will be attempted to be close to the budget, though may end up being (even) // noticeably smaller - at the backend's discretion. This especially may // happen when further model training ceases to provide any improvements. // // If the budget is set to a value known to be insufficient to train a // model for the given dataset, the training won't be attempted and // will error. // // The train budget must be between 1,000 and 72,000 milli node hours, // inclusive. TrainBudgetMilliNodeHours int64 `` /* 143-byte string literal not displayed */ // Output only. The actual training cost of the model, expressed in milli // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed // to not exceed the train budget. TrainCostMilliNodeHours int64 `` /* 137-byte string literal not displayed */ // Use the entire training budget. This disables the early stopping feature. // By default, the early stopping feature is enabled, which means that AutoML // Tables might stop training before the entire training budget has been used. DisableEarlyStopping bool `protobuf:"varint,12,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata specific to AutoML Tables.
func (*TablesModelMetadata) Descriptor ¶
func (*TablesModelMetadata) Descriptor() ([]byte, []int)
func (*TablesModelMetadata) GetAdditionalOptimizationObjectiveConfig ¶
func (m *TablesModelMetadata) GetAdditionalOptimizationObjectiveConfig() isTablesModelMetadata_AdditionalOptimizationObjectiveConfig
func (*TablesModelMetadata) GetDisableEarlyStopping ¶
func (m *TablesModelMetadata) GetDisableEarlyStopping() bool
func (*TablesModelMetadata) GetInputFeatureColumnSpecs ¶
func (m *TablesModelMetadata) GetInputFeatureColumnSpecs() []*ColumnSpec
func (*TablesModelMetadata) GetOptimizationObjective ¶
func (m *TablesModelMetadata) GetOptimizationObjective() string
func (*TablesModelMetadata) GetOptimizationObjectivePrecisionValue ¶
func (m *TablesModelMetadata) GetOptimizationObjectivePrecisionValue() float32
func (*TablesModelMetadata) GetOptimizationObjectiveRecallValue ¶
func (m *TablesModelMetadata) GetOptimizationObjectiveRecallValue() float32
func (*TablesModelMetadata) GetTablesModelColumnInfo ¶
func (m *TablesModelMetadata) GetTablesModelColumnInfo() []*TablesModelColumnInfo
func (*TablesModelMetadata) GetTargetColumnSpec ¶
func (m *TablesModelMetadata) GetTargetColumnSpec() *ColumnSpec
func (*TablesModelMetadata) GetTrainBudgetMilliNodeHours ¶
func (m *TablesModelMetadata) GetTrainBudgetMilliNodeHours() int64
func (*TablesModelMetadata) GetTrainCostMilliNodeHours ¶
func (m *TablesModelMetadata) GetTrainCostMilliNodeHours() int64
func (*TablesModelMetadata) ProtoMessage ¶
func (*TablesModelMetadata) ProtoMessage()
func (*TablesModelMetadata) Reset ¶
func (m *TablesModelMetadata) Reset()
func (*TablesModelMetadata) String ¶
func (m *TablesModelMetadata) String() string
func (*TablesModelMetadata) XXX_DiscardUnknown ¶
func (m *TablesModelMetadata) XXX_DiscardUnknown()
func (*TablesModelMetadata) XXX_Marshal ¶
func (m *TablesModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TablesModelMetadata) XXX_Merge ¶
func (m *TablesModelMetadata) XXX_Merge(src proto.Message)
func (*TablesModelMetadata) XXX_OneofWrappers ¶
func (*TablesModelMetadata) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*TablesModelMetadata) XXX_Size ¶
func (m *TablesModelMetadata) XXX_Size() int
func (*TablesModelMetadata) XXX_Unmarshal ¶
func (m *TablesModelMetadata) XXX_Unmarshal(b []byte) error
type TablesModelMetadata_OptimizationObjectivePrecisionValue ¶
type TablesModelMetadata_OptimizationObjectivePrecisionValue struct {
OptimizationObjectivePrecisionValue float32 `protobuf:"fixed32,18,opt,name=optimization_objective_precision_value,json=optimizationObjectivePrecisionValue,proto3,oneof"`
}
type TablesModelMetadata_OptimizationObjectiveRecallValue ¶
type TablesModelMetadata_OptimizationObjectiveRecallValue struct {
OptimizationObjectiveRecallValue float32 `protobuf:"fixed32,17,opt,name=optimization_objective_recall_value,json=optimizationObjectiveRecallValue,proto3,oneof"`
}
type TextClassificationDatasetMetadata ¶
type TextClassificationDatasetMetadata struct { // Required. Type of the classification problem. ClassificationType ClassificationType `` /* 168-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata for classification.
func (*TextClassificationDatasetMetadata) Descriptor ¶
func (*TextClassificationDatasetMetadata) Descriptor() ([]byte, []int)
func (*TextClassificationDatasetMetadata) GetClassificationType ¶
func (m *TextClassificationDatasetMetadata) GetClassificationType() ClassificationType
func (*TextClassificationDatasetMetadata) ProtoMessage ¶
func (*TextClassificationDatasetMetadata) ProtoMessage()
func (*TextClassificationDatasetMetadata) Reset ¶
func (m *TextClassificationDatasetMetadata) Reset()
func (*TextClassificationDatasetMetadata) String ¶
func (m *TextClassificationDatasetMetadata) String() string
func (*TextClassificationDatasetMetadata) XXX_DiscardUnknown ¶
func (m *TextClassificationDatasetMetadata) XXX_DiscardUnknown()
func (*TextClassificationDatasetMetadata) XXX_Marshal ¶
func (m *TextClassificationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextClassificationDatasetMetadata) XXX_Merge ¶
func (m *TextClassificationDatasetMetadata) XXX_Merge(src proto.Message)
func (*TextClassificationDatasetMetadata) XXX_Size ¶
func (m *TextClassificationDatasetMetadata) XXX_Size() int
func (*TextClassificationDatasetMetadata) XXX_Unmarshal ¶
func (m *TextClassificationDatasetMetadata) XXX_Unmarshal(b []byte) error
type TextClassificationModelMetadata ¶
type TextClassificationModelMetadata struct { // Output only. Classification type of the dataset used to train this model. ClassificationType ClassificationType `` /* 168-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata that is specific to text classification.
func (*TextClassificationModelMetadata) Descriptor ¶
func (*TextClassificationModelMetadata) Descriptor() ([]byte, []int)
func (*TextClassificationModelMetadata) GetClassificationType ¶
func (m *TextClassificationModelMetadata) GetClassificationType() ClassificationType
func (*TextClassificationModelMetadata) ProtoMessage ¶
func (*TextClassificationModelMetadata) ProtoMessage()
func (*TextClassificationModelMetadata) Reset ¶
func (m *TextClassificationModelMetadata) Reset()
func (*TextClassificationModelMetadata) String ¶
func (m *TextClassificationModelMetadata) String() string
func (*TextClassificationModelMetadata) XXX_DiscardUnknown ¶
func (m *TextClassificationModelMetadata) XXX_DiscardUnknown()
func (*TextClassificationModelMetadata) XXX_Marshal ¶
func (m *TextClassificationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextClassificationModelMetadata) XXX_Merge ¶
func (m *TextClassificationModelMetadata) XXX_Merge(src proto.Message)
func (*TextClassificationModelMetadata) XXX_Size ¶
func (m *TextClassificationModelMetadata) XXX_Size() int
func (*TextClassificationModelMetadata) XXX_Unmarshal ¶
func (m *TextClassificationModelMetadata) XXX_Unmarshal(b []byte) error
type TextExtractionAnnotation ¶
type TextExtractionAnnotation struct { // Required. Text extraction annotations can either be a text segment or a // text relation. // // Types that are valid to be assigned to Annotation: // *TextExtractionAnnotation_TextSegment Annotation isTextExtractionAnnotation_Annotation `protobuf_oneof:"annotation"` // Output only. A confidence estimate between 0.0 and 1.0. A higher value // means greater confidence in correctness of the annotation. Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Annotation for identifying spans of text.
func (*TextExtractionAnnotation) Descriptor ¶
func (*TextExtractionAnnotation) Descriptor() ([]byte, []int)
func (*TextExtractionAnnotation) GetAnnotation ¶
func (m *TextExtractionAnnotation) GetAnnotation() isTextExtractionAnnotation_Annotation
func (*TextExtractionAnnotation) GetScore ¶
func (m *TextExtractionAnnotation) GetScore() float32
func (*TextExtractionAnnotation) GetTextSegment ¶
func (m *TextExtractionAnnotation) GetTextSegment() *TextSegment
func (*TextExtractionAnnotation) ProtoMessage ¶
func (*TextExtractionAnnotation) ProtoMessage()
func (*TextExtractionAnnotation) Reset ¶
func (m *TextExtractionAnnotation) Reset()
func (*TextExtractionAnnotation) String ¶
func (m *TextExtractionAnnotation) String() string
func (*TextExtractionAnnotation) XXX_DiscardUnknown ¶
func (m *TextExtractionAnnotation) XXX_DiscardUnknown()
func (*TextExtractionAnnotation) XXX_Marshal ¶
func (m *TextExtractionAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextExtractionAnnotation) XXX_Merge ¶
func (m *TextExtractionAnnotation) XXX_Merge(src proto.Message)
func (*TextExtractionAnnotation) XXX_OneofWrappers ¶
func (*TextExtractionAnnotation) XXX_OneofWrappers() []interface{}
XXX_OneofWrappers is for the internal use of the proto package.
func (*TextExtractionAnnotation) XXX_Size ¶
func (m *TextExtractionAnnotation) XXX_Size() int
func (*TextExtractionAnnotation) XXX_Unmarshal ¶
func (m *TextExtractionAnnotation) XXX_Unmarshal(b []byte) error
type TextExtractionAnnotation_TextSegment ¶
type TextExtractionAnnotation_TextSegment struct {
TextSegment *TextSegment `protobuf:"bytes,3,opt,name=text_segment,json=textSegment,proto3,oneof"`
}
type TextExtractionDatasetMetadata ¶
type TextExtractionDatasetMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata that is specific to text extraction
func (*TextExtractionDatasetMetadata) Descriptor ¶
func (*TextExtractionDatasetMetadata) Descriptor() ([]byte, []int)
func (*TextExtractionDatasetMetadata) ProtoMessage ¶
func (*TextExtractionDatasetMetadata) ProtoMessage()
func (*TextExtractionDatasetMetadata) Reset ¶
func (m *TextExtractionDatasetMetadata) Reset()
func (*TextExtractionDatasetMetadata) String ¶
func (m *TextExtractionDatasetMetadata) String() string
func (*TextExtractionDatasetMetadata) XXX_DiscardUnknown ¶
func (m *TextExtractionDatasetMetadata) XXX_DiscardUnknown()
func (*TextExtractionDatasetMetadata) XXX_Marshal ¶
func (m *TextExtractionDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextExtractionDatasetMetadata) XXX_Merge ¶
func (m *TextExtractionDatasetMetadata) XXX_Merge(src proto.Message)
func (*TextExtractionDatasetMetadata) XXX_Size ¶
func (m *TextExtractionDatasetMetadata) XXX_Size() int
func (*TextExtractionDatasetMetadata) XXX_Unmarshal ¶
func (m *TextExtractionDatasetMetadata) XXX_Unmarshal(b []byte) error
type TextExtractionEvaluationMetrics ¶
type TextExtractionEvaluationMetrics struct { // Output only. The Area under precision recall curve metric. AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"` // Output only. Metrics that have confidence thresholds. // Precision-recall curve can be derived from it. ConfidenceMetricsEntries []*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry `` /* 135-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model evaluation metrics for text extraction problems.
func (*TextExtractionEvaluationMetrics) Descriptor ¶
func (*TextExtractionEvaluationMetrics) Descriptor() ([]byte, []int)
func (*TextExtractionEvaluationMetrics) GetAuPrc ¶
func (m *TextExtractionEvaluationMetrics) GetAuPrc() float32
func (*TextExtractionEvaluationMetrics) GetConfidenceMetricsEntries ¶
func (m *TextExtractionEvaluationMetrics) GetConfidenceMetricsEntries() []*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
func (*TextExtractionEvaluationMetrics) ProtoMessage ¶
func (*TextExtractionEvaluationMetrics) ProtoMessage()
func (*TextExtractionEvaluationMetrics) Reset ¶
func (m *TextExtractionEvaluationMetrics) Reset()
func (*TextExtractionEvaluationMetrics) String ¶
func (m *TextExtractionEvaluationMetrics) String() string
func (*TextExtractionEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *TextExtractionEvaluationMetrics) XXX_DiscardUnknown()
func (*TextExtractionEvaluationMetrics) XXX_Marshal ¶
func (m *TextExtractionEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextExtractionEvaluationMetrics) XXX_Merge ¶
func (m *TextExtractionEvaluationMetrics) XXX_Merge(src proto.Message)
func (*TextExtractionEvaluationMetrics) XXX_Size ¶
func (m *TextExtractionEvaluationMetrics) XXX_Size() int
func (*TextExtractionEvaluationMetrics) XXX_Unmarshal ¶
func (m *TextExtractionEvaluationMetrics) XXX_Unmarshal(b []byte) error
type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry ¶
type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry struct { // Output only. The confidence threshold value used to compute the metrics. // Only annotations with score of at least this threshold are considered to // be ones the model would return. ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"` // Output only. Recall under the given confidence threshold. Recall float32 `protobuf:"fixed32,3,opt,name=recall,proto3" json:"recall,omitempty"` // Output only. Precision under the given confidence threshold. Precision float32 `protobuf:"fixed32,4,opt,name=precision,proto3" json:"precision,omitempty"` // Output only. The harmonic mean of recall and precision. F1Score float32 `protobuf:"fixed32,5,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Metrics for a single confidence threshold.
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Descriptor ¶
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetRecall ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage ¶
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Reset ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Reset()
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) String ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) String() string
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_DiscardUnknown ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_DiscardUnknown()
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Marshal ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Merge ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Merge(src proto.Message)
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Size ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Size() int
func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Unmarshal ¶
func (m *TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) XXX_Unmarshal(b []byte) error
type TextExtractionModelMetadata ¶
type TextExtractionModelMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata that is specific to text extraction.
func (*TextExtractionModelMetadata) Descriptor ¶
func (*TextExtractionModelMetadata) Descriptor() ([]byte, []int)
func (*TextExtractionModelMetadata) ProtoMessage ¶
func (*TextExtractionModelMetadata) ProtoMessage()
func (*TextExtractionModelMetadata) Reset ¶
func (m *TextExtractionModelMetadata) Reset()
func (*TextExtractionModelMetadata) String ¶
func (m *TextExtractionModelMetadata) String() string
func (*TextExtractionModelMetadata) XXX_DiscardUnknown ¶
func (m *TextExtractionModelMetadata) XXX_DiscardUnknown()
func (*TextExtractionModelMetadata) XXX_Marshal ¶
func (m *TextExtractionModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextExtractionModelMetadata) XXX_Merge ¶
func (m *TextExtractionModelMetadata) XXX_Merge(src proto.Message)
func (*TextExtractionModelMetadata) XXX_Size ¶
func (m *TextExtractionModelMetadata) XXX_Size() int
func (*TextExtractionModelMetadata) XXX_Unmarshal ¶
func (m *TextExtractionModelMetadata) XXX_Unmarshal(b []byte) error
type TextSegment ¶
type TextSegment struct { // Output only. The content of the TextSegment. Content string `protobuf:"bytes,3,opt,name=content,proto3" json:"content,omitempty"` // Required. Zero-based character index of the first character of the text // segment (counting characters from the beginning of the text). StartOffset int64 `protobuf:"varint,1,opt,name=start_offset,json=startOffset,proto3" json:"start_offset,omitempty"` // Required. Zero-based character index of the first character past the end of // the text segment (counting character from the beginning of the text). // The character at the end_offset is NOT included in the text segment. EndOffset int64 `protobuf:"varint,2,opt,name=end_offset,json=endOffset,proto3" json:"end_offset,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
func (*TextSegment) Descriptor ¶
func (*TextSegment) Descriptor() ([]byte, []int)
func (*TextSegment) GetContent ¶
func (m *TextSegment) GetContent() string
func (*TextSegment) GetEndOffset ¶
func (m *TextSegment) GetEndOffset() int64
func (*TextSegment) GetStartOffset ¶
func (m *TextSegment) GetStartOffset() int64
func (*TextSegment) ProtoMessage ¶
func (*TextSegment) ProtoMessage()
func (*TextSegment) Reset ¶
func (m *TextSegment) Reset()
func (*TextSegment) String ¶
func (m *TextSegment) String() string
func (*TextSegment) XXX_DiscardUnknown ¶
func (m *TextSegment) XXX_DiscardUnknown()
func (*TextSegment) XXX_Marshal ¶
func (m *TextSegment) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextSegment) XXX_Merge ¶
func (m *TextSegment) XXX_Merge(src proto.Message)
func (*TextSegment) XXX_Size ¶
func (m *TextSegment) XXX_Size() int
func (*TextSegment) XXX_Unmarshal ¶
func (m *TextSegment) XXX_Unmarshal(b []byte) error
type TextSentimentAnnotation ¶
type TextSentimentAnnotation struct { // Output only. The sentiment with the semantic, as given to the // [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData] when populating the dataset from which the model used // for the prediction had been trained. // The sentiment values are between 0 and // Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive), // with higher value meaning more positive sentiment. They are completely // relative, i.e. 0 means least positive sentiment and sentiment_max means // the most positive from the sentiments present in the train data. Therefore // e.g. if train data had only negative sentiment, then sentiment_max, would // be still negative (although least negative). // The sentiment shouldn't be confused with "score" or "magnitude" // from the previous Natural Language Sentiment Analysis API. Sentiment int32 `protobuf:"varint,1,opt,name=sentiment,proto3" json:"sentiment,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Contains annotation details specific to text sentiment.
func (*TextSentimentAnnotation) Descriptor ¶
func (*TextSentimentAnnotation) Descriptor() ([]byte, []int)
func (*TextSentimentAnnotation) GetSentiment ¶
func (m *TextSentimentAnnotation) GetSentiment() int32
func (*TextSentimentAnnotation) ProtoMessage ¶
func (*TextSentimentAnnotation) ProtoMessage()
func (*TextSentimentAnnotation) Reset ¶
func (m *TextSentimentAnnotation) Reset()
func (*TextSentimentAnnotation) String ¶
func (m *TextSentimentAnnotation) String() string
func (*TextSentimentAnnotation) XXX_DiscardUnknown ¶
func (m *TextSentimentAnnotation) XXX_DiscardUnknown()
func (*TextSentimentAnnotation) XXX_Marshal ¶
func (m *TextSentimentAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextSentimentAnnotation) XXX_Merge ¶
func (m *TextSentimentAnnotation) XXX_Merge(src proto.Message)
func (*TextSentimentAnnotation) XXX_Size ¶
func (m *TextSentimentAnnotation) XXX_Size() int
func (*TextSentimentAnnotation) XXX_Unmarshal ¶
func (m *TextSentimentAnnotation) XXX_Unmarshal(b []byte) error
type TextSentimentDatasetMetadata ¶
type TextSentimentDatasetMetadata struct { // Required. A sentiment is expressed as an integer ordinal, where higher value // means a more positive sentiment. The range of sentiments that will be used // is between 0 and sentiment_max (inclusive on both ends), and all the values // in the range must be represented in the dataset before a model can be // created. // sentiment_max value must be between 1 and 10 (inclusive). SentimentMax int32 `protobuf:"varint,1,opt,name=sentiment_max,json=sentimentMax,proto3" json:"sentiment_max,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata for text sentiment.
func (*TextSentimentDatasetMetadata) Descriptor ¶
func (*TextSentimentDatasetMetadata) Descriptor() ([]byte, []int)
func (*TextSentimentDatasetMetadata) GetSentimentMax ¶
func (m *TextSentimentDatasetMetadata) GetSentimentMax() int32
func (*TextSentimentDatasetMetadata) ProtoMessage ¶
func (*TextSentimentDatasetMetadata) ProtoMessage()
func (*TextSentimentDatasetMetadata) Reset ¶
func (m *TextSentimentDatasetMetadata) Reset()
func (*TextSentimentDatasetMetadata) String ¶
func (m *TextSentimentDatasetMetadata) String() string
func (*TextSentimentDatasetMetadata) XXX_DiscardUnknown ¶
func (m *TextSentimentDatasetMetadata) XXX_DiscardUnknown()
func (*TextSentimentDatasetMetadata) XXX_Marshal ¶
func (m *TextSentimentDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextSentimentDatasetMetadata) XXX_Merge ¶
func (m *TextSentimentDatasetMetadata) XXX_Merge(src proto.Message)
func (*TextSentimentDatasetMetadata) XXX_Size ¶
func (m *TextSentimentDatasetMetadata) XXX_Size() int
func (*TextSentimentDatasetMetadata) XXX_Unmarshal ¶
func (m *TextSentimentDatasetMetadata) XXX_Unmarshal(b []byte) error
type TextSentimentEvaluationMetrics ¶
type TextSentimentEvaluationMetrics struct { // Output only. Precision. Precision float32 `protobuf:"fixed32,1,opt,name=precision,proto3" json:"precision,omitempty"` // Output only. Recall. Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"` // Output only. The harmonic mean of recall and precision. F1Score float32 `protobuf:"fixed32,3,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"` // Output only. Mean absolute error. Only set for the overall model // evaluation, not for evaluation of a single annotation spec. MeanAbsoluteError float32 `protobuf:"fixed32,4,opt,name=mean_absolute_error,json=meanAbsoluteError,proto3" json:"mean_absolute_error,omitempty"` // Output only. Mean squared error. Only set for the overall model // evaluation, not for evaluation of a single annotation spec. MeanSquaredError float32 `protobuf:"fixed32,5,opt,name=mean_squared_error,json=meanSquaredError,proto3" json:"mean_squared_error,omitempty"` // Output only. Linear weighted kappa. Only set for the overall model // evaluation, not for evaluation of a single annotation spec. LinearKappa float32 `protobuf:"fixed32,6,opt,name=linear_kappa,json=linearKappa,proto3" json:"linear_kappa,omitempty"` // Output only. Quadratic weighted kappa. Only set for the overall model // evaluation, not for evaluation of a single annotation spec. QuadraticKappa float32 `protobuf:"fixed32,7,opt,name=quadratic_kappa,json=quadraticKappa,proto3" json:"quadratic_kappa,omitempty"` // Output only. Confusion matrix of the evaluation. // Only set for the overall model evaluation, not for evaluation of a single // annotation spec. ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,8,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"` // Output only. The annotation spec ids used for this evaluation. // Deprecated . AnnotationSpecId []string `protobuf:"bytes,9,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"` // Deprecated: Do not use. XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model evaluation metrics for text sentiment problems.
func (*TextSentimentEvaluationMetrics) Descriptor ¶
func (*TextSentimentEvaluationMetrics) Descriptor() ([]byte, []int)
func (*TextSentimentEvaluationMetrics) GetAnnotationSpecId
deprecated
func (m *TextSentimentEvaluationMetrics) GetAnnotationSpecId() []string
Deprecated: Do not use.
func (*TextSentimentEvaluationMetrics) GetConfusionMatrix ¶
func (m *TextSentimentEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
func (*TextSentimentEvaluationMetrics) GetF1Score ¶
func (m *TextSentimentEvaluationMetrics) GetF1Score() float32
func (*TextSentimentEvaluationMetrics) GetLinearKappa ¶
func (m *TextSentimentEvaluationMetrics) GetLinearKappa() float32
func (*TextSentimentEvaluationMetrics) GetMeanAbsoluteError ¶
func (m *TextSentimentEvaluationMetrics) GetMeanAbsoluteError() float32
func (*TextSentimentEvaluationMetrics) GetMeanSquaredError ¶
func (m *TextSentimentEvaluationMetrics) GetMeanSquaredError() float32
func (*TextSentimentEvaluationMetrics) GetPrecision ¶
func (m *TextSentimentEvaluationMetrics) GetPrecision() float32
func (*TextSentimentEvaluationMetrics) GetQuadraticKappa ¶
func (m *TextSentimentEvaluationMetrics) GetQuadraticKappa() float32
func (*TextSentimentEvaluationMetrics) GetRecall ¶
func (m *TextSentimentEvaluationMetrics) GetRecall() float32
func (*TextSentimentEvaluationMetrics) ProtoMessage ¶
func (*TextSentimentEvaluationMetrics) ProtoMessage()
func (*TextSentimentEvaluationMetrics) Reset ¶
func (m *TextSentimentEvaluationMetrics) Reset()
func (*TextSentimentEvaluationMetrics) String ¶
func (m *TextSentimentEvaluationMetrics) String() string
func (*TextSentimentEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *TextSentimentEvaluationMetrics) XXX_DiscardUnknown()
func (*TextSentimentEvaluationMetrics) XXX_Marshal ¶
func (m *TextSentimentEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextSentimentEvaluationMetrics) XXX_Merge ¶
func (m *TextSentimentEvaluationMetrics) XXX_Merge(src proto.Message)
func (*TextSentimentEvaluationMetrics) XXX_Size ¶
func (m *TextSentimentEvaluationMetrics) XXX_Size() int
func (*TextSentimentEvaluationMetrics) XXX_Unmarshal ¶
func (m *TextSentimentEvaluationMetrics) XXX_Unmarshal(b []byte) error
type TextSentimentModelMetadata ¶
type TextSentimentModelMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata that is specific to text sentiment.
func (*TextSentimentModelMetadata) Descriptor ¶
func (*TextSentimentModelMetadata) Descriptor() ([]byte, []int)
func (*TextSentimentModelMetadata) ProtoMessage ¶
func (*TextSentimentModelMetadata) ProtoMessage()
func (*TextSentimentModelMetadata) Reset ¶
func (m *TextSentimentModelMetadata) Reset()
func (*TextSentimentModelMetadata) String ¶
func (m *TextSentimentModelMetadata) String() string
func (*TextSentimentModelMetadata) XXX_DiscardUnknown ¶
func (m *TextSentimentModelMetadata) XXX_DiscardUnknown()
func (*TextSentimentModelMetadata) XXX_Marshal ¶
func (m *TextSentimentModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextSentimentModelMetadata) XXX_Merge ¶
func (m *TextSentimentModelMetadata) XXX_Merge(src proto.Message)
func (*TextSentimentModelMetadata) XXX_Size ¶
func (m *TextSentimentModelMetadata) XXX_Size() int
func (*TextSentimentModelMetadata) XXX_Unmarshal ¶
func (m *TextSentimentModelMetadata) XXX_Unmarshal(b []byte) error
type TextSnippet ¶
type TextSnippet struct { // Required. The content of the text snippet as a string. Up to 250000 // characters long. Content string `protobuf:"bytes,1,opt,name=content,proto3" json:"content,omitempty"` // Optional. The format of [content][google.cloud.automl.v1beta1.TextSnippet.content]. Currently the only two allowed // values are "text/html" and "text/plain". If left blank, the format is // automatically determined from the type of the uploaded [content][google.cloud.automl.v1beta1.TextSnippet.content]. MimeType string `protobuf:"bytes,2,opt,name=mime_type,json=mimeType,proto3" json:"mime_type,omitempty"` // Output only. HTTP URI where you can download the content. ContentUri string `protobuf:"bytes,4,opt,name=content_uri,json=contentUri,proto3" json:"content_uri,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A representation of a text snippet.
func (*TextSnippet) Descriptor ¶
func (*TextSnippet) Descriptor() ([]byte, []int)
func (*TextSnippet) GetContent ¶
func (m *TextSnippet) GetContent() string
func (*TextSnippet) GetContentUri ¶
func (m *TextSnippet) GetContentUri() string
func (*TextSnippet) GetMimeType ¶
func (m *TextSnippet) GetMimeType() string
func (*TextSnippet) ProtoMessage ¶
func (*TextSnippet) ProtoMessage()
func (*TextSnippet) Reset ¶
func (m *TextSnippet) Reset()
func (*TextSnippet) String ¶
func (m *TextSnippet) String() string
func (*TextSnippet) XXX_DiscardUnknown ¶
func (m *TextSnippet) XXX_DiscardUnknown()
func (*TextSnippet) XXX_Marshal ¶
func (m *TextSnippet) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TextSnippet) XXX_Merge ¶
func (m *TextSnippet) XXX_Merge(src proto.Message)
func (*TextSnippet) XXX_Size ¶
func (m *TextSnippet) XXX_Size() int
func (*TextSnippet) XXX_Unmarshal ¶
func (m *TextSnippet) XXX_Unmarshal(b []byte) error
type TimeSegment ¶
type TimeSegment struct { // Start of the time segment (inclusive), represented as the duration since // the example start. StartTimeOffset *duration.Duration `protobuf:"bytes,1,opt,name=start_time_offset,json=startTimeOffset,proto3" json:"start_time_offset,omitempty"` // End of the time segment (exclusive), represented as the duration since the // example start. EndTimeOffset *duration.Duration `protobuf:"bytes,2,opt,name=end_time_offset,json=endTimeOffset,proto3" json:"end_time_offset,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
A time period inside of an example that has a time dimension (e.g. video).
func (*TimeSegment) Descriptor ¶
func (*TimeSegment) Descriptor() ([]byte, []int)
func (*TimeSegment) GetEndTimeOffset ¶
func (m *TimeSegment) GetEndTimeOffset() *duration.Duration
func (*TimeSegment) GetStartTimeOffset ¶
func (m *TimeSegment) GetStartTimeOffset() *duration.Duration
func (*TimeSegment) ProtoMessage ¶
func (*TimeSegment) ProtoMessage()
func (*TimeSegment) Reset ¶
func (m *TimeSegment) Reset()
func (*TimeSegment) String ¶
func (m *TimeSegment) String() string
func (*TimeSegment) XXX_DiscardUnknown ¶
func (m *TimeSegment) XXX_DiscardUnknown()
func (*TimeSegment) XXX_Marshal ¶
func (m *TimeSegment) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TimeSegment) XXX_Merge ¶
func (m *TimeSegment) XXX_Merge(src proto.Message)
func (*TimeSegment) XXX_Size ¶
func (m *TimeSegment) XXX_Size() int
func (*TimeSegment) XXX_Unmarshal ¶
func (m *TimeSegment) XXX_Unmarshal(b []byte) error
type TimestampStats ¶
type TimestampStats struct { // The string key is the pre-defined granularity. Currently supported: // hour_of_day, day_of_week, month_of_year. // Granularities finer that the granularity of timestamp data are not // populated (e.g. if timestamps are at day granularity, then hour_of_day // is not populated). GranularStats map[string]*TimestampStats_GranularStats `` /* 188-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
The data statistics of a series of TIMESTAMP values.
func (*TimestampStats) Descriptor ¶
func (*TimestampStats) Descriptor() ([]byte, []int)
func (*TimestampStats) GetGranularStats ¶
func (m *TimestampStats) GetGranularStats() map[string]*TimestampStats_GranularStats
func (*TimestampStats) ProtoMessage ¶
func (*TimestampStats) ProtoMessage()
func (*TimestampStats) Reset ¶
func (m *TimestampStats) Reset()
func (*TimestampStats) String ¶
func (m *TimestampStats) String() string
func (*TimestampStats) XXX_DiscardUnknown ¶
func (m *TimestampStats) XXX_DiscardUnknown()
func (*TimestampStats) XXX_Marshal ¶
func (m *TimestampStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TimestampStats) XXX_Merge ¶
func (m *TimestampStats) XXX_Merge(src proto.Message)
func (*TimestampStats) XXX_Size ¶
func (m *TimestampStats) XXX_Size() int
func (*TimestampStats) XXX_Unmarshal ¶
func (m *TimestampStats) XXX_Unmarshal(b []byte) error
type TimestampStats_GranularStats ¶
type TimestampStats_GranularStats struct { // A map from granularity key to example count for that key. // E.g. for hour_of_day `13` means 1pm, or for month_of_year `5` means May). Buckets map[int32]int64 `` /* 157-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Stats split by a defined in context granularity.
func (*TimestampStats_GranularStats) Descriptor ¶
func (*TimestampStats_GranularStats) Descriptor() ([]byte, []int)
func (*TimestampStats_GranularStats) GetBuckets ¶
func (m *TimestampStats_GranularStats) GetBuckets() map[int32]int64
func (*TimestampStats_GranularStats) ProtoMessage ¶
func (*TimestampStats_GranularStats) ProtoMessage()
func (*TimestampStats_GranularStats) Reset ¶
func (m *TimestampStats_GranularStats) Reset()
func (*TimestampStats_GranularStats) String ¶
func (m *TimestampStats_GranularStats) String() string
func (*TimestampStats_GranularStats) XXX_DiscardUnknown ¶
func (m *TimestampStats_GranularStats) XXX_DiscardUnknown()
func (*TimestampStats_GranularStats) XXX_Marshal ¶
func (m *TimestampStats_GranularStats) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TimestampStats_GranularStats) XXX_Merge ¶
func (m *TimestampStats_GranularStats) XXX_Merge(src proto.Message)
func (*TimestampStats_GranularStats) XXX_Size ¶
func (m *TimestampStats_GranularStats) XXX_Size() int
func (*TimestampStats_GranularStats) XXX_Unmarshal ¶
func (m *TimestampStats_GranularStats) XXX_Unmarshal(b []byte) error
type TranslationAnnotation ¶
type TranslationAnnotation struct { // Output only . The translated content. TranslatedContent *TextSnippet `protobuf:"bytes,1,opt,name=translated_content,json=translatedContent,proto3" json:"translated_content,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Annotation details specific to translation.
func (*TranslationAnnotation) Descriptor ¶
func (*TranslationAnnotation) Descriptor() ([]byte, []int)
func (*TranslationAnnotation) GetTranslatedContent ¶
func (m *TranslationAnnotation) GetTranslatedContent() *TextSnippet
func (*TranslationAnnotation) ProtoMessage ¶
func (*TranslationAnnotation) ProtoMessage()
func (*TranslationAnnotation) Reset ¶
func (m *TranslationAnnotation) Reset()
func (*TranslationAnnotation) String ¶
func (m *TranslationAnnotation) String() string
func (*TranslationAnnotation) XXX_DiscardUnknown ¶
func (m *TranslationAnnotation) XXX_DiscardUnknown()
func (*TranslationAnnotation) XXX_Marshal ¶
func (m *TranslationAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TranslationAnnotation) XXX_Merge ¶
func (m *TranslationAnnotation) XXX_Merge(src proto.Message)
func (*TranslationAnnotation) XXX_Size ¶
func (m *TranslationAnnotation) XXX_Size() int
func (*TranslationAnnotation) XXX_Unmarshal ¶
func (m *TranslationAnnotation) XXX_Unmarshal(b []byte) error
type TranslationDatasetMetadata ¶
type TranslationDatasetMetadata struct { // Required. The BCP-47 language code of the source language. SourceLanguageCode string `protobuf:"bytes,1,opt,name=source_language_code,json=sourceLanguageCode,proto3" json:"source_language_code,omitempty"` // Required. The BCP-47 language code of the target language. TargetLanguageCode string `protobuf:"bytes,2,opt,name=target_language_code,json=targetLanguageCode,proto3" json:"target_language_code,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata that is specific to translation.
func (*TranslationDatasetMetadata) Descriptor ¶
func (*TranslationDatasetMetadata) Descriptor() ([]byte, []int)
func (*TranslationDatasetMetadata) GetSourceLanguageCode ¶
func (m *TranslationDatasetMetadata) GetSourceLanguageCode() string
func (*TranslationDatasetMetadata) GetTargetLanguageCode ¶
func (m *TranslationDatasetMetadata) GetTargetLanguageCode() string
func (*TranslationDatasetMetadata) ProtoMessage ¶
func (*TranslationDatasetMetadata) ProtoMessage()
func (*TranslationDatasetMetadata) Reset ¶
func (m *TranslationDatasetMetadata) Reset()
func (*TranslationDatasetMetadata) String ¶
func (m *TranslationDatasetMetadata) String() string
func (*TranslationDatasetMetadata) XXX_DiscardUnknown ¶
func (m *TranslationDatasetMetadata) XXX_DiscardUnknown()
func (*TranslationDatasetMetadata) XXX_Marshal ¶
func (m *TranslationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TranslationDatasetMetadata) XXX_Merge ¶
func (m *TranslationDatasetMetadata) XXX_Merge(src proto.Message)
func (*TranslationDatasetMetadata) XXX_Size ¶
func (m *TranslationDatasetMetadata) XXX_Size() int
func (*TranslationDatasetMetadata) XXX_Unmarshal ¶
func (m *TranslationDatasetMetadata) XXX_Unmarshal(b []byte) error
type TranslationEvaluationMetrics ¶
type TranslationEvaluationMetrics struct { // Output only. BLEU score. BleuScore float64 `protobuf:"fixed64,1,opt,name=bleu_score,json=bleuScore,proto3" json:"bleu_score,omitempty"` // Output only. BLEU score for base model. BaseBleuScore float64 `protobuf:"fixed64,2,opt,name=base_bleu_score,json=baseBleuScore,proto3" json:"base_bleu_score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Evaluation metrics for the dataset.
func (*TranslationEvaluationMetrics) Descriptor ¶
func (*TranslationEvaluationMetrics) Descriptor() ([]byte, []int)
func (*TranslationEvaluationMetrics) GetBaseBleuScore ¶
func (m *TranslationEvaluationMetrics) GetBaseBleuScore() float64
func (*TranslationEvaluationMetrics) GetBleuScore ¶
func (m *TranslationEvaluationMetrics) GetBleuScore() float64
func (*TranslationEvaluationMetrics) ProtoMessage ¶
func (*TranslationEvaluationMetrics) ProtoMessage()
func (*TranslationEvaluationMetrics) Reset ¶
func (m *TranslationEvaluationMetrics) Reset()
func (*TranslationEvaluationMetrics) String ¶
func (m *TranslationEvaluationMetrics) String() string
func (*TranslationEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *TranslationEvaluationMetrics) XXX_DiscardUnknown()
func (*TranslationEvaluationMetrics) XXX_Marshal ¶
func (m *TranslationEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TranslationEvaluationMetrics) XXX_Merge ¶
func (m *TranslationEvaluationMetrics) XXX_Merge(src proto.Message)
func (*TranslationEvaluationMetrics) XXX_Size ¶
func (m *TranslationEvaluationMetrics) XXX_Size() int
func (*TranslationEvaluationMetrics) XXX_Unmarshal ¶
func (m *TranslationEvaluationMetrics) XXX_Unmarshal(b []byte) error
type TranslationModelMetadata ¶
type TranslationModelMetadata struct { // The resource name of the model to use as a baseline to train the custom // model. If unset, we use the default base model provided by Google // Translate. Format: // `projects/{project_id}/locations/{location_id}/models/{model_id}` BaseModel string `protobuf:"bytes,1,opt,name=base_model,json=baseModel,proto3" json:"base_model,omitempty"` // Output only. Inferred from the dataset. // The source languge (The BCP-47 language code) that is used for training. SourceLanguageCode string `protobuf:"bytes,2,opt,name=source_language_code,json=sourceLanguageCode,proto3" json:"source_language_code,omitempty"` // Output only. The target languge (The BCP-47 language code) that is used for // training. TargetLanguageCode string `protobuf:"bytes,3,opt,name=target_language_code,json=targetLanguageCode,proto3" json:"target_language_code,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata that is specific to translation.
func (*TranslationModelMetadata) Descriptor ¶
func (*TranslationModelMetadata) Descriptor() ([]byte, []int)
func (*TranslationModelMetadata) GetBaseModel ¶
func (m *TranslationModelMetadata) GetBaseModel() string
func (*TranslationModelMetadata) GetSourceLanguageCode ¶
func (m *TranslationModelMetadata) GetSourceLanguageCode() string
func (*TranslationModelMetadata) GetTargetLanguageCode ¶
func (m *TranslationModelMetadata) GetTargetLanguageCode() string
func (*TranslationModelMetadata) ProtoMessage ¶
func (*TranslationModelMetadata) ProtoMessage()
func (*TranslationModelMetadata) Reset ¶
func (m *TranslationModelMetadata) Reset()
func (*TranslationModelMetadata) String ¶
func (m *TranslationModelMetadata) String() string
func (*TranslationModelMetadata) XXX_DiscardUnknown ¶
func (m *TranslationModelMetadata) XXX_DiscardUnknown()
func (*TranslationModelMetadata) XXX_Marshal ¶
func (m *TranslationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*TranslationModelMetadata) XXX_Merge ¶
func (m *TranslationModelMetadata) XXX_Merge(src proto.Message)
func (*TranslationModelMetadata) XXX_Size ¶
func (m *TranslationModelMetadata) XXX_Size() int
func (*TranslationModelMetadata) XXX_Unmarshal ¶
func (m *TranslationModelMetadata) XXX_Unmarshal(b []byte) error
type TypeCode ¶
type TypeCode int32
`TypeCode` is used as a part of DataType[google.cloud.automl.v1beta1.DataType].
const ( // Not specified. Should not be used. TypeCode_TYPE_CODE_UNSPECIFIED TypeCode = 0 // Encoded as `number`, or the strings `"NaN"`, `"Infinity"`, or // `"-Infinity"`. TypeCode_FLOAT64 TypeCode = 3 // Must be between 0AD and 9999AD. Encoded as `string` according to // [time_format][google.cloud.automl.v1beta1.DataType.time_format], or, if // that format is not set, then in RFC 3339 `date-time` format, where // `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z). TypeCode_TIMESTAMP TypeCode = 4 // Encoded as `string`. TypeCode_STRING TypeCode = 6 // Encoded as `list`, where the list elements are represented according to // // [list_element_type][google.cloud.automl.v1beta1.DataType.list_element_type]. TypeCode_ARRAY TypeCode = 8 // Encoded as `struct`, where field values are represented according to // [struct_type][google.cloud.automl.v1beta1.DataType.struct_type]. TypeCode_STRUCT TypeCode = 9 // Values of this type are not further understood by AutoML, // e.g. AutoML is unable to tell the order of values (as it could with // FLOAT64), or is unable to say if one value contains another (as it // could with STRING). // Encoded as `string` (bytes should be base64-encoded, as described in RFC // 4648, section 4). TypeCode_CATEGORY TypeCode = 10 )
func (TypeCode) EnumDescriptor ¶
type UndeployModelOperationMetadata ¶
type UndeployModelOperationMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Details of UndeployModel operation.
func (*UndeployModelOperationMetadata) Descriptor ¶
func (*UndeployModelOperationMetadata) Descriptor() ([]byte, []int)
func (*UndeployModelOperationMetadata) ProtoMessage ¶
func (*UndeployModelOperationMetadata) ProtoMessage()
func (*UndeployModelOperationMetadata) Reset ¶
func (m *UndeployModelOperationMetadata) Reset()
func (*UndeployModelOperationMetadata) String ¶
func (m *UndeployModelOperationMetadata) String() string
func (*UndeployModelOperationMetadata) XXX_DiscardUnknown ¶
func (m *UndeployModelOperationMetadata) XXX_DiscardUnknown()
func (*UndeployModelOperationMetadata) XXX_Marshal ¶
func (m *UndeployModelOperationMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*UndeployModelOperationMetadata) XXX_Merge ¶
func (m *UndeployModelOperationMetadata) XXX_Merge(src proto.Message)
func (*UndeployModelOperationMetadata) XXX_Size ¶
func (m *UndeployModelOperationMetadata) XXX_Size() int
func (*UndeployModelOperationMetadata) XXX_Unmarshal ¶
func (m *UndeployModelOperationMetadata) XXX_Unmarshal(b []byte) error
type UndeployModelRequest ¶
type UndeployModelRequest struct { // Required. Resource name of the model to undeploy. Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.UndeployModel][google.cloud.automl.v1beta1.AutoMl.UndeployModel].
func (*UndeployModelRequest) Descriptor ¶
func (*UndeployModelRequest) Descriptor() ([]byte, []int)
func (*UndeployModelRequest) GetName ¶
func (m *UndeployModelRequest) GetName() string
func (*UndeployModelRequest) ProtoMessage ¶
func (*UndeployModelRequest) ProtoMessage()
func (*UndeployModelRequest) Reset ¶
func (m *UndeployModelRequest) Reset()
func (*UndeployModelRequest) String ¶
func (m *UndeployModelRequest) String() string
func (*UndeployModelRequest) XXX_DiscardUnknown ¶
func (m *UndeployModelRequest) XXX_DiscardUnknown()
func (*UndeployModelRequest) XXX_Marshal ¶
func (m *UndeployModelRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*UndeployModelRequest) XXX_Merge ¶
func (m *UndeployModelRequest) XXX_Merge(src proto.Message)
func (*UndeployModelRequest) XXX_Size ¶
func (m *UndeployModelRequest) XXX_Size() int
func (*UndeployModelRequest) XXX_Unmarshal ¶
func (m *UndeployModelRequest) XXX_Unmarshal(b []byte) error
type UnimplementedAutoMlServer ¶
type UnimplementedAutoMlServer struct { }
UnimplementedAutoMlServer can be embedded to have forward compatible implementations.
func (*UnimplementedAutoMlServer) CreateDataset ¶
func (*UnimplementedAutoMlServer) CreateDataset(ctx context.Context, req *CreateDatasetRequest) (*Dataset, error)
func (*UnimplementedAutoMlServer) CreateModel ¶
func (*UnimplementedAutoMlServer) CreateModel(ctx context.Context, req *CreateModelRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) DeleteDataset ¶
func (*UnimplementedAutoMlServer) DeleteDataset(ctx context.Context, req *DeleteDatasetRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) DeleteModel ¶
func (*UnimplementedAutoMlServer) DeleteModel(ctx context.Context, req *DeleteModelRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) DeployModel ¶
func (*UnimplementedAutoMlServer) DeployModel(ctx context.Context, req *DeployModelRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) ExportData ¶
func (*UnimplementedAutoMlServer) ExportData(ctx context.Context, req *ExportDataRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) ExportEvaluatedExamples ¶
func (*UnimplementedAutoMlServer) ExportEvaluatedExamples(ctx context.Context, req *ExportEvaluatedExamplesRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) ExportModel ¶
func (*UnimplementedAutoMlServer) ExportModel(ctx context.Context, req *ExportModelRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) GetAnnotationSpec ¶
func (*UnimplementedAutoMlServer) GetAnnotationSpec(ctx context.Context, req *GetAnnotationSpecRequest) (*AnnotationSpec, error)
func (*UnimplementedAutoMlServer) GetColumnSpec ¶
func (*UnimplementedAutoMlServer) GetColumnSpec(ctx context.Context, req *GetColumnSpecRequest) (*ColumnSpec, error)
func (*UnimplementedAutoMlServer) GetDataset ¶
func (*UnimplementedAutoMlServer) GetDataset(ctx context.Context, req *GetDatasetRequest) (*Dataset, error)
func (*UnimplementedAutoMlServer) GetModel ¶
func (*UnimplementedAutoMlServer) GetModel(ctx context.Context, req *GetModelRequest) (*Model, error)
func (*UnimplementedAutoMlServer) GetModelEvaluation ¶
func (*UnimplementedAutoMlServer) GetModelEvaluation(ctx context.Context, req *GetModelEvaluationRequest) (*ModelEvaluation, error)
func (*UnimplementedAutoMlServer) GetTableSpec ¶
func (*UnimplementedAutoMlServer) GetTableSpec(ctx context.Context, req *GetTableSpecRequest) (*TableSpec, error)
func (*UnimplementedAutoMlServer) ImportData ¶
func (*UnimplementedAutoMlServer) ImportData(ctx context.Context, req *ImportDataRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) ListColumnSpecs ¶
func (*UnimplementedAutoMlServer) ListColumnSpecs(ctx context.Context, req *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error)
func (*UnimplementedAutoMlServer) ListDatasets ¶
func (*UnimplementedAutoMlServer) ListDatasets(ctx context.Context, req *ListDatasetsRequest) (*ListDatasetsResponse, error)
func (*UnimplementedAutoMlServer) ListModelEvaluations ¶
func (*UnimplementedAutoMlServer) ListModelEvaluations(ctx context.Context, req *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
func (*UnimplementedAutoMlServer) ListModels ¶
func (*UnimplementedAutoMlServer) ListModels(ctx context.Context, req *ListModelsRequest) (*ListModelsResponse, error)
func (*UnimplementedAutoMlServer) ListTableSpecs ¶
func (*UnimplementedAutoMlServer) ListTableSpecs(ctx context.Context, req *ListTableSpecsRequest) (*ListTableSpecsResponse, error)
func (*UnimplementedAutoMlServer) UndeployModel ¶
func (*UnimplementedAutoMlServer) UndeployModel(ctx context.Context, req *UndeployModelRequest) (*longrunning.Operation, error)
func (*UnimplementedAutoMlServer) UpdateColumnSpec ¶
func (*UnimplementedAutoMlServer) UpdateColumnSpec(ctx context.Context, req *UpdateColumnSpecRequest) (*ColumnSpec, error)
func (*UnimplementedAutoMlServer) UpdateDataset ¶
func (*UnimplementedAutoMlServer) UpdateDataset(ctx context.Context, req *UpdateDatasetRequest) (*Dataset, error)
func (*UnimplementedAutoMlServer) UpdateTableSpec ¶
func (*UnimplementedAutoMlServer) UpdateTableSpec(ctx context.Context, req *UpdateTableSpecRequest) (*TableSpec, error)
type UnimplementedPredictionServiceServer ¶
type UnimplementedPredictionServiceServer struct { }
UnimplementedPredictionServiceServer can be embedded to have forward compatible implementations.
func (*UnimplementedPredictionServiceServer) BatchPredict ¶
func (*UnimplementedPredictionServiceServer) BatchPredict(ctx context.Context, req *BatchPredictRequest) (*longrunning.Operation, error)
func (*UnimplementedPredictionServiceServer) Predict ¶
func (*UnimplementedPredictionServiceServer) Predict(ctx context.Context, req *PredictRequest) (*PredictResponse, error)
type UpdateColumnSpecRequest ¶
type UpdateColumnSpecRequest struct { // Required. The column spec which replaces the resource on the server. ColumnSpec *ColumnSpec `protobuf:"bytes,1,opt,name=column_spec,json=columnSpec,proto3" json:"column_spec,omitempty"` // The update mask applies to the resource. UpdateMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=update_mask,json=updateMask,proto3" json:"update_mask,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.UpdateColumnSpec][google.cloud.automl.v1beta1.AutoMl.UpdateColumnSpec]
func (*UpdateColumnSpecRequest) Descriptor ¶
func (*UpdateColumnSpecRequest) Descriptor() ([]byte, []int)
func (*UpdateColumnSpecRequest) GetColumnSpec ¶
func (m *UpdateColumnSpecRequest) GetColumnSpec() *ColumnSpec
func (*UpdateColumnSpecRequest) GetUpdateMask ¶
func (m *UpdateColumnSpecRequest) GetUpdateMask() *field_mask.FieldMask
func (*UpdateColumnSpecRequest) ProtoMessage ¶
func (*UpdateColumnSpecRequest) ProtoMessage()
func (*UpdateColumnSpecRequest) Reset ¶
func (m *UpdateColumnSpecRequest) Reset()
func (*UpdateColumnSpecRequest) String ¶
func (m *UpdateColumnSpecRequest) String() string
func (*UpdateColumnSpecRequest) XXX_DiscardUnknown ¶
func (m *UpdateColumnSpecRequest) XXX_DiscardUnknown()
func (*UpdateColumnSpecRequest) XXX_Marshal ¶
func (m *UpdateColumnSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*UpdateColumnSpecRequest) XXX_Merge ¶
func (m *UpdateColumnSpecRequest) XXX_Merge(src proto.Message)
func (*UpdateColumnSpecRequest) XXX_Size ¶
func (m *UpdateColumnSpecRequest) XXX_Size() int
func (*UpdateColumnSpecRequest) XXX_Unmarshal ¶
func (m *UpdateColumnSpecRequest) XXX_Unmarshal(b []byte) error
type UpdateDatasetRequest ¶
type UpdateDatasetRequest struct { // Required. The dataset which replaces the resource on the server. Dataset *Dataset `protobuf:"bytes,1,opt,name=dataset,proto3" json:"dataset,omitempty"` // The update mask applies to the resource. UpdateMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=update_mask,json=updateMask,proto3" json:"update_mask,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1beta1.AutoMl.UpdateDataset]
func (*UpdateDatasetRequest) Descriptor ¶
func (*UpdateDatasetRequest) Descriptor() ([]byte, []int)
func (*UpdateDatasetRequest) GetDataset ¶
func (m *UpdateDatasetRequest) GetDataset() *Dataset
func (*UpdateDatasetRequest) GetUpdateMask ¶
func (m *UpdateDatasetRequest) GetUpdateMask() *field_mask.FieldMask
func (*UpdateDatasetRequest) ProtoMessage ¶
func (*UpdateDatasetRequest) ProtoMessage()
func (*UpdateDatasetRequest) Reset ¶
func (m *UpdateDatasetRequest) Reset()
func (*UpdateDatasetRequest) String ¶
func (m *UpdateDatasetRequest) String() string
func (*UpdateDatasetRequest) XXX_DiscardUnknown ¶
func (m *UpdateDatasetRequest) XXX_DiscardUnknown()
func (*UpdateDatasetRequest) XXX_Marshal ¶
func (m *UpdateDatasetRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*UpdateDatasetRequest) XXX_Merge ¶
func (m *UpdateDatasetRequest) XXX_Merge(src proto.Message)
func (*UpdateDatasetRequest) XXX_Size ¶
func (m *UpdateDatasetRequest) XXX_Size() int
func (*UpdateDatasetRequest) XXX_Unmarshal ¶
func (m *UpdateDatasetRequest) XXX_Unmarshal(b []byte) error
type UpdateTableSpecRequest ¶
type UpdateTableSpecRequest struct { // Required. The table spec which replaces the resource on the server. TableSpec *TableSpec `protobuf:"bytes,1,opt,name=table_spec,json=tableSpec,proto3" json:"table_spec,omitempty"` // The update mask applies to the resource. UpdateMask *field_mask.FieldMask `protobuf:"bytes,2,opt,name=update_mask,json=updateMask,proto3" json:"update_mask,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Request message for [AutoMl.UpdateTableSpec][google.cloud.automl.v1beta1.AutoMl.UpdateTableSpec]
func (*UpdateTableSpecRequest) Descriptor ¶
func (*UpdateTableSpecRequest) Descriptor() ([]byte, []int)
func (*UpdateTableSpecRequest) GetTableSpec ¶
func (m *UpdateTableSpecRequest) GetTableSpec() *TableSpec
func (*UpdateTableSpecRequest) GetUpdateMask ¶
func (m *UpdateTableSpecRequest) GetUpdateMask() *field_mask.FieldMask
func (*UpdateTableSpecRequest) ProtoMessage ¶
func (*UpdateTableSpecRequest) ProtoMessage()
func (*UpdateTableSpecRequest) Reset ¶
func (m *UpdateTableSpecRequest) Reset()
func (*UpdateTableSpecRequest) String ¶
func (m *UpdateTableSpecRequest) String() string
func (*UpdateTableSpecRequest) XXX_DiscardUnknown ¶
func (m *UpdateTableSpecRequest) XXX_DiscardUnknown()
func (*UpdateTableSpecRequest) XXX_Marshal ¶
func (m *UpdateTableSpecRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*UpdateTableSpecRequest) XXX_Merge ¶
func (m *UpdateTableSpecRequest) XXX_Merge(src proto.Message)
func (*UpdateTableSpecRequest) XXX_Size ¶
func (m *UpdateTableSpecRequest) XXX_Size() int
func (*UpdateTableSpecRequest) XXX_Unmarshal ¶
func (m *UpdateTableSpecRequest) XXX_Unmarshal(b []byte) error
type VideoClassificationAnnotation ¶
type VideoClassificationAnnotation struct { // Output only. Expresses the type of video classification. Possible values: // // * `segment` - Classification done on a specified by user // time segment of a video. AnnotationSpec is answered to be present // in that time segment, if it is present in any part of it. The video // ML model evaluations are done only for this type of classification. // // * `shot`- Shot-level classification. // AutoML Video Intelligence determines the boundaries // for each camera shot in the entire segment of the video that user // specified in the request configuration. AutoML Video Intelligence // then returns labels and their confidence scores for each detected // shot, along with the start and end time of the shot. // WARNING: Model evaluation is not done for this classification type, // the quality of it depends on training data, but there are no // metrics provided to describe that quality. // // * `1s_interval` - AutoML Video Intelligence returns labels and their // confidence scores for each second of the entire segment of the video // that user specified in the request configuration. // WARNING: Model evaluation is not done for this classification type, // the quality of it depends on training data, but there are no // metrics provided to describe that quality. Type string `protobuf:"bytes,1,opt,name=type,proto3" json:"type,omitempty"` // Output only . The classification details of this annotation. ClassificationAnnotation *ClassificationAnnotation `` /* 133-byte string literal not displayed */ // Output only . The time segment of the video to which the // annotation applies. TimeSegment *TimeSegment `protobuf:"bytes,3,opt,name=time_segment,json=timeSegment,proto3" json:"time_segment,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Contains annotation details specific to video classification.
func (*VideoClassificationAnnotation) Descriptor ¶
func (*VideoClassificationAnnotation) Descriptor() ([]byte, []int)
func (*VideoClassificationAnnotation) GetClassificationAnnotation ¶
func (m *VideoClassificationAnnotation) GetClassificationAnnotation() *ClassificationAnnotation
func (*VideoClassificationAnnotation) GetTimeSegment ¶
func (m *VideoClassificationAnnotation) GetTimeSegment() *TimeSegment
func (*VideoClassificationAnnotation) GetType ¶
func (m *VideoClassificationAnnotation) GetType() string
func (*VideoClassificationAnnotation) ProtoMessage ¶
func (*VideoClassificationAnnotation) ProtoMessage()
func (*VideoClassificationAnnotation) Reset ¶
func (m *VideoClassificationAnnotation) Reset()
func (*VideoClassificationAnnotation) String ¶
func (m *VideoClassificationAnnotation) String() string
func (*VideoClassificationAnnotation) XXX_DiscardUnknown ¶
func (m *VideoClassificationAnnotation) XXX_DiscardUnknown()
func (*VideoClassificationAnnotation) XXX_Marshal ¶
func (m *VideoClassificationAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoClassificationAnnotation) XXX_Merge ¶
func (m *VideoClassificationAnnotation) XXX_Merge(src proto.Message)
func (*VideoClassificationAnnotation) XXX_Size ¶
func (m *VideoClassificationAnnotation) XXX_Size() int
func (*VideoClassificationAnnotation) XXX_Unmarshal ¶
func (m *VideoClassificationAnnotation) XXX_Unmarshal(b []byte) error
type VideoClassificationDatasetMetadata ¶
type VideoClassificationDatasetMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata specific to video classification. All Video Classification datasets are treated as multi label.
func (*VideoClassificationDatasetMetadata) Descriptor ¶
func (*VideoClassificationDatasetMetadata) Descriptor() ([]byte, []int)
func (*VideoClassificationDatasetMetadata) ProtoMessage ¶
func (*VideoClassificationDatasetMetadata) ProtoMessage()
func (*VideoClassificationDatasetMetadata) Reset ¶
func (m *VideoClassificationDatasetMetadata) Reset()
func (*VideoClassificationDatasetMetadata) String ¶
func (m *VideoClassificationDatasetMetadata) String() string
func (*VideoClassificationDatasetMetadata) XXX_DiscardUnknown ¶
func (m *VideoClassificationDatasetMetadata) XXX_DiscardUnknown()
func (*VideoClassificationDatasetMetadata) XXX_Marshal ¶
func (m *VideoClassificationDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoClassificationDatasetMetadata) XXX_Merge ¶
func (m *VideoClassificationDatasetMetadata) XXX_Merge(src proto.Message)
func (*VideoClassificationDatasetMetadata) XXX_Size ¶
func (m *VideoClassificationDatasetMetadata) XXX_Size() int
func (*VideoClassificationDatasetMetadata) XXX_Unmarshal ¶
func (m *VideoClassificationDatasetMetadata) XXX_Unmarshal(b []byte) error
type VideoClassificationModelMetadata ¶
type VideoClassificationModelMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata specific to video classification.
func (*VideoClassificationModelMetadata) Descriptor ¶
func (*VideoClassificationModelMetadata) Descriptor() ([]byte, []int)
func (*VideoClassificationModelMetadata) ProtoMessage ¶
func (*VideoClassificationModelMetadata) ProtoMessage()
func (*VideoClassificationModelMetadata) Reset ¶
func (m *VideoClassificationModelMetadata) Reset()
func (*VideoClassificationModelMetadata) String ¶
func (m *VideoClassificationModelMetadata) String() string
func (*VideoClassificationModelMetadata) XXX_DiscardUnknown ¶
func (m *VideoClassificationModelMetadata) XXX_DiscardUnknown()
func (*VideoClassificationModelMetadata) XXX_Marshal ¶
func (m *VideoClassificationModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoClassificationModelMetadata) XXX_Merge ¶
func (m *VideoClassificationModelMetadata) XXX_Merge(src proto.Message)
func (*VideoClassificationModelMetadata) XXX_Size ¶
func (m *VideoClassificationModelMetadata) XXX_Size() int
func (*VideoClassificationModelMetadata) XXX_Unmarshal ¶
func (m *VideoClassificationModelMetadata) XXX_Unmarshal(b []byte) error
type VideoObjectTrackingAnnotation ¶
type VideoObjectTrackingAnnotation struct { // Optional. The instance of the object, expressed as a positive integer. Used to tell // apart objects of the same type (i.e. AnnotationSpec) when multiple are // present on a single example. // NOTE: Instance ID prediction quality is not a part of model evaluation and // is done as best effort. Especially in cases when an entity goes // off-screen for a longer time (minutes), when it comes back it may be given // a new instance ID. InstanceId string `protobuf:"bytes,1,opt,name=instance_id,json=instanceId,proto3" json:"instance_id,omitempty"` // Required. A time (frame) of a video to which this annotation pertains. // Represented as the duration since the video's start. TimeOffset *duration.Duration `protobuf:"bytes,2,opt,name=time_offset,json=timeOffset,proto3" json:"time_offset,omitempty"` // Required. The rectangle representing the object location on the frame (i.e. // at the time_offset of the video). BoundingBox *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_box,json=boundingBox,proto3" json:"bounding_box,omitempty"` // Output only. The confidence that this annotation is positive for the video at // the time_offset, value in [0, 1], higher means higher positivity // confidence. For annotations created by the user the score is 1. When // user approves an annotation, the original float score is kept (and not // changed to 1). Score float32 `protobuf:"fixed32,4,opt,name=score,proto3" json:"score,omitempty"` XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Annotation details for video object tracking.
func (*VideoObjectTrackingAnnotation) Descriptor ¶
func (*VideoObjectTrackingAnnotation) Descriptor() ([]byte, []int)
func (*VideoObjectTrackingAnnotation) GetBoundingBox ¶
func (m *VideoObjectTrackingAnnotation) GetBoundingBox() *BoundingPoly
func (*VideoObjectTrackingAnnotation) GetInstanceId ¶
func (m *VideoObjectTrackingAnnotation) GetInstanceId() string
func (*VideoObjectTrackingAnnotation) GetScore ¶
func (m *VideoObjectTrackingAnnotation) GetScore() float32
func (*VideoObjectTrackingAnnotation) GetTimeOffset ¶
func (m *VideoObjectTrackingAnnotation) GetTimeOffset() *duration.Duration
func (*VideoObjectTrackingAnnotation) ProtoMessage ¶
func (*VideoObjectTrackingAnnotation) ProtoMessage()
func (*VideoObjectTrackingAnnotation) Reset ¶
func (m *VideoObjectTrackingAnnotation) Reset()
func (*VideoObjectTrackingAnnotation) String ¶
func (m *VideoObjectTrackingAnnotation) String() string
func (*VideoObjectTrackingAnnotation) XXX_DiscardUnknown ¶
func (m *VideoObjectTrackingAnnotation) XXX_DiscardUnknown()
func (*VideoObjectTrackingAnnotation) XXX_Marshal ¶
func (m *VideoObjectTrackingAnnotation) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoObjectTrackingAnnotation) XXX_Merge ¶
func (m *VideoObjectTrackingAnnotation) XXX_Merge(src proto.Message)
func (*VideoObjectTrackingAnnotation) XXX_Size ¶
func (m *VideoObjectTrackingAnnotation) XXX_Size() int
func (*VideoObjectTrackingAnnotation) XXX_Unmarshal ¶
func (m *VideoObjectTrackingAnnotation) XXX_Unmarshal(b []byte) error
type VideoObjectTrackingDatasetMetadata ¶
type VideoObjectTrackingDatasetMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Dataset metadata specific to video object tracking.
func (*VideoObjectTrackingDatasetMetadata) Descriptor ¶
func (*VideoObjectTrackingDatasetMetadata) Descriptor() ([]byte, []int)
func (*VideoObjectTrackingDatasetMetadata) ProtoMessage ¶
func (*VideoObjectTrackingDatasetMetadata) ProtoMessage()
func (*VideoObjectTrackingDatasetMetadata) Reset ¶
func (m *VideoObjectTrackingDatasetMetadata) Reset()
func (*VideoObjectTrackingDatasetMetadata) String ¶
func (m *VideoObjectTrackingDatasetMetadata) String() string
func (*VideoObjectTrackingDatasetMetadata) XXX_DiscardUnknown ¶
func (m *VideoObjectTrackingDatasetMetadata) XXX_DiscardUnknown()
func (*VideoObjectTrackingDatasetMetadata) XXX_Marshal ¶
func (m *VideoObjectTrackingDatasetMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoObjectTrackingDatasetMetadata) XXX_Merge ¶
func (m *VideoObjectTrackingDatasetMetadata) XXX_Merge(src proto.Message)
func (*VideoObjectTrackingDatasetMetadata) XXX_Size ¶
func (m *VideoObjectTrackingDatasetMetadata) XXX_Size() int
func (*VideoObjectTrackingDatasetMetadata) XXX_Unmarshal ¶
func (m *VideoObjectTrackingDatasetMetadata) XXX_Unmarshal(b []byte) error
type VideoObjectTrackingEvaluationMetrics ¶
type VideoObjectTrackingEvaluationMetrics struct { // Output only. The number of video frames used to create this evaluation. EvaluatedFrameCount int32 `protobuf:"varint,1,opt,name=evaluated_frame_count,json=evaluatedFrameCount,proto3" json:"evaluated_frame_count,omitempty"` // Output only. The total number of bounding boxes (i.e. summed over all // frames) the ground truth used to create this evaluation had. EvaluatedBoundingBoxCount int32 `` /* 141-byte string literal not displayed */ // Output only. The bounding boxes match metrics for each // Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 // and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 // pair. BoundingBoxMetricsEntries []*BoundingBoxMetricsEntry `` /* 140-byte string literal not displayed */ // Output only. The single metric for bounding boxes evaluation: // the mean_average_precision averaged over all bounding_box_metrics_entries. BoundingBoxMeanAveragePrecision float32 `` /* 162-byte string literal not displayed */ XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model evaluation metrics for video object tracking problems. Evaluates prediction quality of both labeled bounding boxes and labeled tracks (i.e. series of bounding boxes sharing same label and instance ID).
func (*VideoObjectTrackingEvaluationMetrics) Descriptor ¶
func (*VideoObjectTrackingEvaluationMetrics) Descriptor() ([]byte, []int)
func (*VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMeanAveragePrecision ¶
func (m *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
func (*VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMetricsEntries ¶
func (m *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
func (*VideoObjectTrackingEvaluationMetrics) GetEvaluatedBoundingBoxCount ¶
func (m *VideoObjectTrackingEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
func (*VideoObjectTrackingEvaluationMetrics) GetEvaluatedFrameCount ¶
func (m *VideoObjectTrackingEvaluationMetrics) GetEvaluatedFrameCount() int32
func (*VideoObjectTrackingEvaluationMetrics) ProtoMessage ¶
func (*VideoObjectTrackingEvaluationMetrics) ProtoMessage()
func (*VideoObjectTrackingEvaluationMetrics) Reset ¶
func (m *VideoObjectTrackingEvaluationMetrics) Reset()
func (*VideoObjectTrackingEvaluationMetrics) String ¶
func (m *VideoObjectTrackingEvaluationMetrics) String() string
func (*VideoObjectTrackingEvaluationMetrics) XXX_DiscardUnknown ¶
func (m *VideoObjectTrackingEvaluationMetrics) XXX_DiscardUnknown()
func (*VideoObjectTrackingEvaluationMetrics) XXX_Marshal ¶
func (m *VideoObjectTrackingEvaluationMetrics) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoObjectTrackingEvaluationMetrics) XXX_Merge ¶
func (m *VideoObjectTrackingEvaluationMetrics) XXX_Merge(src proto.Message)
func (*VideoObjectTrackingEvaluationMetrics) XXX_Size ¶
func (m *VideoObjectTrackingEvaluationMetrics) XXX_Size() int
func (*VideoObjectTrackingEvaluationMetrics) XXX_Unmarshal ¶
func (m *VideoObjectTrackingEvaluationMetrics) XXX_Unmarshal(b []byte) error
type VideoObjectTrackingModelMetadata ¶
type VideoObjectTrackingModelMetadata struct { XXX_NoUnkeyedLiteral struct{} `json:"-"` XXX_unrecognized []byte `json:"-"` XXX_sizecache int32 `json:"-"` }
Model metadata specific to video object tracking.
func (*VideoObjectTrackingModelMetadata) Descriptor ¶
func (*VideoObjectTrackingModelMetadata) Descriptor() ([]byte, []int)
func (*VideoObjectTrackingModelMetadata) ProtoMessage ¶
func (*VideoObjectTrackingModelMetadata) ProtoMessage()
func (*VideoObjectTrackingModelMetadata) Reset ¶
func (m *VideoObjectTrackingModelMetadata) Reset()
func (*VideoObjectTrackingModelMetadata) String ¶
func (m *VideoObjectTrackingModelMetadata) String() string
func (*VideoObjectTrackingModelMetadata) XXX_DiscardUnknown ¶
func (m *VideoObjectTrackingModelMetadata) XXX_DiscardUnknown()
func (*VideoObjectTrackingModelMetadata) XXX_Marshal ¶
func (m *VideoObjectTrackingModelMetadata) XXX_Marshal(b []byte, deterministic bool) ([]byte, error)
func (*VideoObjectTrackingModelMetadata) XXX_Merge ¶
func (m *VideoObjectTrackingModelMetadata) XXX_Merge(src proto.Message)
func (*VideoObjectTrackingModelMetadata) XXX_Size ¶
func (m *VideoObjectTrackingModelMetadata) XXX_Size() int
func (*VideoObjectTrackingModelMetadata) XXX_Unmarshal ¶
func (m *VideoObjectTrackingModelMetadata) XXX_Unmarshal(b []byte) error
Source Files
¶
- annotation_payload.pb.go
- annotation_spec.pb.go
- classification.pb.go
- column_spec.pb.go
- data_items.pb.go
- data_stats.pb.go
- data_types.pb.go
- dataset.pb.go
- detection.pb.go
- geometry.pb.go
- image.pb.go
- io.pb.go
- model.pb.go
- model_evaluation.pb.go
- operations.pb.go
- prediction_service.pb.go
- ranges.pb.go
- regression.pb.go
- service.pb.go
- table_spec.pb.go
- tables.pb.go
- temporal.pb.go
- text.pb.go
- text_extraction.pb.go
- text_segment.pb.go
- text_sentiment.pb.go
- translation.pb.go
- video.pb.go