bn256

package module
v0.0.0-...-0d0fc8b Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jul 26, 2019 License: BSD-3-Clause Imports: 7 Imported by: 42

README

BN256

This is a slightly extended version of https://github.com/cloudflare/bn256. Added functionality:

  • hashing to G1 and G2 groups and some functionality needed for hashing (like computation of square root in GFp2)
  • mapping from string to GT group and back

Documentation

Overview

Package bn256 implements a particular bilinear group.

Bilinear groups are the basis of many of the new cryptographic protocols that have been proposed over the past decade. They consist of a triplet of groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ is a generator of the respective group). That function is called a pairing function.

This package specifically implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve as described in http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible with the implementation described in that paper.

This package previously claimed to operate at a 128-bit security level. However, recent improvements in attacks mean that is no longer true. See https://moderncrypto.org/mail-archive/curves/2016/000740.html.

Index

Examples

Constants

This section is empty.

Variables

View Source
var Order = bigFromBase10("65000549695646603732796438742359905742570406053903786389881062969044166799969")

Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1. order-1 = (2**5) * 3 * 5743 * 280941149 * 130979359433191 * 491513138693455212421542731357 * 6518589491078791937

Functions

func MapGTToString

func MapGTToString(gt *GT) string

MapGTToString maps an element from GT group to a string.

Types

type G1

type G1 struct {
	P *curvePoint
}

G1 is an abstract cyclic group. The zero value is suitable for use as the output of an operation, but cannot be used as an input.

func HashG1

func HashG1(m string) (*G1, error)

HashG1 hashes string m to an element in group G1 using try and increment method.

func RandomG1

func RandomG1(r io.Reader) (*big.Int, *G1, error)

RandomG1 returns X and g₁ˣ where X is a random, non-zero number read from r.

func (*G1) Add

func (e *G1) Add(a, b *G1) *G1

Add sets e to a+b and then returns e.

func (*G1) Marshal

func (e *G1) Marshal() []byte

Marshal converts e to a byte slice.

func (*G1) Neg

func (e *G1) Neg(a *G1) *G1

Neg sets e to -a and then returns e.

func (*G1) ScalarBaseMult

func (e *G1) ScalarBaseMult(k *big.Int) *G1

ScalarBaseMult sets e to g*k where g is the generator of the group and then returns e.

func (*G1) ScalarMult

func (e *G1) ScalarMult(a *G1, k *big.Int) *G1

ScalarMult sets e to a*k and then returns e.

func (*G1) Set

func (e *G1) Set(a *G1) *G1

Set sets e to a and then returns e.

func (*G1) String

func (g *G1) String() string

func (*G1) Unmarshal

func (e *G1) Unmarshal(m []byte) ([]byte, error)

Unmarshal sets e to the result of converting the output of Marshal back into a group element and then returns e.

type G2

type G2 struct {
	P *twistPoint
}

G2 is an abstract cyclic group. The zero value is suitable for use as the output of an operation, but cannot be used as an input.

func HashG2

func HashG2(m string) (*G2, error)

HashG2 hashes string m to an element in group G2. It uses: Fuentes-Castaneda, Laura, Edward Knapp, and Francisco Rodríguez-Henríquez. "Faster hashing to G_2." International Workshop on Selected Areas in Cryptography. Springer, Berlin, Heidelberg, 2011.

func RandomG2

func RandomG2(r io.Reader) (*big.Int, *G2, error)

RandomG2 returns X and g₂ˣ where X is a random, non-zero number read from r.

func (*G2) Add

func (e *G2) Add(a, b *G2) *G2

Add sets e to a+b and then returns e.

func (*G2) Marshal

func (e *G2) Marshal() []byte

Marshal converts e into a byte slice.

func (*G2) Neg

func (e *G2) Neg(a *G2) *G2

Neg sets e to -a and then returns e.

func (*G2) ScalarBaseMult

func (e *G2) ScalarBaseMult(k *big.Int) *G2

ScalarBaseMult sets e to g*k where g is the generator of the group and then returns out.

func (*G2) ScalarMult

func (e *G2) ScalarMult(a *G2, k *big.Int) *G2

ScalarMult sets e to a*k and then returns e.

func (*G2) Set

func (e *G2) Set(a *G2) *G2

Set sets e to a and then returns e.

func (*G2) String

func (e *G2) String() string

func (*G2) Unmarshal

func (e *G2) Unmarshal(m []byte) ([]byte, error)

Unmarshal sets e to the result of converting the output of Marshal back into a group element and then returns e.

type GT

type GT struct {
	P *gfP12
}

GT is an abstract cyclic group. The zero value is suitable for use as the output of an operation, but cannot be used as an input.

func GetGTOne

func GetGTOne() *GT

GetGTOne returns *GT set to 1.

func MapStringToGT

func MapStringToGT(msg string) (*GT, error)

MapStringToGT maps a string to GT group element. Needed for example when a message to be encrypted needs to be mapped into GT group.

func Miller

func Miller(g1 *G1, g2 *G2) *GT

Miller applies Miller's algorithm, which is a bilinear function from the source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1, g2).

func Pair

func Pair(g1 *G1, g2 *G2) *GT

Pair calculates an Optimal Ate pairing.

Example
// This implements the tripartite Diffie-Hellman algorithm from "A One
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf

// Each of three parties, a, b and c, generate a private value.
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)

// Then each party calculates g₁ and g₂ times their private value.
pa := new(G1).ScalarBaseMult(a)
qa := new(G2).ScalarBaseMult(a)

pb := new(G1).ScalarBaseMult(b)
qb := new(G2).ScalarBaseMult(b)

pc := new(G1).ScalarBaseMult(c)
qc := new(G2).ScalarBaseMult(c)

// Now each party exchanges its public values with the other two and
// all parties can calculate the shared key.
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)

k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)

k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)

// k1, k2 and k3 will all be equal.
Output:

func RandomGT

func RandomGT(r io.Reader) (*big.Int, *GT, error)

RandomGT returns X and e(g₁, g₂)ˣ where X is a random, non-zero number read from r.

func (*GT) Add

func (e *GT) Add(a, b *GT) *GT

Add sets e to a+b and then returns e.

func (*GT) Finalize

func (e *GT) Finalize() *GT

Finalize is a linear function from F_p^12 to GT.

func (*GT) Marshal

func (e *GT) Marshal() []byte

Marshal converts e into a byte slice.

func (*GT) Neg

func (e *GT) Neg(a *GT) *GT

Neg sets e to -a and then returns e.

func (*GT) ScalarBaseMult

func (e *GT) ScalarBaseMult(k *big.Int) *GT

ScalarBaseMult sets e to g*k where g is the generator of the group and then returns out.

func (*GT) ScalarMult

func (e *GT) ScalarMult(a *GT, k *big.Int) *GT

ScalarMult sets e to a*k and then returns e.

func (*GT) Set

func (e *GT) Set(a *GT) *GT

Set sets e to a and then returns e.

func (*GT) String

func (g *GT) String() string

func (*GT) Unmarshal

func (e *GT) Unmarshal(m []byte) ([]byte, error)

Unmarshal sets e to the result of converting the output of Marshal back into a group element and then returns e.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL