Documentation ¶
Index ¶
- Constants
- Variables
- func CreateCertificate(rand io.Reader, template, parent *x509.Certificate, pub, priv interface{}) ([]byte, error)
- func CreateCertificateRequest(rand io.Reader, template *x509.CertificateRequest, priv interface{}) (csr []byte, err error)
- func CreateRevocationList(rand io.Reader, template *x509.RevocationList, issuer *Certificate, ...) ([]byte, error)
- func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error)deprecated
- func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error)deprecated
- func IsEncryptedPEMBlock(b *pem.Block) booldeprecated
- func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)
- func MarshalPKCS8PrivateKey(key interface{}) ([]byte, error)
- func MarshalPKIXPublicKey(pub interface{}) ([]byte, error)
- func MarshalSM2PrivateKey(key *sm2.PrivateKey) ([]byte, error)
- func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error)
- func ParseDERCRL(derBytes []byte) (*pkix.CertificateList, error)
- func ParseECPrivateKey(der []byte) (*ecdsa.PrivateKey, error)
- func ParsePKCS8PrivateKey(der []byte) (key interface{}, err error)
- func ParsePKIXPublicKey(derBytes []byte) (interface{}, error)
- func ParseSM2PrivateKey(der []byte) (*sm2.PrivateKey, error)
- type CertPool
- type Certificate
- func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) error
- func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) error
- func (c *Certificate) CheckSignatureFrom(parent *Certificate) error
- func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, ...) (crlBytes []byte, err error)
- func (c *Certificate) Equal(other *Certificate) bool
- func (c *Certificate) ToX509() *x509.Certificate
- func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error)
- func (c *Certificate) VerifyHostname(h string) error
- type CertificateInvalidError
- type CertificateRequest
- type ExtKeyUsage
- type KeyUsage
- type PEMCipher
- type PublicKeyAlgorithm
- type SignatureAlgorithm
- type UnknownAuthorityError
- type VerifyOptions
Constants ¶
const ( NotAuthorizedToSign = x509.NotAuthorizedToSign Expired = x509.Expired CANotAuthorizedForThisName = x509.CANotAuthorizedForThisName TooManyIntermediates = x509.TooManyIntermediates IncompatibleUsage = x509.IncompatibleUsage NameMismatch = x509.NameMismatch NameConstraintsWithoutSANs = x509.NameConstraintsWithoutSANs UnconstrainedName = x509.UnconstrainedName TooManyConstraints = x509.TooManyConstraints CANotAuthorizedForExtKeyUsage = x509.CANotAuthorizedForExtKeyUsage )
const ( UnknownSignatureAlgorithm = x509.UnknownSignatureAlgorithm MD2WithRSA = x509.MD2WithRSA MD5WithRSA = x509.MD5WithRSA // Only supported for signing, not verification. SHA1WithRSA = x509.SHA1WithRSA SHA256WithRSA = x509.SHA256WithRSA SHA384WithRSA = x509.SHA384WithRSA SHA512WithRSA = x509.SHA512WithRSA DSAWithSHA1 = x509.DSAWithSHA1 // Unsupported. DSAWithSHA256 = x509.DSAWithSHA256 // Unsupported. ECDSAWithSHA1 = x509.ECDSAWithSHA1 ECDSAWithSHA256 = x509.ECDSAWithSHA256 ECDSAWithSHA384 = x509.ECDSAWithSHA384 ECDSAWithSHA512 = x509.ECDSAWithSHA512 SHA256WithRSAPSS = x509.SHA256WithRSAPSS SHA384WithRSAPSS = x509.SHA384WithRSAPSS SHA512WithRSAPSS = x509.SHA512WithRSAPSS PureEd25519 = x509.PureEd25519 SM2WithSM3 SignatureAlgorithm = 99 )
const ( UnknownPublicKeyAlgorithm = x509.UnknownPublicKeyAlgorithm RSA = x509.RSA DSA = x509.DSA // Unsupported. ECDSA = x509.ECDSA Ed25519 = x509.Ed25519 )
const ( KeyUsageDigitalSignature = x509.KeyUsageDigitalSignature KeyUsageContentCommitment = x509.KeyUsageContentCommitment KeyUsageKeyEncipherment = x509.KeyUsageKeyEncipherment KeyUsageDataEncipherment = x509.KeyUsageDataEncipherment KeyUsageKeyAgreement = x509.KeyUsageKeyAgreement KeyUsageCertSign = x509.KeyUsageCertSign KeyUsageCRLSign = x509.KeyUsageCRLSign KeyUsageEncipherOnly = x509.KeyUsageEncipherOnly KeyUsageDecipherOnly = x509.KeyUsageDecipherOnly )
const ( ExtKeyUsageAny = x509.ExtKeyUsageAny ExtKeyUsageServerAuth = x509.ExtKeyUsageServerAuth ExtKeyUsageClientAuth = x509.ExtKeyUsageClientAuth ExtKeyUsageCodeSigning = x509.ExtKeyUsageCodeSigning ExtKeyUsageEmailProtection = x509.ExtKeyUsageEmailProtection ExtKeyUsageIPSECEndSystem = x509.ExtKeyUsageIPSECEndSystem ExtKeyUsageIPSECTunnel = x509.ExtKeyUsageIPSECTunnel ExtKeyUsageIPSECUser = x509.ExtKeyUsageIPSECUser ExtKeyUsageTimeStamping = x509.ExtKeyUsageTimeStamping ExtKeyUsageOCSPSigning = x509.ExtKeyUsageOCSPSigning ExtKeyUsageMicrosoftServerGatedCrypto = x509.ExtKeyUsageMicrosoftServerGatedCrypto ExtKeyUsageNetscapeServerGatedCrypto = x509.ExtKeyUsageNetscapeServerGatedCrypto ExtKeyUsageMicrosoftCommercialCodeSigning = x509.ExtKeyUsageMicrosoftCommercialCodeSigning ExtKeyUsageMicrosoftKernelCodeSigning = x509.ExtKeyUsageMicrosoftKernelCodeSigning )
Variables ¶
var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
IncorrectPasswordError is returned when an incorrect password is detected.
Functions ¶
func CreateCertificate ¶ added in v0.3.0
func CreateCertificate(rand io.Reader, template, parent *x509.Certificate, pub, priv interface{}) ([]byte, error)
CreateCertificate creates a new X.509 v3 certificate based on a template. The following members of template are currently used:
- AuthorityKeyId
- BasicConstraintsValid
- CRLDistributionPoints
- DNSNames
- EmailAddresses
- ExcludedDNSDomains
- ExcludedEmailAddresses
- ExcludedIPRanges
- ExcludedURIDomains
- ExtKeyUsage
- ExtraExtensions
- IPAddresses
- IsCA
- IssuingCertificateURL
- KeyUsage
- MaxPathLen
- MaxPathLenZero
- NotAfter
- NotBefore
- OCSPServer
- PermittedDNSDomains
- PermittedDNSDomainsCritical
- PermittedEmailAddresses
- PermittedIPRanges
- PermittedURIDomains
- PolicyIdentifiers
- SerialNumber
- SignatureAlgorithm
- Subject
- SubjectKeyId
- URIs
- UnknownExtKeyUsage
The certificate is signed by parent. If parent is equal to template then the certificate is self-signed. The parameter pub is the public key of the certificate to be generated and priv is the private key of the signer.
The returned slice is the certificate in DER encoding.
The currently supported key types are *rsa.PublicKey, *ecdsa.PublicKey and ed25519.PublicKey. pub must be a supported key type, and priv must be a crypto.Signer with a supported public key.
The AuthorityKeyId will be taken from the SubjectKeyId of parent, if any, unless the resulting certificate is self-signed. Otherwise the value from template will be used.
If SubjectKeyId from template is empty and the template is a CA, SubjectKeyId will be generated from the hash of the public key.
func CreateCertificateRequest ¶
func CreateCertificateRequest(rand io.Reader, template *x509.CertificateRequest, priv interface{}) (csr []byte, err error)
CreateCertificateRequest creates a new certificate request based on a template. The following members of template are used:
- SignatureAlgorithm
- Subject
- DNSNames
- EmailAddresses
- IPAddresses
- URIs
- ExtraExtensions
- Attributes (deprecated)
priv is the private key to sign the CSR with, and the corresponding public key will be included in the CSR. It must implement crypto.Signer and its Public() method must return a *rsa.PublicKey or a *ecdsa.PublicKey or a ed25519.PublicKey. (A *rsa.PrivateKey, *ecdsa.PrivateKey or ed25519.PrivateKey satisfies this.)
The returned slice is the certificate request in DER encoding.
func CreateRevocationList ¶ added in v0.7.0
func CreateRevocationList(rand io.Reader, template *x509.RevocationList, issuer *Certificate, priv crypto.Signer) ([]byte, error)
CreateRevocationList creates a new X.509 v2 Certificate Revocation List, according to RFC 5280, based on template.
The CRL is signed by priv which should be the private key associated with the public key in the issuer certificate.
The issuer may not be nil, and the crlSign bit must be set in KeyUsage in order to use it as a CRL issuer.
The issuer distinguished name CRL field and authority key identifier extension are populated using the issuer certificate. issuer must have SubjectKeyId set.
func DecryptPEMBlock
deprecated
added in
v0.11.5
DecryptPEMBlock takes a PEM block encrypted according to RFC 1423 and the password used to encrypt it and returns a slice of decrypted DER encoded bytes. It inspects the DEK-Info header to determine the algorithm used for decryption. If no DEK-Info header is present, an error is returned. If an incorrect password is detected an IncorrectPasswordError is returned. Because of deficiencies in the format, it's not always possible to detect an incorrect password. In these cases no error will be returned but the decrypted DER bytes will be random noise.
Deprecated: Legacy PEM encryption as specified in RFC 1423 is insecure by design. Since it does not authenticate the ciphertext, it is vulnerable to padding oracle attacks that can let an attacker recover the plaintext.
func EncryptPEMBlock
deprecated
added in
v0.11.5
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error)
EncryptPEMBlock returns a PEM block of the specified type holding the given DER encoded data encrypted with the specified algorithm and password according to RFC 1423.
Deprecated: Legacy PEM encryption as specified in RFC 1423 is insecure by design. Since it does not authenticate the ciphertext, it is vulnerable to padding oracle attacks that can let an attacker recover the plaintext.
func IsEncryptedPEMBlock
deprecated
added in
v0.11.5
IsEncryptedPEMBlock returns whether the PEM block is password encrypted according to RFC 1423.
Deprecated: Legacy PEM encryption as specified in RFC 1423 is insecure by design. Since it does not authenticate the ciphertext, it is vulnerable to padding oracle attacks that can let an attacker recover the plaintext.
func MarshalECPrivateKey ¶ added in v0.3.0
func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)
MarshalECPrivateKey converts an EC private key to SEC 1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY". For a more flexible key format which is not EC specific, use MarshalPKCS8PrivateKey.
func MarshalPKCS8PrivateKey ¶ added in v0.3.0
MarshalPKCS8PrivateKey converts a private key to PKCS #8, ASN.1 DER form.
The following key types are currently supported: *rsa.PrivateKey, *ecdsa.PrivateKey, a *sm2.PrivateKey, a *sm9.SignMasterPrivateKey, a *sm9.SignPrivateKey, a *sm9.EncryptMasterPrivateKey, a *sm9.EncryptPrivateKey and ed25519.PrivateKey. Unsupported key types result in an error.
This kind of key is commonly encoded in PEM blocks of type "PRIVATE KEY".
func MarshalPKIXPublicKey ¶
MarshalPKIXPublicKey converts a public key to PKIX, ASN.1 DER form. The encoded public key is a SubjectPublicKeyInfo structure (see RFC 5280, Section 4.1).
The following key types are currently supported: *rsa.PublicKey, *ecdsa.PublicKey and ed25519.PublicKey. Unsupported key types result in an error.
This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
func MarshalSM2PrivateKey ¶ added in v0.3.0
func MarshalSM2PrivateKey(key *sm2.PrivateKey) ([]byte, error)
MarshalSM2PrivateKey convient method to marshal sm2 private key directly
func ParseCRL ¶ added in v0.4.8
func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error)
ParseCRL parses a CRL from the given bytes. It's often the case that PEM encoded CRLs will appear where they should be DER encoded, so this function will transparently handle PEM encoding as long as there isn't any leading garbage.
func ParseDERCRL ¶ added in v0.4.8
func ParseDERCRL(derBytes []byte) (*pkix.CertificateList, error)
ParseDERCRL parses a DER encoded CRL from the given bytes.
func ParseECPrivateKey ¶ added in v0.3.0
func ParseECPrivateKey(der []byte) (*ecdsa.PrivateKey, error)
ParseECPrivateKey parses an EC private key in SEC 1, ASN.1 DER form.
This kind of key is commonly encoded in PEM blocks of type "EC PRIVATE KEY".
func ParsePKCS8PrivateKey ¶ added in v0.3.0
ParsePKCS8PrivateKey parses an unencrypted private key in PKCS #8, ASN.1 DER form.
It returns a *rsa.PrivateKey, a *ecdsa.PrivateKey, a *sm2.PrivateKey, a *sm9.SignMasterPrivateKey, a *sm9.SignPrivateKey, a *sm9.EncryptMasterPrivateKey, a *sm9.EncryptPrivateKey or a ed25519.PrivateKey. More types might be supported in the future.
This kind of key is commonly encoded in PEM blocks of type "PRIVATE KEY".
func ParsePKIXPublicKey ¶
ParsePKIXPublicKey parses a public key in PKIX, ASN.1 DER form. The encoded public key is a SubjectPublicKeyInfo structure (see RFC 5280, Section 4.1).
It returns a *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey, or ed25519.PublicKey. More types might be supported in the future.
This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
func ParseSM2PrivateKey ¶ added in v0.3.0
func ParseSM2PrivateKey(der []byte) (*sm2.PrivateKey, error)
ParseSM2PrivateKey parses an SM2 private key
Types ¶
type CertPool ¶ added in v0.3.0
type CertPool struct {
// contains filtered or unexported fields
}
CertPool is a set of certificates.
func NewCertPool ¶ added in v0.3.0
func NewCertPool() *CertPool
NewCertPool returns a new, empty CertPool.
func SystemCertPool ¶ added in v0.3.0
SystemCertPool returns a copy of the system cert pool.
On Unix systems other than macOS the environment variables SSL_CERT_FILE and SSL_CERT_DIR can be used to override the system default locations for the SSL certificate file and SSL certificate files directory, respectively. The latter can be a colon-separated list.
Any mutations to the returned pool are not written to disk and do not affect any other pool returned by SystemCertPool.
New changes in the system cert pool might not be reflected in subsequent calls.
func (*CertPool) AddCert ¶ added in v0.3.0
func (s *CertPool) AddCert(cert *Certificate)
AddCert adds a certificate to a pool.
func (*CertPool) AppendCertsFromPEM ¶ added in v0.3.0
AppendCertsFromPEM attempts to parse a series of PEM encoded certificates. It appends any certificates found to s and reports whether any certificates were successfully parsed.
On many Linux systems, /etc/ssl/cert.pem will contain the system wide set of root CAs in a format suitable for this function.
type Certificate ¶ added in v0.3.0
type Certificate x509.Certificate
A Certificate represents an X.509 certificate.
func ParseCertificate ¶ added in v0.3.0
func ParseCertificate(der []byte) (*Certificate, error)
ParseCertificate parses a single certificate from the given ASN.1 DER data.
func ParseCertificatePEM ¶ added in v0.4.8
func ParseCertificatePEM(data []byte) (*Certificate, error)
func ParseCertificates ¶ added in v0.3.0
func ParseCertificates(der []byte) ([]*Certificate, error)
ParseCertificates parses one or more certificates from the given ASN.1 DER data. The certificates must be concatenated with no intermediate padding.
func (*Certificate) CheckCRLSignature ¶ added in v0.3.1
func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) error
CheckCRLSignature checks that the signature in crl is from c.
func (*Certificate) CheckSignature ¶ added in v0.3.0
func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) error
CheckSignature verifies that signature is a valid signature over signed from c's public key.
func (*Certificate) CheckSignatureFrom ¶ added in v0.3.0
func (c *Certificate) CheckSignatureFrom(parent *Certificate) error
CheckSignatureFrom verifies that the signature on c is a valid signature from parent.
func (*Certificate) CreateCRL ¶ added in v0.3.0
func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error)
CreateCRL returns a DER encoded CRL, signed by this Certificate, that contains the given list of revoked certificates.
Note: this method does not generate an RFC 5280 conformant X.509 v2 CRL. To generate a standards compliant CRL, use CreateRevocationList instead.
func (*Certificate) Equal ¶ added in v0.3.0
func (c *Certificate) Equal(other *Certificate) bool
func (*Certificate) ToX509 ¶ added in v0.11.5
func (c *Certificate) ToX509() *x509.Certificate
func (*Certificate) Verify ¶ added in v0.3.0
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error)
Verify attempts to verify c by building one or more chains from c to a certificate in opts.Roots, using certificates in opts.Intermediates if needed. If successful, it returns one or more chains where the first element of the chain is c and the last element is from opts.Roots.
If opts.Roots is nil, the platform verifier might be used, and verification details might differ from what is described below. If system roots are unavailable the returned error will be of type SystemRootsError.
Name constraints in the intermediates will be applied to all names claimed in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim example.com if an intermediate doesn't permit it, even if example.com is not the name being validated. Note that DirectoryName constraints are not supported.
Name constraint validation follows the rules from RFC 5280, with the addition that DNS name constraints may use the leading period format defined for emails and URIs. When a constraint has a leading period it indicates that at least one additional label must be prepended to the constrained name to be considered valid.
Extended Key Usage values are enforced nested down a chain, so an intermediate or root that enumerates EKUs prevents a leaf from asserting an EKU not in that list. (While this is not specified, it is common practice in order to limit the types of certificates a CA can issue.)
WARNING: this function doesn't do any revocation checking.
func (*Certificate) VerifyHostname ¶ added in v0.3.0
func (c *Certificate) VerifyHostname(h string) error
VerifyHostname returns nil if c is a valid certificate for the named host. Otherwise it returns an error describing the mismatch.
IP addresses can be optionally enclosed in square brackets and are checked against the IPAddresses field. Other names are checked case insensitively against the DNSNames field. If the names are valid hostnames, the certificate fields can have a wildcard as the left-most label.
Note that the legacy Common Name field is ignored.
type CertificateInvalidError ¶ added in v0.3.0
type CertificateInvalidError = x509.CertificateInvalidError
type CertificateRequest ¶ added in v0.3.0
type CertificateRequest x509.CertificateRequest
CertificateRequest represents a PKCS #10, certificate signature request.
func ParseCertificateRequest ¶
func ParseCertificateRequest(asn1Data []byte) (*CertificateRequest, error)
ParseCertificateRequest parses a single certificate request from the given ASN.1 DER data.
func ParseCertificateRequestPEM ¶ added in v0.4.8
func ParseCertificateRequestPEM(data []byte) (*CertificateRequest, error)
ParseCertificateRequestPEM parses a single certificate request from the given PEM data.
func (*CertificateRequest) CheckSignature ¶ added in v0.3.0
func (c *CertificateRequest) CheckSignature() error
CheckSignature reports whether the signature on c is valid.
func (*CertificateRequest) ToX509 ¶ added in v0.11.5
func (c *CertificateRequest) ToX509() *x509.CertificateRequest
type ExtKeyUsage ¶ added in v0.11.0
type ExtKeyUsage = x509.ExtKeyUsage
ExtKeyUsage represents an extended set of actions that are valid for a given key. Each of the ExtKeyUsage* constants define a unique action.
type KeyUsage ¶ added in v0.11.0
KeyUsage represents the set of actions that are valid for a given key. It's a bitmap of the KeyUsage* constants.
type PEMCipher ¶ added in v0.11.5
type PEMCipher int
const ( PEMCipherDES PEMCipher PEMCipher3DES PEMCipherAES128 PEMCipherAES192 PEMCipherAES256 PEMCipherSM4 )
Possible values for the EncryptPEMBlock encryption algorithm.
type PublicKeyAlgorithm ¶ added in v0.11.0
type PublicKeyAlgorithm = x509.PublicKeyAlgorithm
type SignatureAlgorithm ¶ added in v0.11.0
type SignatureAlgorithm = x509.SignatureAlgorithm
type UnknownAuthorityError ¶ added in v0.3.0
type UnknownAuthorityError struct { Cert *Certificate // contains filtered or unexported fields }
UnknownAuthorityError results when the certificate issuer is unknown
func (UnknownAuthorityError) Error ¶ added in v0.3.0
func (e UnknownAuthorityError) Error() string
type VerifyOptions ¶ added in v0.3.0
type VerifyOptions struct { // DNSName, if set, is checked against the leaf certificate with // Certificate.VerifyHostname or the platform verifier. DNSName string // Intermediates is an optional pool of certificates that are not trust // anchors, but can be used to form a chain from the leaf certificate to a // root certificate. Intermediates *CertPool // Roots is the set of trusted root certificates the leaf certificate needs // to chain up to. If nil, the system roots or the platform verifier are used. Roots *CertPool // CurrentTime is used to check the validity of all certificates in the // chain. If zero, the current time is used. CurrentTime time.Time // KeyUsages specifies which Extended Key Usage values are acceptable. A // chain is accepted if it allows any of the listed values. An empty list // means ExtKeyUsageServerAuth. To accept any key usage, include ExtKeyUsageAny. KeyUsages []ExtKeyUsage // MaxConstraintComparisions is the maximum number of comparisons to // perform when checking a given certificate's name constraints. If // zero, a sensible default is used. This limit prevents pathological // certificates from consuming excessive amounts of CPU time when // validating. It does not apply to the platform verifier. MaxConstraintComparisions int }
VerifyOptions contains parameters for Certificate.Verify.