popcode

package
v1.0.5 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Apr 21, 2020 License: BSD-3-Clause Imports: 5 Imported by: 30

README

GoDoc

Package popcode provides population code encoding and decoding support functionality, in 1D and 2D.

popcode.OneD

popcode.OneD Encode method turns a single scalar value into a 1D population code according to a set of parameters about the nature of the population code, range of values to encode, etc.

Decode takes a distributed pattern of activity and decodes a scalar value from it, using activation-weighted average based on tuning value of individual units.

popcode.TwoD

popcode.TwoD likewise has Encode and Decode methods for 2D gaussian-bumps that simultaneously encode a 2D value such as a 2D position.

Documentation

Overview

Package `popcode` provides population code encoding and decoding support functionality, in 1D and 2D.

`popcode.OneD` `Encode` method turns a single scalar value into a 1D population code according to a set of parameters about the nature of the population code, range of values to encode, etc.

`Decode` takes a distributed pattern of activity and decodes a scalar value from it, using activation-weighted average based on tuning value of individual units.

`popcode.TwoD` likewise has `Encode` and `Decode` methods for 2D gaussian-bumps that simultaneously encode a 2D value such as a 2D position.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type OneD

type OneD struct {
	Code   PopCodes `desc:"how to encode the value"`
	Min    float32  `` /* 168-byte string literal not displayed */
	Max    float32  `` /* 168-byte string literal not displayed */
	Sigma  float32  `` /* 149-byte string literal not displayed */
	Clip   bool     `desc:"ensure that encoded and decoded value remains within specified range"`
	Thr    float32  `` /* 201-byte string literal not displayed */
	MinSum float32  `` /* 174-byte string literal not displayed */
}

popcode.OneD provides encoding and decoding of population codes, used to represent a single continuous (scalar) value across a population of units / neurons (1 dimensional)

func (*OneD) Decode

func (pc *OneD) Decode(pat []float32) float32

Decode decodes value from a pattern of activation as the activation-weighted-average of the unit's preferred tuning values. must have 2 or more values in pattern pat.

func (*OneD) Defaults

func (pc *OneD) Defaults()

func (*OneD) Encode

func (pc *OneD) Encode(pat *[]float32, val float32, n int)

Encode generates a pattern of activation of given size to encode given value. n must be 2 or more. pat slice will be constructed if len != n

func (*OneD) SetRange added in v1.0.0

func (pc *OneD) SetRange(min, max, sigma float32)

SetRange sets the min, max and sigma values

func (*OneD) Values

func (pc *OneD) Values(vals *[]float32, n int)

Values sets the vals slice to the target preferred tuning values for each unit, for a distribution of given size n. n must be 2 or more. vals slice will be constructed if len != n

type PopCodes

type PopCodes int
const (
	// GaussBump = gaussian bump, with value = weighted average of tuned unit values
	GaussBump PopCodes = iota

	// Localist = each unit represents a distinct value; intermediate values represented by graded activity of neighbors; overall activity is weighted-average across all units
	Localist
)

type TwoD added in v1.0.0

type TwoD struct {
	Code   PopCodes   `desc:"how to encode the value"`
	Min    mat32.Vec2 `` /* 180-byte string literal not displayed */
	Max    mat32.Vec2 `` /* 180-byte string literal not displayed */
	Sigma  mat32.Vec2 `` /* 150-byte string literal not displayed */
	Clip   bool       `desc:"ensure that encoded and decoded value remains within specified range"`
	Thr    float32    `` /* 201-byte string literal not displayed */
	MinSum float32    `` /* 174-byte string literal not displayed */
}

popcode.TwoD provides encoding and decoding of population codes, used to represent two continuous (scalar) values across a 2D population of units / neurons (2 dimensional)

func (*TwoD) Decode added in v1.0.0

func (pc *TwoD) Decode(pat []float32) float32

Decode decodes value from a pattern of activation as the activation-weighted-average of the unit's preferred tuning values. must have 2 or more values in pattern pat. TODO: TBD

func (*TwoD) Defaults added in v1.0.0

func (pc *TwoD) Defaults()

func (*TwoD) Encode added in v1.0.0

func (pc *TwoD) Encode(pat etensor.Tensor, val mat32.Vec2) error

Encode generates a pattern of activation on given tensor, which must already have appropriate 2D shape which is used for encoding sizes (error if not).

func (*TwoD) SetRange added in v1.0.0

func (pc *TwoD) SetRange(min, max, sigma float32)

SetRange sets the min, max and sigma values to the same scalar values

func (*TwoD) Values added in v1.0.0

func (pc *TwoD) Values(vals etensor.Tensor) error

Values sets the vals 2D tensor to the target preferred tuning values for each unit, for a distribution of given size for shape of tensor. tensor must have 2D shape with dims 2 or larger (error if not) TODO: TBD requires 2 separate float vecs it seems

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL