Documentation ¶
Overview ¶
bench runs a benchmark model with 5 layers (3 hidden, Input, Output) all of the same size, for benchmarking different size networks. These are not particularly realistic models for actual applications (e.g., large models tend to have much more topographic patterns of connectivity and larger layers with fewer connections), but they are easy to run..
Index ¶
Constants ¶
This section is empty.
Variables ¶
View Source
var ParamSets = params.Sets{ "Base": {Desc: "these are the best params", Sheets: params.Sheets{ "Network": ¶ms.Sheet{ {Sel: "Prjn", Desc: "", Params: params.Params{ "Prjn.Learn.LRate.Base": "0.1", "Prjn.SWts.Adapt.LRate": "0.1", "Prjn.SWts.Init.SPct": "0.5", }}, {Sel: "Layer", Desc: "", Params: params.Params{ "Layer.Inhib.ActAvg.Nominal": "0.08", "Layer.Inhib.Layer.Gi": "1.05", "Layer.Acts.Gbar.L": "0.2", }}, {Sel: "#Input", Desc: "", Params: params.Params{ "Layer.Inhib.Layer.Gi": "0.9", "Layer.Acts.Clamp.Ge": "1.5", }}, {Sel: "#Output", Desc: "", Params: params.Params{ "Layer.Inhib.Layer.Gi": "0.70", "Layer.Acts.Clamp.Ge": "0.8", }}, {Sel: ".BackPrjn", Desc: "top-down back-projections MUST have lower relative weight scale, otherwise network hallucinates", Params: params.Params{ "Prjn.PrjnScale.Rel": "0.2", }}, }, }}, }
Functions ¶
func ConfigEpcLog ¶
func ConfigPats ¶
Types ¶
This section is empty.
Click to show internal directories.
Click to hide internal directories.