Documentation ¶
Overview ¶
Package axon provides the basic reference axon implementation, for rate-coded activations and standard error-driven learning. Other packages provide spiking or deep axon, PVLV, PBWM, etc.
The overall design seeks an "optimal" tradeoff between simplicity, transparency, ability to flexibly recombine and extend elements, and avoiding having to rewrite a bunch of stuff.
The *Stru elements handle the core structural components of the network, and hold emer.* interface pointers to elements such as emer.Layer, which provides a very minimal interface for these elements. Interfaces are automatically pointers, so think of these as generic pointers to your specific Layers etc.
This design means the same *Stru infrastructure can be re-used across different variants of the algorithm. Because we're keeping this infrastructure minimal and algorithm-free it should be much less confusing than dealing with the multiple levels of inheritance in C++ emergent. The actual algorithm-specific code is now fully self-contained, and largely orthogonalized from the infrastructure.
One specific cost of this is the need to cast the emer.* interface pointers into the specific types of interest, when accessing via the *Stru infrastructure.
The *Params elements contain all the (meta)parameters and associated methods for computing various functions. They are the equivalent of Specs from original emergent, but unlike specs they are local to each place they are used, and styling is used to apply common parameters across multiple layers etc. Params seems like a more explicit, recognizable name compared to specs, and this also helps avoid confusion about their different nature than old specs. Pars is shorter but confusable with "Parents" so "Params" is more unambiguous.
Params are organized into four major categories, which are more clearly functionally labeled as opposed to just structurally so, to keep things clearer and better organized overall: * ActParams -- activation params, at the Neuron level (in act.go) * InhibParams -- inhibition params, at the Layer / Pool level (in inhib.go) * LearnNeurParams -- learning parameters at the Neuron level (running-averages that drive learning) * LearnSynParams -- learning parameters at the Synapse level (both in learn.go)
The levels of structure and state are: * Network * .Layers * .Pools: pooled inhibition state -- 1 for layer plus 1 for each sub-pool (unit group) with inhibition * .RecvPrjns: receiving projections from other sending layers * .SendPrjns: sending projections from other receiving layers * .Neurons: neuron state variables
There are methods on the Network that perform initialization and overall computation, by iterating over layers and calling methods there. This is typically how most users will run their models.
Parallel computation across multiple CPU cores (threading) is achieved through persistent worker go routines that listen for functions to run on thread-specific channels. Each layer has a designated thread number, so you can experiment with different ways of dividing up the computation. Timing data is kept for per-thread time use -- see TimeReport() on the network.
The Layer methods directly iterate over Neurons, Pools, and Prjns, and there is no finer-grained level of computation (e.g., at the individual Neuron level), except for the *Params methods that directly compute relevant functions. Thus, looking directly at the layer.go code should provide a clear sense of exactly how everything is computed -- you may need to the refer to act.go, learn.go etc to see the relevant details but at least the overall organization should be clear in layer.go.
Computational methods are generally named: VarFmVar to specifically name what variable is being computed from what other input variables. e.g., SpikeFmG computes activation from conductances G.
The Pools (type Pool, in pool.go) hold state used for computing pooled inhibition, but also are used to hold overall aggregate pooled state variables -- the first element in Pools applies to the layer itself, and subsequent ones are for each sub-pool (4D layers). These pools play the same role as the AxonUnGpState structures in C++ emergent.
Prjns directly support all synapse-level computation, and hold the LearnSynParams and iterate directly over all of their synapses. It is the exact same Prjn object that lives in the RecvPrjns of the receiver-side, and the SendPrjns of the sender-side, and it maintains and coordinates both sides of the state. This clarifies and simplifies a lot of code. There is no separate equivalent of AxonConSpec / AxonConState at the level of connection groups per unit per projection.
The pattern of connectivity between units is specified by the prjn.Pattern interface and all the different standard options are avail in that prjn package. The Pattern code generates a full tensor bitmap of binary 1's and 0's for connected (1's) and not (0's) units, and can use any method to do so. This full lookup-table approach is not the most memory-efficient, but it is fully general and shouldn't be too-bad memory-wise overall (fully bit-packed arrays are used, and these bitmaps don't need to be retained once connections have been established). This approach allows patterns to just focus on patterns, and they don't care at all how they are used to allocate actual connections.
Index ¶
- Constants
- Variables
- func DecaySynCa(sy *Synapse, decay float32)
- func EnvApplyInputs(net *Network, ev env.Env)
- func GetRandomNumber(index uint32, counter slrand.Counter, funIdx RandFunIdx) float32
- func InitSynCa(sy *Synapse)
- func JsonToParams(b []byte) string
- func LogAddCaLrnDiagnosticItems(lg *elog.Logs, net *Network, times ...etime.Times)
- func LogAddDiagnosticItems(lg *elog.Logs, layerNames []string, times ...etime.Times)
- func LogAddExtraDiagnosticItems(lg *elog.Logs, net *Network, times ...etime.Times)
- func LogAddLayerGeActAvgItems(lg *elog.Logs, net *Network, mode etime.Modes, etm etime.Times)
- func LogAddPCAItems(lg *elog.Logs, net *Network, times ...etime.Times)
- func LogAddPulvCorSimItems(lg *elog.Logs, net *Network, times ...etime.Times)
- func LogInputLayer(lg *elog.Logs, net *Network)
- func LogTestErrors(lg *elog.Logs)
- func LooperResetLogBelow(man *looper.Manager, logs *elog.Logs)
- func LooperSimCycleAndLearn(man *looper.Manager, net *Network, ctx *Context, viewupdt *netview.ViewUpdt)
- func LooperStdPhases(man *looper.Manager, ctx *Context, net *Network, plusStart, plusEnd int)
- func LooperUpdtNetView(man *looper.Manager, viewupdt *netview.ViewUpdt)
- func LooperUpdtPlots(man *looper.Manager, gui *egui.GUI)
- func NeuronVarIdxByName(varNm string) (int, error)
- func PCAStats(net *Network, lg *elog.Logs, stats *estats.Stats)
- func SaveWeights(net *Network, ctrString, runName string) string
- func SaveWeightsIfArgSet(net *Network, args *ecmd.Args, ctrString, runName string) string
- func SetNeuronExtPosNeg(ni uint32, nrn *Neuron, val float32)
- func SigFun(w, gain, off float32) float32
- func SigFun61(w float32) float32
- func SigInvFun(w, gain, off float32) float32
- func SigInvFun61(w float32) float32
- func SynapseVarByName(varNm string) (int, error)
- func ToggleLayersOff(net *Network, layerNames []string, off bool)
- func WeightsFileName(net *Network, ctrString, runName string) string
- type ActAvgParams
- type ActAvgVals
- type ActInitParams
- type ActParams
- func (ac *ActParams) DecayState(nrn *Neuron, decay, glong float32)
- func (ac *ActParams) Defaults()
- func (ac *ActParams) GSkCaFmCa(nrn *Neuron)
- func (ac *ActParams) GeFmSyn(ctx *Context, ni uint32, nrn *Neuron, geSyn, geExt float32)
- func (ac *ActParams) GeNoise(ctx *Context, ni uint32, nrn *Neuron)
- func (ac *ActParams) GiFmSyn(ctx *Context, ni uint32, nrn *Neuron, giSyn float32) float32
- func (ac *ActParams) GiNoise(ctx *Context, ni uint32, nrn *Neuron)
- func (ac *ActParams) GkFmVm(nrn *Neuron)
- func (ac *ActParams) GvgccFmVm(nrn *Neuron)
- func (ac *ActParams) InetFmG(vm, ge, gl, gi, gk float32) float32
- func (ac *ActParams) InitActs(nrn *Neuron)
- func (ac *ActParams) InitLongActs(nrn *Neuron)
- func (ac *ActParams) NMDAFmRaw(nrn *Neuron, geTot float32)
- func (ac *ActParams) SpikeFmVm(nrn *Neuron)
- func (ac *ActParams) Update()
- func (ac *ActParams) VmFmG(nrn *Neuron)
- func (ac *ActParams) VmFmInet(vm, dt, inet float32) float32
- func (ac *ActParams) VmInteg(vm, dt, ge, gl, gi, gk float32, nvm, inet *float32)
- type AttnParams
- type AvgMaxPhases
- type AxonLayer
- type AxonNetwork
- type AxonPrjn
- type AxonPrjns
- type BLAParams
- type BurstParams
- type CTParams
- type CaLrnParams
- type CaSpkParams
- type ClampParams
- type Context
- type CorSimStats
- type DAModTypes
- type DecayParams
- type DendParams
- type DtParams
- func (dp *DtParams) AvgVarUpdt(avg, vr *float32, val float32)
- func (dp *DtParams) Defaults()
- func (dp *DtParams) GeSynFmRaw(geSyn, geRaw float32) float32
- func (dp *DtParams) GeSynFmRawSteady(geRaw float32) float32
- func (dp *DtParams) GiSynFmRaw(giSyn, giRaw float32) float32
- func (dp *DtParams) GiSynFmRawSteady(giRaw float32) float32
- func (dp *DtParams) Update()
- type GPLayerTypes
- type GPParams
- type GScaleVals
- type InhibParams
- type LRateMod
- type LRateParams
- type LaySpecialVals
- type Layer
- func (ly *Layer) AdaptInhib(ctx *Context)
- func (ly *Layer) AllParams() string
- func (ly *Layer) AnyGated() bool
- func (ly *Layer) ApplyExt(ext etensor.Tensor)
- func (ly *Layer) ApplyExt1D(ext []float64)
- func (ly *Layer) ApplyExt1D32(ext []float32)
- func (ly *Layer) ApplyExt1DTsr(ext etensor.Tensor)
- func (ly *Layer) ApplyExt2D(ext etensor.Tensor)
- func (ly *Layer) ApplyExt2Dto4D(ext etensor.Tensor)
- func (ly *Layer) ApplyExt4D(ext etensor.Tensor)
- func (ly *Layer) ApplyExtFlags() (clrmsk, setmsk NeuronFlags, toTarg bool)
- func (ly *Layer) AsAxon() *Layer
- func (ly *Layer) AvgDifFmTrgAvg()
- func (ly *Layer) AvgGeM(ctx *Context)
- func (ly *Layer) AvgMaxVarByPool(varNm string, poolIdx int) minmax.AvgMax32
- func (ly *Layer) BLAPostBuild()
- func (ly *Layer) BetweenLayerGi(ctx *Context)
- func (ly *Layer) BetweenLayerGiMax(maxGi float32, net *Network, layIdx int32) float32
- func (ly *Layer) ClearTargExt()
- func (ly *Layer) CorSimFmActs()
- func (ly *Layer) CostEst() (neur, syn, tot int)
- func (ly *Layer) CycleNeuron(ctx *Context, ni uint32, nrn *Neuron)
- func (ly *Layer) CyclePost(ctx *Context)
- func (ly *Layer) DTrgAvgFmErr()
- func (ly *Layer) DTrgSubMean()
- func (ly *Layer) DWtLayer(ctx *Context)
- func (ly *Layer) DecayCaLrnSpk(decay float32)
- func (ly *Layer) DecayState(ctx *Context, decay, glong float32)
- func (ly *Layer) DecayStateLayer(ctx *Context, decay, glong float32)
- func (ly *Layer) DecayStatePool(pool int, decay, glong float32)
- func (ly *Layer) Defaults()
- func (ly *Layer) GInteg(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, vals *LayerVals)
- func (ly *Layer) GPDefaults()
- func (ly *Layer) GPPostBuild()
- func (ly *Layer) GPiDefaults()
- func (ly *Layer) GatedFmSpkMax(thr float32) bool
- func (ly *Layer) GatherSpikes(ctx *Context, ni uint32, nrn *Neuron)
- func (ly *Layer) GiFmSpikes(ctx *Context)
- func (ly *Layer) HasPoolInhib() bool
- func (ly *Layer) InitActAvg()
- func (ly *Layer) InitActs()
- func (ly *Layer) InitExt()
- func (ly *Layer) InitGScale()
- func (ly *Layer) InitPrjnGBuffs()
- func (ly *Layer) InitWtSym()
- func (ly *Layer) InitWts()
- func (ly *Layer) IsInput() bool
- func (ly *Layer) IsInputOrTarget() bool
- func (ly *Layer) IsLearnTrgAvg() bool
- func (ly *Layer) IsTarget() bool
- func (ly *Layer) LRateMod(mod float32)
- func (ly *Layer) LRateSched(sched float32)
- func (ly *Layer) LesionNeurons(prop float32) int
- func (ly *Layer) LocalistErr2D() (err bool, minusIdx, plusIdx int)
- func (ly *Layer) LocalistErr4D() (err bool, minusIdx, plusIdx int)
- func (ly *Layer) MatrixDefaults()
- func (ly *Layer) MatrixGated() bool
- func (ly *Layer) MatrixPostBuild()
- func (ly *Layer) MinusPhase(ctx *Context)
- func (ly *Layer) NewState(ctx *Context)
- func (ly *Layer) Object() interface{}
- func (ly *Layer) PTMaintDefaults()
- func (ly *Layer) PctUnitErr() float64
- func (ly *Layer) PlusPhase(ctx *Context)
- func (ly *Layer) PlusPhasePost(ctx *Context)
- func (ly *Layer) PoolGiFmSpikes(ctx *Context)
- func (ly *Layer) PostBuild()
- func (ly *Layer) PostSpike(ctx *Context, ni uint32, nrn *Neuron)
- func (ly *Layer) PulvPostBuild()
- func (ly *Layer) PulvinarDriver(ni uint32) (drvGe, nonDrvPct float32)
- func (ly *Layer) RSalAChMaxLayAct(maxAct float32, net *Network, layIdx int32) float32
- func (ly *Layer) RSalAChPostBuild()
- func (ly *Layer) RWDaPostBuild()
- func (ly *Layer) ReadWtsJSON(r io.Reader) error
- func (ly *Layer) RecvPrjnVals(vals *[]float32, varNm string, sendLay emer.Layer, sendIdx1D int, ...) error
- func (ly *Layer) STNDefaults()
- func (ly *Layer) SendPrjnVals(vals *[]float32, varNm string, recvLay emer.Layer, recvIdx1D int, ...) error
- func (ly *Layer) SendSpike(ctx *Context)
- func (ly *Layer) SetSubMean(trgAvg, prjn float32)
- func (ly *Layer) SetWts(lw *weights.Layer) error
- func (ly *Layer) SlowAdapt(ctx *Context)
- func (ly *Layer) SpikeFmG(ctx *Context, ni uint32, nrn *Neuron)
- func (ly *Layer) SpkSt1(ctx *Context)
- func (ly *Layer) SpkSt2(ctx *Context)
- func (ly *Layer) SynFail(ctx *Context)
- func (ly *Layer) TDDaPostBuild()
- func (ly *Layer) TDIntegPostBuild()
- func (ly *Layer) TargToExt()
- func (ly *Layer) TrgAvgFmD()
- func (ly *Layer) UnLesionNeurons()
- func (ly *Layer) UnitVal(varNm string, idx []int) float32
- func (ly *Layer) UnitVal1D(varIdx int, idx int) float32
- func (ly *Layer) UnitVals(vals *[]float32, varNm string) error
- func (ly *Layer) UnitValsRepTensor(tsr etensor.Tensor, varNm string) error
- func (ly *Layer) UnitValsTensor(tsr etensor.Tensor, varNm string) error
- func (ly *Layer) UnitVarIdx(varNm string) (int, error)
- func (ly *Layer) UnitVarNames() []string
- func (ly *Layer) UnitVarNum() int
- func (ly *Layer) UnitVarProps() map[string]string
- func (ly *Layer) Update()
- func (ly *Layer) UpdateExtFlags()
- func (ly *Layer) UpdateParams()
- func (ly *Layer) VThalDefaults()
- func (ly *Layer) WriteWtsJSON(w io.Writer, depth int)
- func (ly *Layer) WtFmDWtLayer(ctx *Context)
- type LayerBase
- func (ly *LayerBase) ApplyParams(pars *params.Sheet, setMsg bool) (bool, error)
- func (ly *LayerBase) Build() error
- func (ly *LayerBase) BuildConfigByName(nm string) (string, error)
- func (ly *LayerBase) BuildConfigFindLayer(nm string, mustName bool) int32
- func (ly *LayerBase) BuildPools(nu int) error
- func (ly *LayerBase) BuildPrjns() error
- func (ly *LayerBase) BuildSubPools()
- func (ly *LayerBase) Class() string
- func (ly *LayerBase) Config(shape []int, typ emer.LayerType)
- func (ly *LayerBase) Idx4DFrom2D(x, y int) ([]int, bool)
- func (ly *LayerBase) Index() int
- func (ly *LayerBase) InitName(lay emer.Layer, name string, net emer.Network)
- func (ly *LayerBase) Is2D() bool
- func (ly *LayerBase) Is4D() bool
- func (ly *LayerBase) IsOff() bool
- func (ly *LayerBase) Label() string
- func (ly *LayerBase) LayerType() LayerTypes
- func (ly *LayerBase) NPools() int
- func (ly *LayerBase) NRecvPrjns() int
- func (ly *LayerBase) NSendPrjns() int
- func (ly *LayerBase) Name() string
- func (ly *LayerBase) NeurStartIdx() int
- func (ly *LayerBase) NonDefaultParams() string
- func (ly *LayerBase) Pool(idx int) *Pool
- func (ly *LayerBase) PoolTry(idx int) (*Pool, error)
- func (ly *LayerBase) Pos() mat32.Vec3
- func (ly *LayerBase) RecipToRecvPrjn(rpj emer.Prjn) (emer.Prjn, bool)
- func (ly *LayerBase) RecipToSendPrjn(spj emer.Prjn) (emer.Prjn, bool)
- func (ly *LayerBase) RecvNameTry(receiver string) (emer.Prjn, error)
- func (ly *LayerBase) RecvNameTypeTry(receiver, typ string) (emer.Prjn, error)
- func (ly *LayerBase) RecvPrjn(idx int) emer.Prjn
- func (ly *LayerBase) RecvPrjns() *AxonPrjns
- func (ly *LayerBase) RelPos() relpos.Rel
- func (ly *LayerBase) RepIdxs() []int
- func (ly *LayerBase) RepShape() *etensor.Shape
- func (ly *LayerBase) SendNameTry(sender string) (emer.Prjn, error)
- func (ly *LayerBase) SendNameTypeTry(sender, typ string) (emer.Prjn, error)
- func (ly *LayerBase) SendPrjn(idx int) emer.Prjn
- func (ly *LayerBase) SendPrjns() *AxonPrjns
- func (ly *LayerBase) SetBuildConfig(param, val string)
- func (ly *LayerBase) SetClass(cls string)
- func (ly *LayerBase) SetIndex(idx int)
- func (ly *LayerBase) SetName(nm string)
- func (ly *LayerBase) SetOff(off bool)
- func (ly *LayerBase) SetPos(pos mat32.Vec3)
- func (ly *LayerBase) SetRelPos(rel relpos.Rel)
- func (ly *LayerBase) SetRepIdxsShape(idxs, shape []int)
- func (ly *LayerBase) SetShape(shape []int)
- func (ly *LayerBase) SetThread(thr int)
- func (ly *LayerBase) SetType(typ emer.LayerType)
- func (ly *LayerBase) Shape() *etensor.Shape
- func (ly *LayerBase) Size() mat32.Vec2
- func (ly *LayerBase) Thread() int
- func (ly *LayerBase) Type() emer.LayerType
- func (ly *LayerBase) TypeName() string
- func (ly *LayerBase) VarRange(varNm string) (min, max float32, err error)
- type LayerIdxs
- type LayerParams
- func (ly *LayerParams) AllParams() string
- func (ly *LayerParams) BLADefaults()
- func (ly *LayerParams) CTDefaults()
- func (ly *LayerParams) Defaults()
- func (ly *LayerParams) GFmRawSyn(ctx *Context, ni uint32, nrn *Neuron)
- func (ly *LayerParams) GNeuroMod(ctx *Context, ni uint32, nrn *Neuron, vals *LayerVals)
- func (ly *LayerParams) GatherSpikesInit(nrn *Neuron)
- func (ly *LayerParams) GeToPool(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, lpl *Pool, subPool bool)
- func (ly *LayerParams) GiInteg(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, vals *LayerVals)
- func (ly *LayerParams) LayPoolGiFmSpikes(ctx *Context, lpl *Pool, vals *LayerVals)
- func (ly *LayerParams) MinusPhase(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, vals *LayerVals)
- func (ly *LayerParams) NewState(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, vals *LayerVals)
- func (ly *LayerParams) PlusPhase(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, lpl *Pool, vals *LayerVals)
- func (ly *LayerParams) PostSpike(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, vals *LayerVals)
- func (ly *LayerParams) PostSpikeSpecial(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, lpl *Pool, vals *LayerVals)
- func (ly *LayerParams) PulvDefaults()
- func (ly *LayerParams) RWDefaults()
- func (ly *LayerParams) RWPredDefaults()
- func (ly *LayerParams) SpecialPostGs(ctx *Context, ni uint32, nrn *Neuron, saveVal float32)
- func (ly *LayerParams) SpecialPreGs(ctx *Context, ni uint32, nrn *Neuron, drvGe float32, nonDrvPct float32) float32
- func (ly *LayerParams) SpikeFmG(ctx *Context, ni uint32, nrn *Neuron)
- func (ly *LayerParams) SubPoolGiFmSpikes(ctx *Context, pl *Pool, lpl *Pool, lyInhib bool, giMult float32)
- func (ly *LayerParams) TDDefaults()
- func (ly *LayerParams) TDPredDefaults()
- func (ly *LayerParams) Update()
- type LayerTypes
- type LayerVals
- type LearnNeurParams
- func (ln *LearnNeurParams) CaFmSpike(nrn *Neuron)
- func (ln *LearnNeurParams) DecayCaLrnSpk(nrn *Neuron, decay float32)
- func (ln *LearnNeurParams) Defaults()
- func (ln *LearnNeurParams) InitNeurCa(nrn *Neuron)
- func (ln *LearnNeurParams) LrnNMDAFmRaw(nrn *Neuron, geTot float32)
- func (ln *LearnNeurParams) Update()
- type LearnSynParams
- type MatrixParams
- type MatrixPrjnParams
- type NetThreads
- type Network
- func (nt *Network) AddAmygdala(prefix string, neg bool, nUs, unY, unX int, space float32) (blaPosAcq, blaPosExt, blaNegAcq, blaNegExt, cemPos, cemNeg, pptg AxonLayer)
- func (nt *Network) AddBG(prefix string, nPoolsY, nPoolsX, nNeurY, nNeurX, gpNeurY, gpNeurX int, ...) (mtxGo, mtxNo, gpeOut, gpeIn, gpeTA, stnp, stns, gpi AxonLayer)
- func (nt *Network) AddBG4D(prefix string, nPoolsY, nPoolsX, nNeurY, nNeurX, gpNeurY, gpNeurX int, ...) (mtxGo, mtxNo, gpeOut, gpeIn, gpeTA, stnp, stns, gpi AxonLayer)
- func (nt *Network) AddBLALayers(prefix string, pos bool, nUs, unY, unX int, rel relpos.Relations, ...) (acq, ext AxonLayer)
- func (nt *Network) AddCINLayer(name, mtxGo, mtxNo string, space float32) *Layer
- func (nt *Network) AddCTLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddCTLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddClampDaLayer(name string) *Layer
- func (nt *Network) AddGPeLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddGPeLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddGPiLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddGPiLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddInputPulv2D(name string, nNeurY, nNeurX int, space float32) (emer.Layer, *Layer)
- func (nt *Network) AddInputPulv4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, space float32) (emer.Layer, *Layer)
- func (nt *Network) AddMatrixLayer(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, da DAModTypes) *Layer
- func (nt *Network) AddPPTgLayer(prefix string, nUs, unY, unX int) AxonLayer
- func (nt *Network) AddPTMaintLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddPTMaintLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddPTMaintThalForSuper(super, ct emer.Layer, suffix string, superToPT, ptSelf, ctToThal prjn.Pattern, ...) (pt, thal emer.Layer)
- func (nt *Network) AddPulvForSuper(super emer.Layer, space float32) emer.Layer
- func (nt *Network) AddPulvLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddPulvLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddRSalienceAChLayer(name string) *Layer
- func (nt *Network) AddRWLayers(prefix string, rel relpos.Relations, space float32) (rew, rp, da AxonLayer)
- func (nt *Network) AddRewLayer(name string) *Layer
- func (nt *Network) AddSTNLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddSTNLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddSuperCT2D(name string, shapeY, shapeX int, space float32, pat prjn.Pattern) (super, ct emer.Layer)
- func (nt *Network) AddSuperCT4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, space float32, ...) (super, ct emer.Layer)
- func (nt *Network) AddSuperLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddSuperLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddTDLayers(prefix string, rel relpos.Relations, space float32) (rew, rp, ri, td AxonLayer)
- func (nt *Network) AddThalLayer2D(name string, nNeurY, nNeurX int) *Layer
- func (nt *Network) AddThalLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int) *Layer
- func (nt *Network) AsAxon() *Network
- func (nt *Network) ClearTargExt()
- func (nt *Network) CollectDWts(dwts *[]float32) bool
- func (nt *Network) ConnectCTSelf(ly emer.Layer, pat prjn.Pattern) (ctxt, maint emer.Prjn)
- func (nt *Network) ConnectCtxtToCT(send, recv emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *Network) ConnectPTMaintSelf(ly emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *Network) ConnectSuperToCT(send, recv emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *Network) ConnectToBLA(send, recv emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *Network) ConnectToMatrix(send, recv emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *Network) ConnectToPulv(super, ct, pulv emer.Layer, toPulvPat, fmPulvPat prjn.Pattern) (toPulv, toSuper, toCT emer.Prjn)
- func (nt *Network) ConnectToRWPrjn(send, recv emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *Network) Cycle(ctx *Context)
- func (nt *Network) CycleImpl(ctx *Context)
- func (nt *Network) DWt(ctx *Context)
- func (nt *Network) DWtImpl(ctx *Context)
- func (nt *Network) DecayState(ctx *Context, decay, glong float32)
- func (nt *Network) DecayStateByType(ctx *Context, decay, glong float32, types ...LayerTypes)
- func (nt *Network) Defaults()
- func (nt *Network) InitActs()
- func (nt *Network) InitExt()
- func (nt *Network) InitGScale()
- func (nt *Network) InitTopoSWts()
- func (nt *Network) InitWts()
- func (nt *Network) LRateMod(mod float32)
- func (nt *Network) LRateSched(sched float32)
- func (nt *Network) LayersSetOff(off bool)
- func (nt *Network) MinusPhase(ctx *Context)
- func (nt *Network) MinusPhaseImpl(ctx *Context)
- func (nt *Network) NewLayer() emer.Layer
- func (nt *Network) NewPrjn() emer.Prjn
- func (nt *Network) NewState(ctx *Context)
- func (nt *Network) NewStateImpl(ctx *Context)
- func (nt *Network) PlusPhase(ctx *Context)
- func (nt *Network) PlusPhaseImpl(ctx *Context)
- func (nt *Network) SetDWts(dwts []float32, navg int)
- func (nt *Network) SetSubMean(trgAvg, prjn float32)
- func (nt *Network) SizeReport() string
- func (nt *Network) SlowAdapt(ctx *Context)
- func (nt *Network) SpkSt1(ctx *Context)
- func (nt *Network) SpkSt2(ctx *Context)
- func (nt *Network) SynFail(ctx *Context)
- func (nt *Network) SynVarNames() []string
- func (nt *Network) SynVarProps() map[string]string
- func (nt *Network) TargToExt()
- func (nt *Network) UnLesionNeurons()
- func (nt *Network) UnitVarNames() []string
- func (nt *Network) UnitVarProps() map[string]string
- func (nt *Network) UpdateExtFlags()
- func (nt *Network) UpdateParams()
- func (nt *Network) WtFmDWt(ctx *Context)
- func (nt *Network) WtFmDWtImpl(ctx *Context)
- type NetworkBase
- func (nt *NetworkBase) AddLayer(name string, shape []int, typ emer.LayerType) emer.Layer
- func (nt *NetworkBase) AddLayer2D(name string, shapeY, shapeX int, typ emer.LayerType) emer.Layer
- func (nt *NetworkBase) AddLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, typ emer.LayerType) emer.Layer
- func (nt *NetworkBase) AddLayerInit(ly emer.Layer, name string, shape []int, typ emer.LayerType)
- func (nt *NetworkBase) AllParams() string
- func (nt *NetworkBase) AllPrjnScales() string
- func (nt *NetworkBase) ApplyParams(pars *params.Sheet, setMsg bool) (bool, error)
- func (nt *NetworkBase) BidirConnectLayerNames(low, high string, pat prjn.Pattern) (lowlay, highlay emer.Layer, fwdpj, backpj emer.Prjn, err error)
- func (nt *NetworkBase) BidirConnectLayers(low, high emer.Layer, pat prjn.Pattern) (fwdpj, backpj emer.Prjn)
- func (nt *NetworkBase) BidirConnectLayersPy(low, high emer.Layer, pat prjn.Pattern)
- func (nt *NetworkBase) Bounds() (min, max mat32.Vec3)
- func (nt *NetworkBase) BoundsUpdt()
- func (nt *NetworkBase) Build() error
- func (nt *NetworkBase) BuildPrjnGBuf()
- func (nt *NetworkBase) ConnectLayerNames(send, recv string, pat prjn.Pattern, typ emer.PrjnType) (rlay, slay emer.Layer, pj emer.Prjn, err error)
- func (nt *NetworkBase) ConnectLayers(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType) emer.Prjn
- func (nt *NetworkBase) ConnectLayersPrjn(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType, pj emer.Prjn) emer.Prjn
- func (nt *NetworkBase) DeleteAll()
- func (nt *NetworkBase) FunTimerStart(fun string)
- func (nt *NetworkBase) FunTimerStop(fun string)
- func (nt *NetworkBase) InitName(net emer.Network, name string)
- func (nt *NetworkBase) Label() string
- func (nt *NetworkBase) LateralConnectLayer(lay emer.Layer, pat prjn.Pattern) emer.Prjn
- func (nt *NetworkBase) LateralConnectLayerPrjn(lay emer.Layer, pat prjn.Pattern, pj emer.Prjn) emer.Prjn
- func (nt *NetworkBase) Layer(idx int) emer.Layer
- func (nt *NetworkBase) LayerByName(name string) emer.Layer
- func (nt *NetworkBase) LayerByNameTry(name string) (emer.Layer, error)
- func (nt *NetworkBase) LayerMapParallel(fun func(ly AxonLayer), funame string, nThreads int)
- func (nt *NetworkBase) LayerMapSeq(fun func(ly AxonLayer), funame string)
- func (nt *NetworkBase) LayersByClass(classes ...string) []string
- func (nt *NetworkBase) LayersByType(layType ...LayerTypes) []string
- func (nt *NetworkBase) Layout()
- func (nt *NetworkBase) MakeLayMap()
- func (nt *NetworkBase) NLayers() int
- func (nt *NetworkBase) Name() string
- func (nt *NetworkBase) NeuronFun(fun func(ly AxonLayer, ni uint32, nrn *Neuron), funame string)
- func (nt *NetworkBase) NeuronMapParallel(fun func(ly AxonLayer, ni uint32, nrn *Neuron), funame string, nThreads int)
- func (nt *NetworkBase) NeuronMapSequential(fun func(ly AxonLayer, ni uint32, nrn *Neuron), funame string)
- func (nt *NetworkBase) NonDefaultParams() string
- func (nt *NetworkBase) OpenWtsCpp(filename gi.FileName) error
- func (nt *NetworkBase) OpenWtsJSON(filename gi.FileName) error
- func (nt *NetworkBase) PrjnMapParallel(fun func(prjn AxonPrjn), funame string, nThreads int)
- func (nt *NetworkBase) PrjnMapSeq(fun func(pj AxonPrjn), funame string)
- func (nt *NetworkBase) ReadWtsCpp(r io.Reader) error
- func (nt *NetworkBase) ReadWtsJSON(r io.Reader) error
- func (nt *NetworkBase) SaveWtsJSON(filename gi.FileName) error
- func (nt *NetworkBase) SendSpikeFun(fun func(ly AxonLayer), funame string)
- func (nt *NetworkBase) SetWts(nw *weights.Network) error
- func (nt *NetworkBase) StdVertLayout()
- func (nt *NetworkBase) SynCaFun(fun func(pj AxonPrjn), funame string)
- func (nt *NetworkBase) ThreadReport()
- func (nt *NetworkBase) TimerReport()
- func (nt *NetworkBase) VarRange(varNm string) (min, max float32, err error)
- func (nt *NetworkBase) WriteWtsJSON(w io.Writer) error
- type NeuroModParams
- type NeuroModVals
- type Neuron
- func (nrn *Neuron) ClearFlag(flag NeuronFlags)
- func (nrn *Neuron) HasFlag(flag NeuronFlags) bool
- func (nrn *Neuron) IsOff() bool
- func (nrn *Neuron) SetFlag(flag NeuronFlags)
- func (nrn *Neuron) VarByIndex(idx int) float32
- func (nrn *Neuron) VarByName(varNm string) (float32, error)
- func (nrn *Neuron) VarNames() []string
- type NeuronFlags
- type Pool
- type PoolAvgMax
- type Prjn
- func (pj *Prjn) AllParams() string
- func (pj *Prjn) AsAxon() *Prjn
- func (pj *Prjn) Class() string
- func (pj *Prjn) DWt(ctx *Context)
- func (pj *Prjn) DWtSubMean(ctx *Context)
- func (pj *Prjn) Defaults()
- func (pj *Prjn) InitGBuffs()
- func (pj *Prjn) InitWtSym(rpjp AxonPrjn)
- func (pj *Prjn) InitWts()
- func (pj *Prjn) InitWtsSyn(sy *Synapse, mean, spct float32)
- func (pj *Prjn) LRateMod(mod float32)
- func (pj *Prjn) LRateSched(sched float32)
- func (pj *Prjn) Object() interface{}
- func (pj *Prjn) PrjnType() PrjnTypes
- func (pj *Prjn) ReadWtsJSON(r io.Reader) error
- func (pj *Prjn) RecvSpikes(ctx *Context, recvIdx int)
- func (pj *Prjn) RecvSynCa(ctx *Context)
- func (pj *Prjn) SWtFmWt()
- func (pj *Prjn) SWtRescale()
- func (pj *Prjn) SendSpike(ctx *Context, sendIdx int, nrn *Neuron)
- func (pj *Prjn) SendSynCa(ctx *Context)
- func (pj *Prjn) SetSWtsFunc(swtFun func(si, ri int, send, recv *etensor.Shape) float32)
- func (pj *Prjn) SetSWtsRPool(swts etensor.Tensor)
- func (pj *Prjn) SetSynVal(varNm string, sidx, ridx int, val float32) error
- func (pj *Prjn) SetWts(pw *weights.Prjn) error
- func (pj *Prjn) SetWtsFunc(wtFun func(si, ri int, send, recv *etensor.Shape) float32)
- func (pj *Prjn) SlowAdapt(ctx *Context)
- func (pj *Prjn) SynFail(ctx *Context)
- func (pj *Prjn) SynScale()
- func (pj *Prjn) Update()
- func (pj *Prjn) UpdateParams()
- func (pj *Prjn) WriteWtsJSON(w io.Writer, depth int)
- func (pj *Prjn) WtFmDWt(ctx *Context)
- type PrjnBase
- func (pj *PrjnBase) ApplyParams(pars *params.Sheet, setMsg bool) (bool, error)
- func (pj *PrjnBase) Build() error
- func (pj *PrjnBase) Class() string
- func (pj *PrjnBase) Connect(slay, rlay emer.Layer, pat prjn.Pattern, typ emer.PrjnType)
- func (pj *PrjnBase) Init(prjn emer.Prjn)
- func (pj *PrjnBase) IsOff() bool
- func (pj *PrjnBase) Label() string
- func (pj *PrjnBase) Name() string
- func (pj *PrjnBase) NonDefaultParams() string
- func (pj *PrjnBase) Pattern() prjn.Pattern
- func (pj *PrjnBase) PrjnTypeName() string
- func (pj *PrjnBase) RecvLay() emer.Layer
- func (pj *PrjnBase) RecvSyns(ri int) []Synapse
- func (pj *PrjnBase) SendLay() emer.Layer
- func (pj *PrjnBase) SendSynIdxs(si int) []uint32
- func (pj *PrjnBase) SetClass(cls string) emer.Prjn
- func (pj *PrjnBase) SetConStartN(con *[]StartN, avgmax *minmax.AvgMax32, tn *etensor.Int32) uint32
- func (pj *PrjnBase) SetOff(off bool)
- func (pj *PrjnBase) SetPattern(pat prjn.Pattern) emer.Prjn
- func (pj *PrjnBase) SetType(typ emer.PrjnType) emer.Prjn
- func (pj *PrjnBase) String() string
- func (pj *PrjnBase) Syn1DNum() int
- func (pj *PrjnBase) SynIdx(sidx, ridx int) int
- func (pj *PrjnBase) SynVal(varNm string, sidx, ridx int) float32
- func (pj *PrjnBase) SynVal1D(varIdx int, synIdx int) float32
- func (pj *PrjnBase) SynVals(vals *[]float32, varNm string) error
- func (pj *PrjnBase) SynVarIdx(varNm string) (int, error)
- func (pj *PrjnBase) SynVarNames() []string
- func (pj *PrjnBase) SynVarNum() int
- func (pj *PrjnBase) SynVarProps() map[string]string
- func (pj *PrjnBase) Type() emer.PrjnType
- func (pj *PrjnBase) TypeName() string
- func (pj *PrjnBase) Validate(logmsg bool) error
- type PrjnGTypes
- type PrjnIdxs
- type PrjnParams
- func (pj *PrjnParams) AllParams() string
- func (pj *PrjnParams) BLAPrjnDefaults()
- func (pj *PrjnParams) CycleSynCaSyn(ctx *Context, sy *Synapse, sn, rn *Neuron)
- func (pj *PrjnParams) DWtSyn(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool, ...)
- func (pj *PrjnParams) DWtSynCortex(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool, ...)
- func (pj *PrjnParams) DWtSynMatrix(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool)
- func (pj *PrjnParams) DWtSynRWPred(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool)
- func (pj *PrjnParams) DWtSynTDPred(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool)
- func (pj *PrjnParams) Defaults()
- func (pj *PrjnParams) GatherSpikes(ctx *Context, ly *LayerParams, ni uint32, nrn *Neuron, gRaw float32, ...)
- func (pj *PrjnParams) IsExcitatory() bool
- func (pj *PrjnParams) IsInhib() bool
- func (pj *PrjnParams) RLPredPrjnDefaults()
- func (pj *PrjnParams) RecvSynCaSyn(ctx *Context, sy *Synapse, sn *Neuron, rnCaSyn, updtThr float32)
- func (pj *PrjnParams) SendSynCaSyn(ctx *Context, sy *Synapse, rn *Neuron, snCaSyn, updtThr float32)
- func (pj *PrjnParams) SynRecvLayIdx(sy *Synapse) uint32
- func (pj *PrjnParams) SynSendLayIdx(sy *Synapse) uint32
- func (pj *PrjnParams) Update()
- func (pj *PrjnParams) WtFmDWtSyn(ctx *Context, sy *Synapse)
- func (pj *PrjnParams) WtFmDWtSynCortex(ctx *Context, sy *Synapse)
- func (pj *PrjnParams) WtFmDWtSynNoLimits(ctx *Context, sy *Synapse)
- type PrjnScaleParams
- type PrjnTypes
- type PulvParams
- type RLPredPrjnParams
- type RLRateParams
- type RSalAChParams
- type RWDaParams
- type RWPredParams
- type RandFunIdx
- type SWtAdaptParams
- type SWtInitParams
- type SWtParams
- func (sp *SWtParams) ClipSWt(swt float32) float32
- func (sp *SWtParams) ClipWt(wt float32) float32
- func (sp *SWtParams) Defaults()
- func (sp *SWtParams) InitWtsSyn(sy *Synapse, mean, spct float32)
- func (sp *SWtParams) LWtFmWts(wt, swt float32) float32
- func (sp *SWtParams) LinFmSigWt(wt float32) float32
- func (sp *SWtParams) SigFmLinWt(lw float32) float32
- func (sp *SWtParams) Update()
- func (sp *SWtParams) WtFmDWt(dwt, wt, lwt *float32, swt float32)
- func (sp *SWtParams) WtVal(swt, lwt float32) float32
- type SpikeNoiseParams
- type SpikeParams
- type StartN
- type SynComParams
- func (sc *SynComParams) Defaults()
- func (sc *SynComParams) Fail(wt *float32, swt float32)
- func (sc *SynComParams) ReadIdx(rnIdx uint32, cycTot int32) uint32
- func (sc *SynComParams) ReadOff(cycTot int32) uint32
- func (sc *SynComParams) RingIdx(i uint32) uint32
- func (sc *SynComParams) Update()
- func (sc *SynComParams) WriteIdx(rnIdx uint32, cycTot int32) uint32
- func (sc *SynComParams) WriteIdxOff(rnIdx, wrOff uint32) uint32
- func (sc *SynComParams) WriteOff(cycTot int32) uint32
- func (sc *SynComParams) WtFail(swt float32) bool
- func (sc *SynComParams) WtFailP(swt float32) float32
- type Synapse
- type TDDaParams
- type TDIntegParams
- type TopoInhibParams
- type TraceParams
- type TrgAvgActParams
Constants ¶
const ( Version = "v1.7.7" GitCommit = "c8f33c3" // the commit JUST BEFORE the release VersionDate = "2023-02-08 23:48" // UTC )
const NeuronVarStart = 5
NeuronVarStart is the starting *field* index (not byte count!) where float32 variables start -- all prior must be 32 bit (uint32, int32), Note: all non-float32 infrastructure variables must be at the start!
const SynapseVarStart = 16
SynapseVarStart is the *byte* offset (4 per 32 bit) of fields in the Synapse structure where the float32 named variables start. Note: all non-float32 infrastructure variables must be at the start!
Variables ¶
var ( NeuronLayerVars = []string{"DA", "ACh", "NE", "Ser", "Gated"} NNeuronLayerVars = len(NeuronLayerVars) )
NeuronLayerVars are layer-level variables displayed as neuron layers.
var KiT_DAModTypes = kit.Enums.AddEnum(DAModTypesN, kit.NotBitFlag, nil)
var KiT_GPLayerTypes = kit.Enums.AddEnum(GPLayerTypesN, kit.NotBitFlag, nil)
var KiT_Layer = kit.Types.AddType(&Layer{}, LayerProps)
var KiT_LayerTypes = kit.Enums.AddEnum(LayerTypesN, kit.NotBitFlag, nil)
var KiT_Network = kit.Types.AddType(&Network{}, NetworkProps)
var KiT_Prjn = kit.Types.AddType(&Prjn{}, PrjnProps)
var KiT_PrjnGTypes = kit.Enums.AddEnum(PrjnGTypesN, kit.NotBitFlag, nil)
var KiT_PrjnTypes = kit.Enums.AddEnum(PrjnTypesN, kit.NotBitFlag, nil)
var LayerProps = ki.Props{ "EnumType:Typ": KiT_LayerTypes, "ToolBar": ki.PropSlice{ {"Defaults", ki.Props{ "icon": "reset", "desc": "return all parameters to their intial default values", }}, {"InitWts", ki.Props{ "icon": "update", "desc": "initialize the layer's weight values according to prjn parameters, for all *sending* projections out of this layer", }}, {"InitActs", ki.Props{ "icon": "update", "desc": "initialize the layer's activation values", }}, {"sep-act", ki.BlankProp{}}, {"LesionNeurons", ki.Props{ "icon": "close", "desc": "Lesion (set the Off flag) for given proportion of neurons in the layer (number must be 0 -- 1, NOT percent!)", "Args": ki.PropSlice{ {"Proportion", ki.Props{ "desc": "proportion (0 -- 1) of neurons to lesion", }}, }, }}, {"UnLesionNeurons", ki.Props{ "icon": "reset", "desc": "Un-Lesion (reset the Off flag) for all neurons in the layer", }}, }, }
var NetworkProps = ki.Props{ "ToolBar": ki.PropSlice{ {"SaveWtsJSON", ki.Props{ "label": "Save Wts...", "icon": "file-save", "desc": "Save json-formatted weights", "Args": ki.PropSlice{ {"Weights File Name", ki.Props{ "default-field": "WtsFile", "ext": ".wts,.wts.gz", }}, }, }}, {"OpenWtsJSON", ki.Props{ "label": "Open Wts...", "icon": "file-open", "desc": "Open json-formatted weights", "Args": ki.PropSlice{ {"Weights File Name", ki.Props{ "default-field": "WtsFile", "ext": ".wts,.wts.gz", }}, }, }}, {"sep-file", ki.BlankProp{}}, {"Build", ki.Props{ "icon": "update", "desc": "build the network's neurons and synapses according to current params", }}, {"InitWts", ki.Props{ "icon": "update", "desc": "initialize the network weight values according to prjn parameters", }}, {"InitActs", ki.Props{ "icon": "update", "desc": "initialize the network activation values", }}, {"sep-act", ki.BlankProp{}}, {"AddLayer", ki.Props{ "label": "Add Layer...", "icon": "new", "desc": "add a new layer to network", "Args": ki.PropSlice{ {"Layer Name", ki.Props{}}, {"Layer Shape", ki.Props{ "desc": "shape of layer, typically 2D (Y, X) or 4D (Pools Y, Pools X, Units Y, Units X)", }}, {"Layer Type", ki.Props{ "desc": "type of layer -- used for determining how inputs are applied", }}, }, }}, {"ConnectLayerNames", ki.Props{ "label": "Connect Layers...", "icon": "new", "desc": "add a new connection between layers in the network", "Args": ki.PropSlice{ {"Send Layer Name", ki.Props{}}, {"Recv Layer Name", ki.Props{}}, {"Pattern", ki.Props{ "desc": "pattern to connect with", }}, {"Prjn Type", ki.Props{ "desc": "type of projection -- direction, or other more specialized factors", }}, }, }}, {"AllPrjnScales", ki.Props{ "icon": "file-sheet", "desc": "AllPrjnScales returns a listing of all PrjnScale parameters in the Network in all Layers, Recv projections. These are among the most important and numerous of parameters (in larger networks) -- this helps keep track of what they all are set to.", "show-return": true, }}, }, }
var NeuronVarProps = map[string]string{
"GeSyn": `range:"2"`,
"Ge": `range:"2"`,
"GeM": `range:"2"`,
"Vm": `min:"0" max:"1"`,
"VmDend": `min:"0" max:"1"`,
"ISI": `auto-scale:"+"`,
"ISIAvg": `auto-scale:"+"`,
"Gi": `auto-scale:"+"`,
"Gk": `auto-scale:"+"`,
"ActDel": `auto-scale:"+"`,
"ActDiff": `auto-scale:"+"`,
"RLRate": `auto-scale:"+"`,
"AvgPct": `range:"2"`,
"TrgAvg": `range:"2"`,
"DTrgAvg": `auto-scale:"+"`,
"MahpN": `auto-scale:"+"`,
"GknaMed": `auto-scale:"+"`,
"GknaSlow": `auto-scale:"+"`,
"Gnmda": `auto-scale:"+"`,
"GnmdaSyn": `auto-scale:"+"`,
"GnmdaLrn": `auto-scale:"+"`,
"NmdaCa": `auto-scale:"+"`,
"GgabaB": `auto-scale:"+"`,
"GABAB": `auto-scale:"+"`,
"GABABx": `auto-scale:"+"`,
"Gvgcc": `auto-scale:"+"`,
"VgccCa": `auto-scale:"+"`,
"VgccCaInt": `auto-scale:"+"`,
"Gak": `auto-scale:"+"`,
"SSGi": `auto-scale:"+"`,
"SSGiDend": `auto-scale:"+"`,
}
var NeuronVars = []string{}
var NeuronVarsMap map[string]int
var PrjnProps = ki.Props{ "EnumType:Typ": KiT_PrjnTypes, }
var SynapseVarProps = map[string]string{
"DWt": `auto-scale:"+"`,
"DSWt": `auto-scale:"+"`,
"CaM": `auto-scale:"+"`,
"CaP": `auto-scale:"+"`,
"CaD": `auto-scale:"+"`,
"Tr": `auto-scale:"+"`,
"DTr": `auto-scale:"+"`,
}
var SynapseVars = []string{"Wt", "LWt", "SWt", "DWt", "DSWt", "Ca", "CaM", "CaP", "CaD", "Tr", "DTr"}
var SynapseVarsMap map[string]int
Functions ¶
func DecaySynCa ¶ added in v1.3.21
DecaySynCa decays synaptic calcium by given factor (between trials) Not used by default.
func EnvApplyInputs ¶ added in v1.3.36
EnvApplyInputs applies input patterns from given env.Env environment to Input and Target layer types, assuming that env provides State with the same names as the layers. If these assumptions don't fit, use a separate method.
func GetRandomNumber ¶ added in v1.7.7
func GetRandomNumber(index uint32, counter slrand.Counter, funIdx RandFunIdx) float32
GetRandomNumber returns a random number that depends on the index, counter and function index. We increment the counter after each cycle, so that we get new random numbers. This whole scheme exists to ensure equal results under different multithreading settings.
func InitSynCa ¶ added in v1.3.21
func InitSynCa(sy *Synapse)
InitSynCa initializes synaptic calcium state, including CaUpT
func JsonToParams ¶
JsonToParams reformates json output to suitable params display output
func LogAddCaLrnDiagnosticItems ¶ added in v1.5.3
LogAddCaLrnDiagnosticItems adds standard Axon diagnostic statistics to given logs, across two given time levels, in higher to lower order, e.g., Epoch, Trial These were useful for the development of the Ca-based "trace" learning rule that directly uses NMDA and VGCC-like spiking Ca
func LogAddDiagnosticItems ¶ added in v1.3.35
LogAddDiagnosticItems adds standard Axon diagnostic statistics to given logs, across two given time levels, in higher to lower order, e.g., Epoch, Trial These are useful for tuning and diagnosing the behavior of the network.
func LogAddExtraDiagnosticItems ¶ added in v1.5.8
LogAddExtraDiagnosticItems adds extra Axon diagnostic statistics to given logs, across two given time levels, in higher to lower order, e.g., Epoch, Trial These are useful for tuning and diagnosing the behavior of the network.
func LogAddLayerGeActAvgItems ¶ added in v1.3.35
LogAddLayerGeActAvgItems adds Ge and Act average items for Hidden and Target layers for given mode and time (e.g., Test, Cycle) These are useful for monitoring layer activity during testing.
func LogAddPCAItems ¶ added in v1.3.35
LogAddPCAItems adds PCA statistics to log for Hidden and Target layers across 3 given time levels, in higher to lower order, e.g., Run, Epoch, Trial These are useful for diagnosing the behavior of the network.
func LogAddPulvCorSimItems ¶ added in v1.7.0
LogAddPulvCorSimItems adds CorSim stats for Pulv / Pulvinar layers aggregated across three time scales, ordered from higher to lower, e.g., Run, Epoch, Trial.
func LogInputLayer ¶ added in v1.7.7
func LogTestErrors ¶ added in v1.3.35
LogTestErrors records all errors made across TestTrials, at Test Epoch scope
func LooperResetLogBelow ¶ added in v1.3.35
LooperResetLogBelow adds a function in OnStart to all stacks and loops to reset the log at the level below each loop -- this is good default behavior.
func LooperSimCycleAndLearn ¶ added in v1.3.35
func LooperSimCycleAndLearn(man *looper.Manager, net *Network, ctx *Context, viewupdt *netview.ViewUpdt)
LooperSimCycleAndLearn adds Cycle and DWt, WtFmDWt functions to looper for given network, ctx, and netview update manager
func LooperStdPhases ¶ added in v1.3.35
LooperStdPhases adds the minus and plus phases of the theta cycle, along with embedded beta phases which just record St1 and St2 activity in this case. plusStart is start of plus phase, typically 150, and plusEnd is end of plus phase, typically 199 resets the state at start of trial
func LooperUpdtNetView ¶ added in v1.3.35
LooperUpdtNetView adds netview update calls at each time level
func LooperUpdtPlots ¶ added in v1.3.35
LooperUpdtPlots adds plot update calls at each time level
func NeuronVarIdxByName ¶
NeuronVarIdxByName returns the index of the variable in the Neuron, or error
func PCAStats ¶ added in v1.3.35
PCAStats computes PCA statistics on recorded hidden activation patterns from Analyze, Trial log data
func SaveWeights ¶ added in v1.3.29
SaveWeights saves network weights to filename with WeightsFileName information to identify the weights. only for 0 rank MPI if running mpi Returns the name of the file saved to, or empty if not saved.
func SaveWeightsIfArgSet ¶ added in v1.3.35
SaveWeightsIfArgSet saves network weights if the "wts" arg has been set to true. uses WeightsFileName information to identify the weights. only for 0 rank MPI if running mpi Returns the name of the file saved to, or empty if not saved.
func SetNeuronExtPosNeg ¶ added in v1.7.0
SetNeuronExtPosNeg sets neuron Ext value based on neuron index with positive values going in first unit, negative values rectified to positive in 2nd unit
func SigFun61 ¶
SigFun61 is the sigmoid function for value w in 0-1 range, with default gain = 6, offset = 1 params
func SigInvFun61 ¶
SigInvFun61 is the inverse of the sigmoid function, with default gain = 6, offset = 1 params
func SynapseVarByName ¶
SynapseVarByName returns the index of the variable in the Synapse, or error
func ToggleLayersOff ¶ added in v1.3.29
ToggleLayersOff can be used to disable layers in a Network, for example if you are doing an ablation study.
func WeightsFileName ¶ added in v1.3.35
WeightsFileName returns default current weights file name, using train run and epoch counters from looper and the RunName string identifying tag, parameters and starting run,
Types ¶
type ActAvgParams ¶
type ActAvgParams struct { Nominal float32 `` /* 745-byte string literal not displayed */ AdaptGi slbool.Bool `` /* 349-byte string literal not displayed */ Offset float32 `` /* 315-byte string literal not displayed */ HiTol float32 `` /* 266-byte string literal not displayed */ LoTol float32 `` /* 266-byte string literal not displayed */ AdaptRate float32 `` /* 263-byte string literal not displayed */ // contains filtered or unexported fields }
ActAvgParams represents the nominal average activity levels in the layer and parameters for adapting the computed Gi inhibition levels to maintain average activity within a target range.
func (*ActAvgParams) Adapt ¶ added in v1.2.37
func (aa *ActAvgParams) Adapt(gimult *float32, act float32) bool
Adapt adapts the given gi multiplier factor as function of target and actual average activation, given current params.
func (*ActAvgParams) AvgFmAct ¶
func (aa *ActAvgParams) AvgFmAct(avg *float32, act float32, dt float32)
AvgFmAct updates the running-average activation given average activity level in layer
func (*ActAvgParams) Defaults ¶
func (aa *ActAvgParams) Defaults()
func (*ActAvgParams) Update ¶
func (aa *ActAvgParams) Update()
type ActAvgVals ¶ added in v1.2.32
type ActAvgVals struct { ActMAvg float32 `` /* 141-byte string literal not displayed */ ActPAvg float32 `inactive:"+" desc:"running-average plus-phase activity integrated at Dt.LongAvgTau"` AvgMaxGeM float32 `inactive:"+" desc:"running-average max of minus-phase Ge value across the layer integrated at Dt.LongAvgTau"` AvgMaxGiM float32 `inactive:"+" desc:"running-average max of minus-phase Gi value across the layer integrated at Dt.LongAvgTau"` GiMult float32 `inactive:"+" desc:"multiplier on inhibition -- adapted to maintain target activity level"` // contains filtered or unexported fields }
ActAvgVals are long-running-average activation levels stored in the LayerVals, for monitoring and adapting inhibition and possibly scaling parameters.
type ActInitParams ¶
type ActInitParams struct { Vm float32 `def:"0.3" desc:"initial membrane potential -- see Erev.L for the resting potential (typically .3)"` Act float32 `def:"0" desc:"initial activation value -- typically 0"` GeBase float32 `` /* 268-byte string literal not displayed */ GiBase float32 `` /* 235-byte string literal not displayed */ GeVar float32 `` /* 167-byte string literal not displayed */ GiVar float32 `` /* 167-byte string literal not displayed */ // contains filtered or unexported fields }
ActInitParams are initial values for key network state variables. Initialized in InitActs called by InitWts, and provides target values for DecayState.
func (*ActInitParams) Defaults ¶
func (ai *ActInitParams) Defaults()
func (*ActInitParams) GetGeBase ¶ added in v1.7.7
func (ai *ActInitParams) GetGeBase() float32
GeBase returns the baseline Ge value: Ge + rand(GeVar) > 0
func (*ActInitParams) GetGiBase ¶ added in v1.7.7
func (ai *ActInitParams) GetGiBase() float32
GiBase returns the baseline Gi value: Gi + rand(GiVar) > 0
func (*ActInitParams) Update ¶
func (ai *ActInitParams) Update()
type ActParams ¶
type ActParams struct { Spike SpikeParams `view:"inline" desc:"Spiking function parameters"` Dend DendParams `view:"inline" desc:"dendrite-specific parameters"` Init ActInitParams `` /* 155-byte string literal not displayed */ Decay DecayParams `` /* 233-byte string literal not displayed */ Dt DtParams `view:"inline" desc:"time and rate constants for temporal derivatives / updating of activation state"` Gbar chans.Chans `view:"inline" desc:"[Defaults: 1, .2, 1, 1] maximal conductances levels for channels"` Erev chans.Chans `view:"inline" desc:"[Defaults: 1, .3, .25, .1] reversal potentials for each channel"` Clamp ClampParams `view:"inline" desc:"how external inputs drive neural activations"` Noise SpikeNoiseParams `view:"inline" desc:"how, where, when, and how much noise to add"` VmRange minmax.F32 `` /* 165-byte string literal not displayed */ Mahp chans.MahpParams `` /* 173-byte string literal not displayed */ Sahp chans.SahpParams `` /* 182-byte string literal not displayed */ KNa chans.KNaMedSlow `` /* 220-byte string literal not displayed */ NMDA chans.NMDAParams `` /* 252-byte string literal not displayed */ GABAB chans.GABABParams `view:"inline" desc:"GABA-B / GIRK channel parameters"` VGCC chans.VGCCParams `` /* 159-byte string literal not displayed */ AK chans.AKsParams `` /* 135-byte string literal not displayed */ SKCa chans.SKCaParams `` /* 140-byte string literal not displayed */ Attn AttnParams `view:"inline" desc:"Attentional modulation parameters: how Attn modulates Ge"` }
axon.ActParams contains all the activation computation params and functions for basic Axon, at the neuron level . This is included in axon.Layer to drive the computation.
func (*ActParams) DecayState ¶
DecayState decays the activation state toward initial values in proportion to given decay parameter. Special case values such as Glong and KNa are also decayed with their separately parameterized values. Called with ac.Decay.Act by Layer during NewState
func (*ActParams) GeFmSyn ¶ added in v1.5.12
GeFmSyn integrates Ge excitatory conductance from GeSyn. geExt is extra conductance to add to the final Ge value
func (*ActParams) GiFmSyn ¶ added in v1.5.12
GiFmSyn integrates GiSyn inhibitory synaptic conductance from GiRaw value (can add other terms to geRaw prior to calling this)
func (*ActParams) GkFmVm ¶ added in v1.6.0
GkFmVm updates all the Gk-based conductances: Mahp, KNa, Gak
func (*ActParams) GvgccFmVm ¶ added in v1.3.24
GvgccFmVm updates all the VGCC voltage-gated calcium channel variables from VmDend
func (*ActParams) InitActs ¶
InitActs initializes activation state in neuron -- called during InitWts but otherwise not automatically called (DecayState is used instead)
func (*ActParams) InitLongActs ¶ added in v1.2.66
InitLongActs initializes longer time-scale activation states in neuron (SpkPrv, SpkSt*, ActM, ActP, GeM) Called from InitActs, which is called from InitWts, but otherwise not automatically called (DecayState is used instead)
func (*ActParams) NMDAFmRaw ¶ added in v1.3.1
NMDAFmRaw updates all the NMDA variables from total Ge (GeRaw + Ext) and current Vm, Spiking
func (*ActParams) SpikeFmVm ¶ added in v1.6.12
SpikeFmG computes Spike from Vm and ISI-based activation
func (*ActParams) Update ¶
func (ac *ActParams) Update()
Update must be called after any changes to parameters
type AttnParams ¶ added in v1.2.85
type AttnParams struct { On slbool.Bool `desc:"is attentional modulation active?"` Min float32 `viewif:"On" desc:"minimum act multiplier if attention is 0"` // contains filtered or unexported fields }
AttnParams determine how the Attn modulates Ge
func (*AttnParams) Defaults ¶ added in v1.2.85
func (at *AttnParams) Defaults()
func (*AttnParams) ModVal ¶ added in v1.2.85
func (at *AttnParams) ModVal(val float32, attn float32) float32
ModVal returns the attn-modulated value -- attn must be between 1-0
func (*AttnParams) Update ¶ added in v1.2.85
func (at *AttnParams) Update()
type AvgMaxPhases ¶ added in v1.7.0
type AvgMaxPhases struct { Cycle minmax.AvgMax32 `inactive:"+" view:"inline" desc:"updated every cycle -- this is the source of all subsequent time scales"` Minus minmax.AvgMax32 `inactive:"+" view:"inline" desc:"at the end of the minus phase"` Plus minmax.AvgMax32 `inactive:"+" view:"inline" desc:"at the end of the plus phase"` }
AvgMaxPhases contains the average and maximum values over a Pool of neurons, at different time scales within a standard ThetaCycle of updating. It is much more efficient on the GPU to just grab everything in one pass at the cycle level, and then take snapshots from there. All of the cycle level values are updated at the *start* of the cycle based on values from the prior cycle -- thus are 1 cycle behind in general.
func (*AvgMaxPhases) CycleToMinus ¶ added in v1.7.0
func (am *AvgMaxPhases) CycleToMinus()
CycleToMinus grabs current Cycle values into the Minus phase values
func (*AvgMaxPhases) CycleToPlus ¶ added in v1.7.0
func (am *AvgMaxPhases) CycleToPlus()
CycleToPlus grabs current Cycle values into the Plus phase values
type AxonLayer ¶
type AxonLayer interface { emer.Layer // AsAxon returns this layer as a axon.Layer -- so that the AxonLayer // interface does not need to include accessors to all the basic stuff AsAxon() *Layer // LayerType returns the axon-specific LayerTypes type LayerType() LayerTypes // NeurStartIdx is the starting index in global network slice of neurons for // neurons in this layer -- convenience interface method for threading dispatch. NeurStartIdx() int // SetBuildConfig sets named configuration parameter to given string value // to be used in the PostBuild stage -- mainly for layer names that need to be // looked up and turned into indexes, after entire network is built. SetBuildConfig(param, val string) // PostBuild performs special post-Build() configuration steps for specific algorithms, // using configuration data from SetBuildConfig during the ConfigNet process. PostBuild() // InitWts initializes the weight values in the network, i.e., resetting learning // Also calls InitActs InitWts() // InitActAvg initializes the running-average activation values that drive learning. InitActAvg() // InitActs fully initializes activation state -- only called automatically during InitWts InitActs() // InitWtsSym initializes the weight symmetry -- higher layers copy weights from lower layers InitWtSym() // InitGScale computes the initial scaling factor for synaptic input conductances G, // stored in GScale.Scale, based on sending layer initial activation. InitGScale() // InitExt initializes external input state -- called prior to apply ext InitExt() // ApplyExt applies external input in the form of an etensor.Tensor // If the layer is a Target or Compare layer type, then it goes in Target // otherwise it goes in Ext. ApplyExt(ext etensor.Tensor) // ApplyExt1D applies external input in the form of a flat 1-dimensional slice of floats // If the layer is a Target or Compare layer type, then it goes in Target // otherwise it goes in Ext ApplyExt1D(ext []float64) // UpdateExtFlags updates the neuron flags for external input based on current // layer Type field -- call this if the Type has changed since the last // ApplyExt* method call. UpdateExtFlags() // IsTarget returns true if this layer is a Target layer. // By default, returns true for layers of Type == emer.Target // Other Target layers include the TRCLayer in deep predictive learning. // It is also used in SynScale to not apply it to target layers. // In both cases, Target layers are purely error-driven. IsTarget() bool // IsInput returns true if this layer is an Input layer. // By default, returns true for layers of Type == emer.Input // Used to prevent adapting of inhibition or TrgAvg values. IsInput() bool // RecvPrjns returns the slice of receiving projections for this layer RecvPrjns() *AxonPrjns // SendPrjns returns the slice of sending projections for this layer SendPrjns() *AxonPrjns // GatherSpikes integrates G*Raw and G*Syn values for given neuron // while integrating the Prjn-level GSyn integrated values. // ni is layer-specific index of neuron within its layer. GatherSpikes(ctx *Context, ni uint32, nrn *Neuron) // GiFmSpikes integrates new inhibitory conductances from Spikes // at the layer and pool level GiFmSpikes(ctx *Context) // PoolGiFmSpikes computes inhibition Gi from Spikes within relevant Pools // this is a second pass after GiFmSpikes so that it can also deal with // between-layer inhibition. PoolGiFmSpikes(ctx *Context) // CycleNeuron does one cycle (msec) of updating at the neuron level // calls the following via this AxonLay interface: // * GInteg // * SpikeFmG // * PostAct CycleNeuron(ctx *Context, ni uint32, nrn *Neuron) // GInteg integrates conductances G over time (Ge, NMDA, etc). // reads pool Gi values. GInteg(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, vals *LayerVals) // SpikeFmG computes Vm from Ge, Gi, Gl conductances and then Spike from that SpikeFmG(ctx *Context, ni uint32, nrn *Neuron) // PostSpike does updates at neuron level after spiking has been computed. // This is where special layer types add extra code. PostSpike(ctx *Context, ni uint32, nrn *Neuron) // SendSpike sends spike to receivers -- last step in Cycle, integrated // the next time around. // Writes to sending projections for this neuron. SendSpike(ctx *Context) // CyclePost is called after the standard Cycle update, as a separate // network layer loop. // This is reserved for any kind of special ad-hoc types that // need to do something special after Spiking is finally computed and Sent. // It ONLY runs on the CPU, not the GPU -- should update global values // in the Context state which are re-sync'd back to GPU, // and values in other layers MUST come from LayerVals because // this is the only data that is sync'd back from the GPU each cycle. // For example, updating a neuromodulatory signal such as dopamine. CyclePost(ctx *Context) // NewState handles all initialization at start of new input pattern, // including computing Ge scaling from running average activation etc. // should already have presented the external input to the network at this point. NewState(ctx *Context) // DecayState decays activation state by given proportion (default is on ly.Params.Act.Init.Decay) DecayState(ctx *Context, decay, glong float32) // MinusPhase does updating after end of minus phase MinusPhase(ctx *Context) // PlusPhase does updating after end of plus phase PlusPhase(ctx *Context) // SpkSt1 saves current activations into SpkSt1 SpkSt1(ctx *Context) // SpkSt2 saves current activations into SpkSt2 SpkSt2(ctx *Context) // CorSimFmActs computes the correlation similarity // (centered cosine aka normalized dot product) // in activation state between minus and plus phases // (1 = identical, 0 = uncorrelated). CorSimFmActs() // DWtLayer does weight change at the layer level. // does NOT call main projection-level DWt method. // in base, only calls DTrgAvgFmErr DWtLayer(ctx *Context) // WtFmDWtLayer does weight update at the layer level. // does NOT call main projection-level WtFmDWt method. // in base, only calls TrgAvgFmD WtFmDWtLayer(ctx *Context) // SlowAdapt is the layer-level slow adaptation functions. // Calls AdaptInhib and AvgDifFmTrgAvg for Synaptic Scaling. // Does NOT call projection-level methods. SlowAdapt(ctx *Context) // SynFail updates synaptic weight failure only -- normally done as part of DWt // and WtFmDWt, but this call can be used during testing to update failing synapses. SynFail(ctx *Context) }
AxonLayer defines the essential algorithmic API for Axon, at the layer level. These are the methods that the axon.Network calls on its layers at each step of processing. Other Layer types can selectively re-implement (override) these methods to modify the computation, while inheriting the basic behavior for non-overridden methods.
All of the structural API is in emer.Layer, which this interface also inherits for convenience.
type AxonNetwork ¶
type AxonNetwork interface { emer.Network // AsAxon returns this network as a axon.Network -- so that the // AxonNetwork interface does not need to include accessors // to all the basic stuff AsAxon() *Network // NewStateImpl handles all initialization at start of new input pattern, including computing // input scaling from running average activation etc. NewStateImpl(ctx *Context) // Cycle handles entire update for one cycle (msec) of neuron activity state. CycleImpl(ctx *Context) // MinusPhaseImpl does updating after minus phase MinusPhaseImpl(ctx *Context) // PlusPhaseImpl does updating after plus phase PlusPhaseImpl(ctx *Context) // DWtImpl computes the weight change (learning) based on current // running-average activation values DWtImpl(ctx *Context) // WtFmDWtImpl updates the weights from delta-weight changes. // Also calls SynScale every Interval times WtFmDWtImpl(ctx *Context) // SlowAdapt is the layer-level slow adaptation functions: Synaptic scaling, // GScale conductance scaling, and adapting inhibition SlowAdapt(ctx *Context) }
AxonNetwork defines the essential algorithmic API for Axon, at the network level. These are the methods that the user calls in their Sim code: * NewState * Cycle * NewPhase * DWt * WtFmDwt Because we don't want to have to force the user to use the interface cast in calling these methods, we provide Impl versions here that are the implementations which the user-facing method calls through the interface cast. Specialized algorithms should thus only change the Impl version, which is what is exposed here in this interface.
There is now a strong constraint that all Cycle level computation takes place in one pass at the Layer level, which greatly improves threading efficiency.
All of the structural API is in emer.Network, which this interface also inherits for convenience.
type AxonPrjn ¶
type AxonPrjn interface { emer.Prjn // AsAxon returns this prjn as a axon.Prjn -- so that the AxonPrjn // interface does not need to include accessors to all the basic stuff. AsAxon() *Prjn // PrjnType returns the axon-specific PrjnTypes type PrjnType() PrjnTypes // InitWts initializes weight values according to Learn.WtInit params InitWts() // InitWtSym initializes weight symmetry -- is given the reciprocal projection where // the Send and Recv layers are reversed. InitWtSym(rpj AxonPrjn) // InitGBuffs initializes the per-projection synaptic conductance buffers. // This is not typically needed (called during InitWts, InitActs) // but can be called when needed. Must be called to completely initialize // prior activity, e.g., full Glong clearing. InitGBuffs() // SendSpike sends a spike from sending neuron index si, // to add to buffer on receivers. SendSpike(ctx *Context, sendIdx int, nrn *Neuron) // RecvSpikes receives spikes from the sending neurons at index sendIdx // into the GBuf buffer on the receiver side. The buffer on the receiver side // is a ring buffer, which is used for modelling the time delay between // sending and receiving spikes. RecvSpikes(ctx *Context, recvIdx int) // SendSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. // Optimized version only updates at point of spiking. // This pass goes through in sending order, filtering on sending spike. SendSynCa(ctx *Context) // RecvSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. // Optimized version only updates at point of spiking. // This pass goes through in recv order, filtering on recv spike. RecvSynCa(ctx *Context) // DWt computes the weight change (learning) -- on sending projections. DWt(ctx *Context) // DWtSubMean subtracts the mean from any projections that have SubMean > 0. // This is called on *receiving* projections, prior to WtFmDwt. DWtSubMean(ctx *Context) // WtFmDWt updates the synaptic weight values from delta-weight changes, // on sending projections WtFmDWt(ctx *Context) // SlowAdapt is the layer-level slow adaptation functions: Synaptic scaling, // GScale conductance scaling, and adapting inhibition SlowAdapt(ctx *Context) // SynFail updates synaptic weight failure only -- normally done as part of DWt // and WtFmDWt, but this call can be used during testing to update failing synapses. SynFail(ctx *Context) }
AxonPrjn defines the essential algorithmic API for Axon, at the projection level. These are the methods that the axon.Layer calls on its prjns at each step of processing. Other Prjn types can selectively re-implement (override) these methods to modify the computation, while inheriting the basic behavior for non-overridden methods.
All of the structural API is in emer.Prjn, which this interface also inherits for convenience.
type BLAParams ¶ added in v1.7.0
type BLAParams struct { NegLRate float32 `` /* 143-byte string literal not displayed */ // contains filtered or unexported fields }
BLAParams has parameters for basolateral amygdala. Most of BLA learning is handled by NeuroMod settings for DA and ACh modulation.
type BurstParams ¶ added in v1.7.0
type BurstParams struct { ThrRel float32 `` /* 348-byte string literal not displayed */ ThrAbs float32 `` /* 241-byte string literal not displayed */ // contains filtered or unexported fields }
BurstParams determine how the 5IB Burst activation is computed from CaSpkP integrated spiking values in Super layers -- thresholded.
func (*BurstParams) Defaults ¶ added in v1.7.0
func (bp *BurstParams) Defaults()
func (*BurstParams) ThrFmAvgMax ¶ added in v1.7.0
func (bp *BurstParams) ThrFmAvgMax(avg, mx float32) float32
ThrFmAvgMax returns threshold from average and maximum values
func (*BurstParams) Update ¶ added in v1.7.0
func (bp *BurstParams) Update()
type CTParams ¶ added in v1.7.0
type CTParams struct { GeGain float32 `` /* 239-byte string literal not displayed */ DecayTau float32 `` /* 227-byte string literal not displayed */ DecayDt float32 `view:"-" json:"-" xml:"-" desc:"1 / tau"` // contains filtered or unexported fields }
CTParams control the CT corticothalamic neuron special behavior
type CaLrnParams ¶ added in v1.5.1
type CaLrnParams struct { Norm float32 `` /* 188-byte string literal not displayed */ SpkVGCC slbool.Bool `` /* 133-byte string literal not displayed */ SpkVgccCa float32 `def:"35" desc:"multiplier on spike for computing Ca contribution to CaLrn in SpkVGCC mode"` VgccTau float32 `` /* 268-byte string literal not displayed */ Dt kinase.CaDtParams `view:"inline" desc:"time constants for integrating CaLrn across M, P and D cascading levels"` VgccDt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` NormInv float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"= 1 / Norm"` // contains filtered or unexported fields }
CaLrnParams parameterizes the neuron-level calcium signals driving learning: CaLrn = NMDA + VGCC Ca sources, where VGCC can be simulated from spiking or use the more complex and dynamic VGCC channel directly. CaLrn is then integrated in a cascading manner at multiple time scales: CaM (as in calmodulin), CaP (ltP, CaMKII, plus phase), CaD (ltD, DAPK1, minus phase).
func (*CaLrnParams) CaLrn ¶ added in v1.5.1
func (np *CaLrnParams) CaLrn(nrn *Neuron)
CaLrn updates the CaLrn value and its cascaded values, based on NMDA, VGCC Ca it first calls VgccCa to update the spike-driven version of that variable, and perform its time-integration.
func (*CaLrnParams) Defaults ¶ added in v1.5.1
func (np *CaLrnParams) Defaults()
func (*CaLrnParams) Update ¶ added in v1.5.1
func (np *CaLrnParams) Update()
func (*CaLrnParams) VgccCa ¶ added in v1.5.1
func (np *CaLrnParams) VgccCa(nrn *Neuron)
VgccCa updates the simulated VGCC calcium from spiking, if that option is selected, and performs time-integration of VgccCa
type CaSpkParams ¶ added in v1.5.1
type CaSpkParams struct { SpikeG float32 `` /* 464-byte string literal not displayed */ SynTau float32 `` /* 415-byte string literal not displayed */ SynDt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` Dt kinase.CaDtParams `` /* 202-byte string literal not displayed */ // contains filtered or unexported fields }
CaSpkParams parameterizes the neuron-level spike-driven calcium signals, starting with CaSyn that is integrated at the neuron level and drives synapse-level, pre * post Ca integration, which provides the Tr trace that multiplies error signals, and drives learning directly for Target layers. CaSpk* values are integrated separately at the Neuron level and used for UpdtThr and RLRate as a proxy for the activation (spiking) based learning signal.
func (*CaSpkParams) CaFmSpike ¶ added in v1.5.1
func (np *CaSpkParams) CaFmSpike(nrn *Neuron)
CaFmSpike computes CaSpk* and CaSyn calcium signals based on current spike.
func (*CaSpkParams) Defaults ¶ added in v1.5.1
func (np *CaSpkParams) Defaults()
func (*CaSpkParams) Update ¶ added in v1.5.1
func (np *CaSpkParams) Update()
type ClampParams ¶
type ClampParams struct { IsInput slbool.Bool `inactive:"+" desc:"is this a clamped input layer? set automatically based on layer type at initialization"` IsTarget slbool.Bool `inactive:"+" desc:"is this a target layer? set automatically based on layer type at initialization"` Ge float32 `def:"0.8,1.5" desc:"amount of Ge driven for clamping -- generally use 0.8 for Target layers, 1.5 for Input layers"` Add slbool.Bool `` /* 207-byte string literal not displayed */ ErrThr float32 `def:"0.5" desc:"threshold on neuron Act activity to count as active for computing error relative to target in PctErr method"` // contains filtered or unexported fields }
ClampParams specify how external inputs drive excitatory conductances (like a current clamp) -- either adds or overwrites existing conductances. Noise is added in either case.
func (*ClampParams) Defaults ¶
func (cp *ClampParams) Defaults()
func (*ClampParams) Update ¶
func (cp *ClampParams) Update()
type Context ¶ added in v1.7.0
type Context struct { Mode etime.Modes `desc:"current evaluation mode, e.g., Train, Test, etc"` Phase int32 `desc:"phase counter: typicaly 0-1 for minus-plus but can be more phases for other algorithms"` PlusPhase slbool.Bool `` /* 126-byte string literal not displayed */ PhaseCycle int32 `desc:"cycle within current phase -- minus or plus"` Cycle int32 `` /* 156-byte string literal not displayed */ ThetaCycles int32 `` /* 173-byte string literal not displayed */ CycleTot int32 `` /* 260-byte string literal not displayed */ Time float32 `desc:"accumulated amount of time the network has been running, in simulation-time (not real world time), in seconds"` Testing slbool.Bool `` /* 179-byte string literal not displayed */ TimePerCyc float32 `def:"0.001" desc:"amount of time to increment per cycle"` RandCtr slrand.Counter `` /* 226-byte string literal not displayed */ NeuroMod NeuroModVals `` /* 201-byte string literal not displayed */ // contains filtered or unexported fields }
Context contains all of the global context state info that is shared across every step of the computation. It is passed around to all relevant computational functions, and is updated on the CPU and synced to the GPU after every cycle. It is the *only* mechanism for communication from CPU to GPU. It contains timing, Testing vs. Training mode, random number context, global neuromodulation, etc.
func NewContext ¶ added in v1.7.0
func NewContext() *Context
NewContext returns a new Time struct with default parameters
func (*Context) CycleInc ¶ added in v1.7.0
func (tm *Context) CycleInc()
CycleInc increments at the cycle level
func (*Context) Defaults ¶ added in v1.7.0
func (tm *Context) Defaults()
Defaults sets default values
func (*Context) NewPhase ¶ added in v1.7.0
NewPhase resets PhaseCycle = 0 and sets the plus phase as specified
type CorSimStats ¶ added in v1.3.35
type CorSimStats struct { Cor float32 `` /* 203-byte string literal not displayed */ Avg float32 `` /* 138-byte string literal not displayed */ Var float32 `` /* 139-byte string literal not displayed */ // contains filtered or unexported fields }
CorSimStats holds correlation similarity (centered cosine aka normalized dot product) statistics at the layer level
func (*CorSimStats) Init ¶ added in v1.3.35
func (cd *CorSimStats) Init()
type DAModTypes ¶ added in v1.7.0
type DAModTypes int32
DAModTypes are types of dopamine modulation of neural activity.
const ( // NoDAMod means there is no effect of dopamine on neural activity NoDAMod DAModTypes = iota // D1Mod is for neurons that primarily express dopamine D1 receptors, // which are excitatory from DA bursts, inhibitory from dips. // Cortical neurons can generally use this type, while subcortical // populations are more diverse in having both D1 and D2 subtypes. D1Mod // D2Mod is for neurons that primarily express dopamine D2 receptors, // which are excitatory from DA dips, inhibitory from bursts. D2Mod // D1AbsMod is like D1Mod, except the absolute value of DA is used // instead of the signed value. // There are a subset of DA neurons that send increased DA for // both negative and positive outcomes, targeting frontal neurons. D1AbsMod DAModTypesN )
func (*DAModTypes) FromString ¶ added in v1.7.0
func (i *DAModTypes) FromString(s string) error
func (DAModTypes) String ¶ added in v1.7.0
func (i DAModTypes) String() string
type DecayParams ¶ added in v1.2.59
type DecayParams struct { Act float32 `` /* 391-byte string literal not displayed */ Glong float32 `` /* 332-byte string literal not displayed */ AHP float32 `` /* 198-byte string literal not displayed */ // contains filtered or unexported fields }
DecayParams control the decay of activation state in the DecayState function called in NewState when a new state is to be processed.
func (*DecayParams) Defaults ¶ added in v1.2.59
func (ai *DecayParams) Defaults()
func (*DecayParams) Update ¶ added in v1.2.59
func (ai *DecayParams) Update()
type DendParams ¶ added in v1.2.95
type DendParams struct { GbarExp float32 `` /* 221-byte string literal not displayed */ GbarR float32 `` /* 150-byte string literal not displayed */ SSGi float32 `` /* 337-byte string literal not displayed */ HasMod slbool.Bool `` /* 184-byte string literal not displayed */ ModGain float32 `` /* 162-byte string literal not displayed */ // contains filtered or unexported fields }
DendParams are the parameters for updating dendrite-specific dynamics
func (*DendParams) Defaults ¶ added in v1.2.95
func (dp *DendParams) Defaults()
func (*DendParams) Update ¶ added in v1.2.95
func (dp *DendParams) Update()
type DtParams ¶
type DtParams struct { Integ float32 `` /* 649-byte string literal not displayed */ VmTau float32 `` /* 328-byte string literal not displayed */ VmDendTau float32 `` /* 335-byte string literal not displayed */ VmSteps int32 `` /* 223-byte string literal not displayed */ GeTau float32 `def:"5" min:"1" desc:"time constant for decay of excitatory AMPA receptor conductance."` GiTau float32 `def:"7" min:"1" desc:"time constant for decay of inhibitory GABAa receptor conductance."` IntTau float32 `` /* 393-byte string literal not displayed */ LongAvgTau float32 `` /* 336-byte string literal not displayed */ MaxCycStart int32 `` /* 138-byte string literal not displayed */ VmDt float32 `view:"-" json:"-" xml:"-" desc:"nominal rate = Integ / tau"` VmDendDt float32 `view:"-" json:"-" xml:"-" desc:"nominal rate = Integ / tau"` DtStep float32 `view:"-" json:"-" xml:"-" desc:"1 / VmSteps"` GeDt float32 `view:"-" json:"-" xml:"-" desc:"rate = Integ / tau"` GiDt float32 `view:"-" json:"-" xml:"-" desc:"rate = Integ / tau"` IntDt float32 `view:"-" json:"-" xml:"-" desc:"rate = Integ / tau"` LongAvgDt float32 `view:"-" json:"-" xml:"-" desc:"rate = 1 / tau"` }
DtParams are time and rate constants for temporal derivatives in Axon (Vm, G)
func (*DtParams) AvgVarUpdt ¶ added in v1.2.45
AvgVarUpdt updates the average and variance from current value, using LongAvgDt
func (*DtParams) GeSynFmRaw ¶ added in v1.2.97
GeSynFmRaw integrates a synaptic conductance from raw spiking using GeTau
func (*DtParams) GeSynFmRawSteady ¶ added in v1.5.12
GeSynFmRawSteady returns the steady-state GeSyn that would result from receiving a steady increment of GeRaw every time step = raw * GeTau. dSyn = Raw - dt*Syn; solve for dSyn = 0 to get steady state: dt*Syn = Raw; Syn = Raw / dt = Raw * Tau
func (*DtParams) GiSynFmRaw ¶ added in v1.2.97
GiSynFmRaw integrates a synaptic conductance from raw spiking using GiTau
func (*DtParams) GiSynFmRawSteady ¶ added in v1.5.12
GiSynFmRawSteady returns the steady-state GiSyn that would result from receiving a steady increment of GiRaw every time step = raw * GiTau. dSyn = Raw - dt*Syn; solve for dSyn = 0 to get steady state: dt*Syn = Raw; Syn = Raw / dt = Raw * Tau
type GPLayerTypes ¶ added in v1.7.0
type GPLayerTypes int32
GPLayerTypes is a GPLayer axon-specific layer type enum.
const ( // GPeOut is Outer layer of GPe neurons, receiving inhibition from MtxGo GPeOut GPLayerTypes = iota // GPeIn is Inner layer of GPe neurons, receiving inhibition from GPeOut and MtxNo GPeIn // GPeTA is arkypallidal layer of GPe neurons, receiving inhibition from GPeIn // and projecting inhibition to Mtx GPeTA // GPi is the inner globus pallidus, functionally equivalent to SNr, // receiving from MtxGo and GPeIn, and sending inhibition to VThal GPi GPLayerTypesN )
The GPLayer types
func (*GPLayerTypes) FromString ¶ added in v1.7.0
func (i *GPLayerTypes) FromString(s string) error
func (GPLayerTypes) MarshalJSON ¶ added in v1.7.0
func (ev GPLayerTypes) MarshalJSON() ([]byte, error)
func (GPLayerTypes) String ¶ added in v1.7.0
func (i GPLayerTypes) String() string
func (*GPLayerTypes) UnmarshalJSON ¶ added in v1.7.0
func (ev *GPLayerTypes) UnmarshalJSON(b []byte) error
type GPParams ¶ added in v1.7.0
type GPParams struct { GPType GPLayerTypes `viewif:"LayType=GPLayer" view:"inline" desc:"type of GP Layer -- must set during config using SetBuildConfig of GPType."` // contains filtered or unexported fields }
GPLayer represents a globus pallidus layer, including: GPeOut, GPeIn, GPeTA (arkypallidal), and GPi (see GPType for type). Typically just a single unit per Pool representing a given stripe.
type GScaleVals ¶ added in v1.2.37
type GScaleVals struct { Scale float32 `` /* 240-byte string literal not displayed */ Rel float32 `` /* 159-byte string literal not displayed */ // contains filtered or unexported fields }
GScaleVals holds the conductance scaling values. These are computed once at start and remain constant thereafter, and therefore belong on Params and not on PrjnVals.
type InhibParams ¶
type InhibParams struct { ActAvg ActAvgParams `` /* 173-byte string literal not displayed */ Layer fsfffb.GiParams `` /* 128-byte string literal not displayed */ Pool fsfffb.GiParams `view:"inline" desc:"inhibition across sub-pools of units, for layers with 4D shape"` }
axon.InhibParams contains all the inhibition computation params and functions for basic Axon This is included in axon.Layer to support computation. This also includes other misc layer-level params such as expected average activation in the layer which is used for Ge rescaling and potentially for adapting inhibition over time
func (*InhibParams) Defaults ¶
func (ip *InhibParams) Defaults()
func (*InhibParams) Update ¶
func (ip *InhibParams) Update()
type LRateMod ¶ added in v1.6.13
type LRateMod struct { On slbool.Bool `desc:"toggle use of this modulation factor"` Base float32 `viewif:"On" min:"0" max:"1" desc:"baseline learning rate -- what you get for correct cases"` Range minmax.F32 `` /* 191-byte string literal not displayed */ // contains filtered or unexported fields }
LRateMod implements global learning rate modulation, based on a performance-based factor, for example error. Increasing levels of the factor = higher learning rate. This can be added to a Sim and called prior to DWt() to dynamically change lrate based on overall network performance.
func (*LRateMod) LRateMod ¶ added in v1.6.13
LRateMod calls LRateMod on given network, using computed Mod factor based on given normalized modulation factor (0 = no error = Base learning rate, 1 = maximum error). returns modulation factor applied.
type LRateParams ¶ added in v1.6.13
type LRateParams struct { Base float32 `` /* 199-byte string literal not displayed */ Sched float32 `desc:"scheduled learning rate multiplier, simulating reduction in plasticity over aging"` Mod float32 `desc:"dynamic learning rate modulation due to neuromodulatory or other such factors"` Eff float32 `inactive:"+" desc:"effective actual learning rate multiplier used in computing DWt: Eff = eMod * Sched * Base"` }
LRateParams manages learning rate parameters
func (*LRateParams) Defaults ¶ added in v1.6.13
func (ls *LRateParams) Defaults()
func (*LRateParams) Init ¶ added in v1.6.13
func (ls *LRateParams) Init()
Init initializes modulation values back to 1 and updates Eff
func (*LRateParams) Update ¶ added in v1.6.13
func (ls *LRateParams) Update()
func (*LRateParams) UpdateEff ¶ added in v1.7.0
func (ls *LRateParams) UpdateEff()
type LaySpecialVals ¶ added in v1.7.0
type LaySpecialVals struct { V1 float32 `inactive:"+" desc:"one value"` V2 float32 `inactive:"+" desc:"one value"` V3 float32 `inactive:"+" desc:"one value"` V4 float32 `inactive:"+" desc:"one value"` }
LaySpecialVals holds special values used to communicate to other layers based on neural values, used for special algorithms such as RL where some of the computation is done algorithmically.
type Layer ¶
type Layer struct { LayerBase Params *LayerParams `desc:"all layer-level parameters -- these must remain constant once configured"` Vals *LayerVals `desc:"layer-level state values that are updated during computation"` }
axon.Layer implements the basic Axon spiking activation function, and manages learning in the projections.
func (*Layer) AdaptInhib ¶ added in v1.2.37
AdaptInhib adapts inhibition
func (*Layer) AnyGated ¶ added in v1.7.0
AnyGated returns true if the layer-level pool Gated flag is true, which indicates if any of the layers gated.
func (*Layer) ApplyExt ¶
ApplyExt applies external input in the form of an etensor.Float32. If dimensionality of tensor matches that of layer, and is 2D or 4D, then each dimension is iterated separately, so any mismatch preserves dimensional structure. Otherwise, the flat 1D view of the tensor is used. If the layer is a Target or Compare layer type, then it goes in Target otherwise it goes in Ext
func (*Layer) ApplyExt1D ¶
ApplyExt1D applies external input in the form of a flat 1-dimensional slice of floats If the layer is a Target or Compare layer type, then it goes in Target otherwise it goes in Ext
func (*Layer) ApplyExt1D32 ¶
ApplyExt1D32 applies external input in the form of a flat 1-dimensional slice of float32s. If the layer is a Target or Compare layer type, then it goes in Target otherwise it goes in Ext
func (*Layer) ApplyExt1DTsr ¶
ApplyExt1DTsr applies external input using 1D flat interface into tensor. If the layer is a Target or Compare layer type, then it goes in Target otherwise it goes in Ext
func (*Layer) ApplyExt2D ¶
ApplyExt2D applies 2D tensor external input
func (*Layer) ApplyExt2Dto4D ¶
ApplyExt2Dto4D applies 2D tensor external input to a 4D layer
func (*Layer) ApplyExt4D ¶
ApplyExt4D applies 4D tensor external input
func (*Layer) ApplyExtFlags ¶
func (ly *Layer) ApplyExtFlags() (clrmsk, setmsk NeuronFlags, toTarg bool)
ApplyExtFlags gets the clear mask and set mask for updating neuron flags based on layer type, and whether input should be applied to Target (else Ext)
func (*Layer) AsAxon ¶
AsAxon returns this layer as a axon.Layer -- all derived layers must redefine this to return the base Layer type, so that the AxonLayer interface does not need to include accessors to all the basic stuff
func (*Layer) AvgDifFmTrgAvg ¶ added in v1.6.0
func (ly *Layer) AvgDifFmTrgAvg()
AvgDifFmTrgAvg updates neuron-level AvgDif values from AvgPct - TrgAvg which is then used for synaptic scaling of LWt values in Prjn SynScale.
func (*Layer) AvgGeM ¶ added in v1.2.21
AvgGeM computes the average and max GeM stats, updated in MinusPhase
func (*Layer) AvgMaxVarByPool ¶ added in v1.6.0
AvgMaxVarByPool returns the average and maximum value of given variable for given pool index (0 = entire layer, 1.. are subpools for 4D only). Uses fast index-based variable access.
func (*Layer) BLAPostBuild ¶ added in v1.7.0
func (ly *Layer) BLAPostBuild()
func (*Layer) BetweenLayerGi ¶ added in v1.7.5
BetweenLayerGi computes inhibition Gi between layers
func (*Layer) BetweenLayerGiMax ¶ added in v1.7.5
BetweenLayerGiMax returns max gi value for input maxGi vs the given layIdx layer
func (*Layer) ClearTargExt ¶ added in v1.2.65
func (ly *Layer) ClearTargExt()
ClearTargExt clears external inputs Ext that were set from target values Target. This can be called to simulate alpha cycles within theta cycles, for example.
func (*Layer) CorSimFmActs ¶ added in v1.3.35
func (ly *Layer) CorSimFmActs()
CorSimFmActs computes the correlation similarity (centered cosine aka normalized dot product) in activation state between minus and plus phases.
func (*Layer) CostEst ¶
CostEst returns the estimated computational cost associated with this layer, separated by neuron-level and synapse-level, in arbitrary units where cost per synapse is 1. Neuron-level computation is more expensive but there are typically many fewer neurons, so in larger networks, synaptic costs tend to dominate. Neuron cost is estimated from TimerReport output for large networks.
func (*Layer) CycleNeuron ¶ added in v1.6.0
CycleNeuron does one cycle (msec) of updating at the neuron level
func (*Layer) CyclePost ¶
CyclePost is called after the standard Cycle update, as a separate network layer loop. This is reserved for any kind of special ad-hoc types that need to do something special after Spiking is finally computed and Sent. It ONLY runs on the CPU, not the GPU -- should update global values in the Context state which are re-sync'd back to GPU, and values in other layers MUST come from LayerVals because this is the only data that is sync'd back from the GPU each cycle. For example, updating a neuromodulatory signal such as dopamine.
func (*Layer) DTrgAvgFmErr ¶ added in v1.2.32
func (ly *Layer) DTrgAvgFmErr()
DTrgAvgFmErr computes change in TrgAvg based on unit-wise error signal Called by DWtLayer at the layer level
func (*Layer) DTrgSubMean ¶ added in v1.6.0
func (ly *Layer) DTrgSubMean()
DTrgSubMean subtracts the mean from DTrgAvg values Called by TrgAvgFmD
func (*Layer) DWtLayer ¶ added in v1.6.0
DWtLayer does weight change at the layer level. does NOT call main projection-level DWt method. in base, only calls DTrgAvgFmErr
func (*Layer) DecayCaLrnSpk ¶ added in v1.5.1
DecayCaLrnSpk decays neuron-level calcium learning and spiking variables by given factor, which is typically ly.Params.Act.Decay.Glong. Note: this is NOT called by default and is generally not useful, causing variability in these learning factors as a function of the decay parameter that then has impacts on learning rates etc. It is only here for reference or optional testing.
func (*Layer) DecayState ¶
DecayState decays activation state by given proportion (default decay values are ly.Params.Act.Decay.Act, Glong)
func (*Layer) DecayStateLayer ¶ added in v1.7.0
DecayStateLayer does layer-level decay, but not neuron level
func (*Layer) DecayStatePool ¶
DecayStatePool decays activation state by given proportion in given sub-pool index (0 based)
func (*Layer) GInteg ¶ added in v1.5.12
GInteg integrates conductances G over time (Ge, NMDA, etc). calls SpecialGFmRawSyn, GiInteg
func (*Layer) GPDefaults ¶ added in v1.7.0
func (ly *Layer) GPDefaults()
func (*Layer) GPPostBuild ¶ added in v1.7.0
func (ly *Layer) GPPostBuild()
func (*Layer) GPiDefaults ¶ added in v1.7.0
func (ly *Layer) GPiDefaults()
func (*Layer) GatedFmSpkMax ¶ added in v1.7.0
GatedFmSpkMax updates the Gated state in Pools of given layer, based on Avg SpkMax being above given threshold. returns true if any gated.
func (*Layer) GatherSpikes ¶ added in v1.7.2
GatherSpikes integrates G*Raw and G*Syn values for given recv neuron while integrating the Recv Prjn-level GSyn integrated values. ni is layer-specific index of neuron within its layer.
func (*Layer) GiFmSpikes ¶ added in v1.5.12
GiFmSpikes gets the Spike, GeRaw and GeExt from neurons in the pools where Spike drives FBsRaw -- raw feedback signal, GeRaw drives FFsRaw -- aggregate feedforward excitatory spiking input GeExt represents extra excitatory input from other sources. Then integrates new inhibitory conductances therefrom, at the layer and pool level. Called separately by Network.CycleImpl on all Layers Also updates all AvgMax values at the Cycle level.
func (*Layer) HasPoolInhib ¶ added in v1.2.79
HasPoolInhib returns true if the layer is using pool-level inhibition (implies 4D too). This is the proper check for using pool-level target average activations, for example.
func (*Layer) InitActAvg ¶
func (ly *Layer) InitActAvg()
InitActAvg initializes the running-average activation values that drive learning. and the longer time averaging values.
func (*Layer) InitActs ¶
func (ly *Layer) InitActs()
InitActs fully initializes activation state -- only called automatically during InitWts
func (*Layer) InitExt ¶
func (ly *Layer) InitExt()
InitExt initializes external input state -- called prior to apply ext
func (*Layer) InitGScale ¶ added in v1.2.37
func (ly *Layer) InitGScale()
InitGScale computes the initial scaling factor for synaptic input conductances G, stored in GScale.Scale, based on sending layer initial activation.
func (*Layer) InitPrjnGBuffs ¶ added in v1.5.12
func (ly *Layer) InitPrjnGBuffs()
InitPrjnGBuffs initializes the projection-level conductance buffers and conductance integration values for receiving projections in this layer.
func (*Layer) InitWtSym ¶
func (ly *Layer) InitWtSym()
InitWtsSym initializes the weight symmetry -- higher layers copy weights from lower layers
func (*Layer) InitWts ¶
func (ly *Layer) InitWts()
InitWts initializes the weight values in the network, i.e., resetting learning Also calls InitActs
func (*Layer) IsInput ¶ added in v1.2.32
IsInput returns true if this layer is an Input layer. By default, returns true for layers of Type == emer.Input Used to prevent adapting of inhibition or TrgAvg values.
func (*Layer) IsInputOrTarget ¶ added in v1.6.11
IsInputOrTarget returns true if this layer is either an Input or a Target layer.
func (*Layer) IsLearnTrgAvg ¶ added in v1.2.32
func (*Layer) IsTarget ¶
IsTarget returns true if this layer is a Target layer. By default, returns true for layers of Type == emer.Target Other Target layers include the TRCLayer in deep predictive learning. It is used in SynScale to not apply it to target layers. In both cases, Target layers are purely error-driven.
func (*Layer) LRateMod ¶ added in v1.6.13
LRateMod sets the LRate modulation parameter for Prjns, which is for dynamic modulation of learning rate (see also LRateSched). Updates the effective learning rate factor accordingly.
func (*Layer) LRateSched ¶ added in v1.6.13
LRateSched sets the schedule-based learning rate multiplier. See also LRateMod. Updates the effective learning rate factor accordingly.
func (*Layer) LesionNeurons ¶
LesionNeurons lesions (sets the Off flag) for given proportion (0-1) of neurons in layer returns number of neurons lesioned. Emits error if prop > 1 as indication that percent might have been passed
func (*Layer) LocalistErr2D ¶ added in v1.5.3
LocalistErr2D decodes a 2D layer with Y axis = redundant units, X = localist units returning the indexes of the max activated localist value in the minus and plus phase activities, and whether these are the same or different (err = different)
func (*Layer) LocalistErr4D ¶ added in v1.5.3
LocalistErr4D decodes a 4D layer with each pool representing a localist value. Returns the flat 1D indexes of the max activated localist value in the minus and plus phase activities, and whether these are the same or different (err = different)
func (*Layer) MatrixDefaults ¶ added in v1.7.0
func (ly *Layer) MatrixDefaults()
func (*Layer) MatrixGated ¶ added in v1.7.0
MatrixGated is called after std PlusPhase, on CPU, has Pool info downloaded from GPU
func (*Layer) MatrixPostBuild ¶ added in v1.7.0
func (ly *Layer) MatrixPostBuild()
func (*Layer) MinusPhase ¶ added in v1.2.63
MinusPhase does updating at end of the minus phase
func (*Layer) NewState ¶ added in v1.2.63
NewState handles all initialization at start of new input pattern. Should already have presented the external input to the network at this point. Does NOT call InitGScale()
func (*Layer) Object ¶ added in v1.7.0
func (ly *Layer) Object() interface{}
Object returns the object with parameters to be set by emer.Params
func (*Layer) PTMaintDefaults ¶ added in v1.7.2
func (ly *Layer) PTMaintDefaults()
func (*Layer) PctUnitErr ¶
PctUnitErr returns the proportion of units where the thresholded value of Target (Target or Compare types) or ActP does not match that of ActM. If Act > ly.Params.Act.Clamp.ErrThr, effective activity = 1 else 0 robust to noisy activations.
func (*Layer) PlusPhasePost ¶ added in v1.7.0
PlusPhasePost does special algorithm processing at end of plus
func (*Layer) PoolGiFmSpikes ¶ added in v1.5.12
PoolGiFmSpikes computes inhibition Gi from Spikes within relevant Pools
func (*Layer) PostBuild ¶ added in v1.7.0
func (ly *Layer) PostBuild()
PostBuild performs special post-Build() configuration steps for specific algorithms, using configuration data set in BuildConfig during the ConfigNet process.
func (*Layer) PostSpike ¶ added in v1.7.0
PostSpike does updates at neuron level after spiking has been computed. This is where special layer types add extra code. It also updates the CaSpkPCyc stats.
func (*Layer) PulvPostBuild ¶ added in v1.7.0
func (ly *Layer) PulvPostBuild()
PulvPostBuild does post-Build config of Pulvinar based on BuildConfig options
func (*Layer) PulvinarDriver ¶ added in v1.7.0
func (*Layer) RSalAChMaxLayAct ¶ added in v1.7.0
RSalAChMaxLayAct returns the updated maxAct value using LayVals.ActAvg.CaSpkP.Max from given layer index, subject to any relevant RewThr thresholding.
func (*Layer) RSalAChPostBuild ¶ added in v1.7.0
func (ly *Layer) RSalAChPostBuild()
func (*Layer) RWDaPostBuild ¶ added in v1.7.0
func (ly *Layer) RWDaPostBuild()
RWDaPostBuild does post-Build config
func (*Layer) ReadWtsJSON ¶
ReadWtsJSON reads the weights from this layer from the receiver-side perspective in a JSON text format. This is for a set of weights that were saved *for one layer only* and is not used for the network-level ReadWtsJSON, which reads into a separate structure -- see SetWts method.
func (*Layer) RecvPrjnVals ¶
func (ly *Layer) RecvPrjnVals(vals *[]float32, varNm string, sendLay emer.Layer, sendIdx1D int, prjnType string) error
RecvPrjnVals fills in values of given synapse variable name, for projection into given sending layer and neuron 1D index, for all receiving neurons in this layer, into given float32 slice (only resized if not big enough). prjnType is the string representation of the prjn type -- used if non-empty, useful when there are multiple projections between two layers. Returns error on invalid var name. If the receiving neuron is not connected to the given sending layer or neuron then the value is set to mat32.NaN(). Returns error on invalid var name or lack of recv prjn (vals always set to nan on prjn err).
func (*Layer) STNDefaults ¶ added in v1.7.0
func (ly *Layer) STNDefaults()
func (*Layer) SendPrjnVals ¶
func (ly *Layer) SendPrjnVals(vals *[]float32, varNm string, recvLay emer.Layer, recvIdx1D int, prjnType string) error
SendPrjnVals fills in values of given synapse variable name, for projection into given receiving layer and neuron 1D index, for all sending neurons in this layer, into given float32 slice (only resized if not big enough). prjnType is the string representation of the prjn type -- used if non-empty, useful when there are multiple projections between two layers. Returns error on invalid var name. If the sending neuron is not connected to the given receiving layer or neuron then the value is set to mat32.NaN(). Returns error on invalid var name or lack of recv prjn (vals always set to nan on prjn err).
func (*Layer) SendSpike ¶
SendSpike sends spike to receivers for all neurons that spiked last step in Cycle, integrated the next time around.
func (*Layer) SetSubMean ¶ added in v1.6.11
SetSubMean sets the SubMean parameters in all the layers in the network trgAvg is for Learn.TrgAvgAct.SubMean prjn is for the prjns Learn.Trace.SubMean in both cases, it is generally best to have both parameters set to 0 at the start of learning
func (*Layer) SlowAdapt ¶ added in v1.2.37
SlowAdapt is the layer-level slow adaptation functions. Calls AdaptInhib and AvgDifFmTrgAvg for Synaptic Scaling. Does NOT call projection-level methods.
func (*Layer) SpikeFmG ¶ added in v1.6.0
SpikeFmG computes Vm from Ge, Gi, Gl conductances and then Spike from that
func (*Layer) SpkSt1 ¶ added in v1.5.10
SpkSt1 saves current activation state in SpkSt1 variables (using CaP)
func (*Layer) SpkSt2 ¶ added in v1.5.10
SpkSt2 saves current activation state in SpkSt2 variables (using CaP)
func (*Layer) SynFail ¶ added in v1.2.92
SynFail updates synaptic weight failure only -- normally done as part of DWt and WtFmDWt, but this call can be used during testing to update failing synapses.
func (*Layer) TDDaPostBuild ¶ added in v1.7.0
func (ly *Layer) TDDaPostBuild()
TDDaPostBuild does post-Build config
func (*Layer) TDIntegPostBuild ¶ added in v1.7.0
func (ly *Layer) TDIntegPostBuild()
TDIntegPostBuild does post-Build config
func (*Layer) TargToExt ¶ added in v1.2.65
func (ly *Layer) TargToExt()
TargToExt sets external input Ext from target values Target This is done at end of MinusPhase to allow targets to drive activity in plus phase. This can be called separately to simulate alpha cycles within theta cycles, for example.
func (*Layer) TrgAvgFmD ¶ added in v1.2.32
func (ly *Layer) TrgAvgFmD()
TrgAvgFmD updates TrgAvg from DTrgAvg it is called by WtFmDWtLayer
func (*Layer) UnLesionNeurons ¶
func (ly *Layer) UnLesionNeurons()
UnLesionNeurons unlesions (clears the Off flag) for all neurons in the layer
func (*Layer) UnitVal ¶
UnitVal returns value of given variable name on given unit, using shape-based dimensional index
func (*Layer) UnitVal1D ¶
UnitVal1D returns value of given variable index on given unit, using 1-dimensional index. returns NaN on invalid index. This is the core unit var access method used by other methods, so it is the only one that needs to be updated for derived layer types.
func (*Layer) UnitVals ¶
UnitVals fills in values of given variable name on unit, for each unit in the layer, into given float32 slice (only resized if not big enough). Returns error on invalid var name.
func (*Layer) UnitValsRepTensor ¶ added in v1.3.6
UnitValsRepTensor fills in values of given variable name on unit for a smaller subset of representative units in the layer, into given tensor. This is used for computationally intensive stats or displays that work much better with a smaller number of units. The set of representative units are defined by SetRepIdxs -- all units are used if no such subset has been defined. If tensor is not already big enough to hold the values, it is set to RepShape to hold all the values if subset is defined, otherwise it calls UnitValsTensor and is identical to that. Returns error on invalid var name.
func (*Layer) UnitValsTensor ¶
UnitValsTensor returns values of given variable name on unit for each unit in the layer, as a float32 tensor in same shape as layer units.
func (*Layer) UnitVarIdx ¶
UnitVarIdx returns the index of given variable within the Neuron, according to *this layer's* UnitVarNames() list (using a map to lookup index), or -1 and error message if not found.
func (*Layer) UnitVarNames ¶
UnitVarNames returns a list of variable names available on the units in this layer
func (*Layer) UnitVarNum ¶
UnitVarNum returns the number of Neuron-level variables for this layer. This is needed for extending indexes in derived types.
func (*Layer) UnitVarProps ¶
UnitVarProps returns properties for variables
func (*Layer) Update ¶ added in v1.7.0
func (ly *Layer) Update()
Update is an interface for generically updating after edits this should be used only for the values on the struct itself. UpdateParams is used to update all parameters, including Prjn.
func (*Layer) UpdateExtFlags ¶
func (ly *Layer) UpdateExtFlags()
UpdateExtFlags updates the neuron flags for external input based on current layer Type field -- call this if the Type has changed since the last ApplyExt* method call.
func (*Layer) UpdateParams ¶
func (ly *Layer) UpdateParams()
UpdateParams updates all params given any changes that might have been made to individual values including those in the receiving projections of this layer. This is not called Update because it is not just about the local values in the struct.
func (*Layer) VThalDefaults ¶ added in v1.7.0
func (ly *Layer) VThalDefaults()
func (*Layer) WriteWtsJSON ¶
WriteWtsJSON writes the weights from this layer from the receiver-side perspective in a JSON text format. We build in the indentation logic to make it much faster and more efficient.
func (*Layer) WtFmDWtLayer ¶ added in v1.6.0
WtFmDWtLayer does weight update at the layer level. does NOT call main projection-level WtFmDWt method. in base, only calls TrgAvgFmD
type LayerBase ¶ added in v1.4.5
type LayerBase struct { AxonLay AxonLayer `` /* 297-byte string literal not displayed */ Network emer.Network `` /* 141-byte string literal not displayed */ Nm string `` /* 151-byte string literal not displayed */ Cls string `desc:"Class is for applying parameter styles, can be space separated multple tags"` Off bool `desc:"inactivate this layer -- allows for easy experimentation"` Shp etensor.Shape `` /* 219-byte string literal not displayed */ Typ emer.LayerType `` /* 161-byte string literal not displayed */ Rel relpos.Rel `view:"inline" desc:"Spatial relationship to other layer, determines positioning"` Ps mat32.Vec3 `` /* 154-byte string literal not displayed */ Idx int `` /* 278-byte string literal not displayed */ NeurStIdx int `view:"-" inactive:"-" desc:"starting index of neurons for this layer within the global Network list"` RepIxs []int `` /* 128-byte string literal not displayed */ RepShp etensor.Shape `view:"-" desc:"shape of representative units in the layer -- if RepIxs is empty or .Shp is nil, use overall layer shape"` RcvPrjns AxonPrjns `desc:"list of receiving projections into this layer from other layers"` SndPrjns AxonPrjns `desc:"list of sending projections from this layer to other layers"` Neurons []Neuron `` /* 133-byte string literal not displayed */ Pools []Pool `` /* 234-byte string literal not displayed */ BuildConfig map[string]string `` /* 523-byte string literal not displayed */ }
LayerBase manages the structural elements of the layer, which are common to any Layer type. The main Layer then can just have the algorithm-specific code.
func (*LayerBase) ApplyParams ¶ added in v1.4.5
ApplyParams applies given parameter style Sheet to this layer and its recv projections. Calls UpdateParams on anything set to ensure derived parameters are all updated. If setMsg is true, then a message is printed to confirm each parameter that is set. it always prints a message if a parameter fails to be set. returns true if any params were set, and error if there were any errors.
func (*LayerBase) Build ¶ added in v1.7.0
Build constructs the layer state, including calling Build on the projections
func (*LayerBase) BuildConfigByName ¶ added in v1.7.0
BuildConfigByName looks for given BuildConfig option by name, and reports & returns an error if not found.
func (*LayerBase) BuildConfigFindLayer ¶ added in v1.7.0
BuildConfigFindLayer looks for BuildConfig of given name and if found, looks for layer with corresponding name. if mustName is true, then an error is logged if the BuildConfig name does not exist. An error is always logged if the layer name is not found. -1 is returned in any case of not found.
func (*LayerBase) BuildPools ¶ added in v1.7.0
BuildPools builds the inhibitory pools structures -- nu = number of units in layer
func (*LayerBase) BuildPrjns ¶ added in v1.7.0
BuildPrjns builds the projections, recv-side
func (*LayerBase) BuildSubPools ¶ added in v1.7.0
func (ly *LayerBase) BuildSubPools()
BuildSubPools initializes neuron start / end indexes for sub-pools
func (*LayerBase) Idx4DFrom2D ¶ added in v1.4.5
func (*LayerBase) InitName ¶ added in v1.4.5
InitName MUST be called to initialize the layer's pointer to itself as an emer.Layer which enables the proper interface methods to be called. Also sets the name, and the parent network that this layer belongs to (which layers may want to retain).
func (*LayerBase) LayerType ¶ added in v1.7.0
func (ly *LayerBase) LayerType() LayerTypes
func (*LayerBase) NPools ¶ added in v1.4.5
NPools returns the number of unit sub-pools according to the shape parameters. Currently supported for a 4D shape, where the unit pools are the first 2 Y,X dims and then the units within the pools are the 2nd 2 Y,X dims
func (*LayerBase) NRecvPrjns ¶ added in v1.4.5
func (*LayerBase) NSendPrjns ¶ added in v1.4.5
func (*LayerBase) NeurStartIdx ¶ added in v1.6.0
func (*LayerBase) NonDefaultParams ¶ added in v1.4.5
NonDefaultParams returns a listing of all parameters in the Layer that are not at their default values -- useful for setting param styles etc.
func (*LayerBase) PoolTry ¶ added in v1.7.0
PoolTry returns pool at given index, returns error if index is out of range
func (*LayerBase) RecipToRecvPrjn ¶ added in v1.7.2
RecipToRecvPrjn finds the reciprocal projection to the given recv projection within the ly layer. i.e., where ly is instead the *sending* layer to same other layer B that is the sender of the rpj projection we're receiving from.
ly = A, other layer = B:
rpj: R=A <- S=B spj: S=A -> R=B
returns false if not found.
func (*LayerBase) RecipToSendPrjn ¶ added in v1.4.5
RecipToSendPrjn finds the reciprocal projection to the given sending projection within the ly layer. i.e., where ly is instead the *receiving* layer from same other layer B that is the receiver of the spj projection we're sending to.
ly = A, other layer = B:
spj: S=A -> R=B rpj: R=A <- S=B
returns false if not found.
func (*LayerBase) RecvNameTry ¶ added in v1.7.0
func (*LayerBase) RecvNameTypeTry ¶ added in v1.7.0
func (*LayerBase) RepShape ¶ added in v1.4.8
RepShape returns the shape to use for representative units
func (*LayerBase) SendNameTry ¶ added in v1.7.0
func (*LayerBase) SendNameTypeTry ¶ added in v1.7.0
func (*LayerBase) SetBuildConfig ¶ added in v1.7.0
SetBuildConfig sets named configuration parameter to given string value to be used in the PostBuild stage -- mainly for layer names that need to be looked up and turned into indexes, after entire network is built.
func (*LayerBase) SetRepIdxsShape ¶ added in v1.4.8
SetRepIdxsShape sets the RepIdxs, and RepShape and as list of dimension sizes
func (*LayerBase) SetShape ¶ added in v1.4.5
SetShape sets the layer shape and also uses default dim names
type LayerIdxs ¶ added in v1.7.0
type LayerIdxs struct { PoolSt uint32 `inactive:"+" desc:"start of pools for this layer -- first one is always the layer-wide pool"` NeurSt uint32 `inactive:"+" desc:"start of neurons for this layer in global array (same as Layer.NeurStIdx)"` NeurN uint32 `inactive:"+" desc:"number of neurons in layer"` RecvSt uint32 `inactive:"+" desc:"start index into RecvPrjns global array"` RecvN uint32 `inactive:"+" desc:"number of recv projections"` // contains filtered or unexported fields }
LayerIdxs contains index access into global arrays for GPU.
type LayerParams ¶ added in v1.7.0
type LayerParams struct { LayType LayerTypes `` /* 140-byte string literal not displayed */ Act ActParams `view:"add-fields" desc:"Activation parameters and methods for computing activations"` Inhib InhibParams `view:"add-fields" desc:"Inhibition parameters and methods for computing layer-level inhibition"` Learn LearnNeurParams `view:"add-fields" desc:"Learning parameters and methods that operate at the neuron level"` Burst BurstParams `` /* 181-byte string literal not displayed */ CT CTParams `` /* 234-byte string literal not displayed */ Pulv PulvParams `` /* 241-byte string literal not displayed */ RSalACh RSalAChParams `` /* 173-byte string literal not displayed */ RWPred RWPredParams `` /* 170-byte string literal not displayed */ RWDa RWDaParams `` /* 177-byte string literal not displayed */ TDInteg TDIntegParams `viewif:"LayType=TDIntegLayer" view:"inline" desc:"parameterizes TD reward integration layer"` TDDa TDDaParams `` /* 180-byte string literal not displayed */ BLA BLAParams `` /* 166-byte string literal not displayed */ Matrix MatrixParams `` /* 144-byte string literal not displayed */ GP GPParams `viewif:"LayType=GPLayer" view:"inline" desc:"type of GP Layer."` Idxs LayerIdxs `view:"-" desc:"recv and send projection array access info"` LayInhib1Idx int32 `` /* 143-byte string literal not displayed */ LayInhib2Idx int32 `` /* 143-byte string literal not displayed */ LayInhib3Idx int32 `` /* 143-byte string literal not displayed */ LayInhib4Idx int32 `` /* 144-byte string literal not displayed */ // contains filtered or unexported fields }
LayerParams contains all of the layer parameters. These values must remain constant over the course of computation. On the GPU, they are loaded into a uniform.
func (*LayerParams) AllParams ¶ added in v1.7.0
func (ly *LayerParams) AllParams() string
AllParams returns a listing of all parameters in the Layer
func (*LayerParams) BLADefaults ¶ added in v1.7.0
func (ly *LayerParams) BLADefaults()
func (*LayerParams) CTDefaults ¶ added in v1.7.0
func (ly *LayerParams) CTDefaults()
called in Defaults for CT layer type
func (*LayerParams) Defaults ¶ added in v1.7.0
func (ly *LayerParams) Defaults()
func (*LayerParams) GFmRawSyn ¶ added in v1.7.0
func (ly *LayerParams) GFmRawSyn(ctx *Context, ni uint32, nrn *Neuron)
GFmRawSyn computes overall Ge and GiSyn conductances for neuron from GeRaw and GeSyn values, including NMDA, VGCC, AMPA, and GABA-A channels. drvAct is for Pulvinar layers, activation of driving neuron
func (*LayerParams) GNeuroMod ¶ added in v1.7.0
func (ly *LayerParams) GNeuroMod(ctx *Context, ni uint32, nrn *Neuron, vals *LayerVals)
GNeuroMod does neuromodulation of conductances
func (*LayerParams) GatherSpikesInit ¶ added in v1.7.2
func (ly *LayerParams) GatherSpikesInit(nrn *Neuron)
GatherSpikesInit initializes G*Raw and G*Syn values for given neuron prior to integration
func (*LayerParams) GeToPool ¶ added in v1.7.2
func (ly *LayerParams) GeToPool(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, lpl *Pool, subPool bool)
GeToPool adds Spike, GeRaw and GeExt from each neuron into the Pools
func (*LayerParams) GiInteg ¶ added in v1.7.0
GiInteg adds Gi values from all sources including SubPool computed inhib and updates GABAB as well
func (*LayerParams) LayPoolGiFmSpikes ¶ added in v1.7.0
func (ly *LayerParams) LayPoolGiFmSpikes(ctx *Context, lpl *Pool, vals *LayerVals)
LayPoolGiFmSpikes computes inhibition Gi from Spikes for layer-level pool
func (*LayerParams) MinusPhase ¶ added in v1.7.0
MinusPhase does neuron level minus-phase updating
func (*LayerParams) NewState ¶ added in v1.7.0
NewState handles all initialization at start of new input pattern. Should already have presented the external input to the network at this point.
func (*LayerParams) PlusPhase ¶ added in v1.7.0
func (ly *LayerParams) PlusPhase(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, lpl *Pool, vals *LayerVals)
PlusPhase does neuron level plus-phase updating
func (*LayerParams) PostSpike ¶ added in v1.7.0
PostSpike does updates at neuron level after spiking has been computed. it is called *after* PostSpikeSpecial. It also updates the CaSpkPCyc stats.
func (*LayerParams) PostSpikeSpecial ¶ added in v1.7.0
func (ly *LayerParams) PostSpikeSpecial(ctx *Context, ni uint32, nrn *Neuron, pl *Pool, lpl *Pool, vals *LayerVals)
PostSpikeSpecial does updates at neuron level after spiking has been computed. This is where special layer types add extra code. It also updates the CaSpkPCyc stats.
func (*LayerParams) PulvDefaults ¶ added in v1.7.0
func (ly *LayerParams) PulvDefaults()
called in Defaults for Pulvinar layer type
func (*LayerParams) RWDefaults ¶ added in v1.7.0
func (ly *LayerParams) RWDefaults()
func (*LayerParams) RWPredDefaults ¶ added in v1.7.0
func (ly *LayerParams) RWPredDefaults()
func (*LayerParams) SpecialPostGs ¶ added in v1.7.0
func (ly *LayerParams) SpecialPostGs(ctx *Context, ni uint32, nrn *Neuron, saveVal float32)
SpecialPostGs is used for special layer types to do things after the standard updates in GFmRawSyn. It is passed the saveVal from SpecialPreGs
func (*LayerParams) SpecialPreGs ¶ added in v1.7.0
func (ly *LayerParams) SpecialPreGs(ctx *Context, ni uint32, nrn *Neuron, drvGe float32, nonDrvPct float32) float32
SpecialPreGs is used for special layer types to do things to the conductance values prior to doing the standard updates in GFmRawSyn drvAct is for Pulvinar layers, activation of driving neuron
func (*LayerParams) SpikeFmG ¶ added in v1.7.0
func (ly *LayerParams) SpikeFmG(ctx *Context, ni uint32, nrn *Neuron)
SpikeFmG computes Vm from Ge, Gi, Gl conductances and then Spike from that
func (*LayerParams) SubPoolGiFmSpikes ¶ added in v1.7.0
func (ly *LayerParams) SubPoolGiFmSpikes(ctx *Context, pl *Pool, lpl *Pool, lyInhib bool, giMult float32)
SubPoolGiFmSpikes computes inhibition Gi from Spikes within a sub-pool pl is guaranteed not to be the overall layer pool
func (*LayerParams) TDDefaults ¶ added in v1.7.0
func (ly *LayerParams) TDDefaults()
func (*LayerParams) TDPredDefaults ¶ added in v1.7.0
func (ly *LayerParams) TDPredDefaults()
func (*LayerParams) Update ¶ added in v1.7.0
func (ly *LayerParams) Update()
type LayerTypes ¶ added in v1.7.0
type LayerTypes int32
LayerTypes is an axon-specific layer type enum, that encompasses all the different algorithm types supported. Class parameter styles automatically key off of these types. The first entries must be kept synchronized with the emer.LayerType, although we replace Hidden -> Super.
const ( // Super is a superficial cortical layer (lamina 2-3-4) // which does not receive direct input or targets. // In more generic models, it should be used as a Hidden layer, // and maps onto the Hidden type in emer.LayerType. SuperLayer LayerTypes = iota // Input is a layer that receives direct external input // in its Ext inputs. Biologically, it can be a primary // sensory layer, or a thalamic layer. InputLayer // Target is a layer that receives direct external target inputs // used for driving plus-phase learning. // Simple target layers are generally not used in more biological // models, which instead use predictive learning via Pulvinar // or related mechanisms. TargetLayer // Compare is a layer that receives external comparison inputs, // which drive statistics but do NOT drive activation // or learning directly. It is rarely used in axon. CompareLayer // CT are layer 6 corticothalamic projecting neurons, // which drive "top down" predictions in Pulvinar layers. // They maintain information over time via stronger NMDA // channels and use maintained prior state information to // generate predictions about current states forming on Super // layers that then drive PT (5IB) bursting activity, which // are the plus-phase drivers of Pulvinar activity. CTLayer // Pulvinar are thalamic relay cell neurons in the higher-order // Pulvinar nucleus of the thalamus, and functionally isomorphic // neurons in the MD thalamus, and potentially other areas. // These cells alternately reflect predictions driven by CT projections, // and actual outcomes driven by 5IB Burst activity from corresponding // PT or Super layer neurons that provide strong driving inputs. PulvinarLayer // TRNLayer is thalamic reticular nucleus layer for inhibitory competition // within the thalamus. TRNLayer // PTMaintLayer implements the pyramidal tract layer 5 intrinsic bursting // (5IB) deep neurons, which provide the main output signal from cortex, // specifically the subset of PT neurons that are gated by the BG to // drive sustained active maintenance, via strong NMDA channels. // Set projections from thalamus to be modulatory, and use Act.Dend.ModGain // to set extra strength these inputs which are only briefly active. PTMaintLayer // RewLayer represents positive or negative reward values across 2 units, // showing spiking rates for each, and Act always represents signed value. RewLayer // RSalienceAChLayer reads Max layer activity from specified source layer(s) // and optionally the global Context.NeuroMod.Rew or RewPred state variables, // and updates the global ACh = Max of all as the positively-rectified, // non-prediction-discounted reward salience signal. // Acetylcholine (ACh) is known to represent something like this signal. RSalienceAChLayer // RWPredLayer computes reward prediction for a simple Rescorla-Wagner // learning dynamic (i.e., PV learning in the PVLV framework). // Activity is computed as linear function of excitatory conductance // (which can be negative -- there are no constraints). // Use with RWPrjn which does simple delta-rule learning on minus-plus. RWPredLayer // RWDaLayer computes a dopamine (DA) signal based on a simple Rescorla-Wagner // learning dynamic (i.e., PV learning in the PVLV framework). // It computes difference between r(t) and RWPred values. // r(t) is accessed directly from a Rew layer -- if no external input then no // DA is computed -- critical for effective use of RW only for PV cases. // RWPred prediction is also accessed directly from Rew layer to avoid any issues. RWDaLayer // TDPredLayer is the temporal differences reward prediction layer. // It represents estimated value V(t) in the minus phase, and computes // estimated V(t+1) based on its learned weights in plus phase, // using the TDPredPrjn projection type for DA modulated learning. TDPredLayer // TDIntegLayer is the temporal differences reward integration layer. // It represents estimated value V(t) from prior time step in the minus phase, // and estimated discount * V(t+1) + r(t) in the plus phase. // It gets Rew, PrevPred from Context.NeuroMod, and Special // LayerVals from TDPredLayer. TDIntegLayer // TDDaLayer computes a dopamine (DA) signal as the temporal difference (TD) // between the TDIntegLayer activations in the minus and plus phase. // These are retrieved from Special LayerVals. TDDaLayer // BLALayer represents a basolateral amygdala layer // which learns to associate arbitrary stimuli (CSs) // with behaviorally salient outcomes (USs) BLALayer // CeMLayer represents a central nucleus of the amygdala layer. CeMLayer // PPTgLayer represents a pedunculopontine tegmental nucleus layer. // it subtracts prior trial's excitatory conductance to // compute the temporal derivative over time, with a positive // rectification. // also sets Act to the exact differenence. PPTgLayer // MatrixLayer represents the matrisome medium spiny neurons (MSNs) // that are the main Go / NoGo gating units in BG. // These are strongly modulated by phasic dopamine: D1 = Go, D2 = NoGo. MatrixLayer // STNLayer represents subthalamic nucleus neurons, with two subtypes: // STNp are more strongly driven and get over bursting threshold, driving strong, // rapid activation of the KCa channels, causing a long pause in firing, which // creates a window during which GPe dynamics resolve Go vs. No balance. // STNs are more weakly driven and thus more slowly activate KCa, resulting in // a longer period of activation, during which the GPi is inhibited to prevent // premature gating based only MtxGo inhibition -- gating only occurs when // GPeIn signal has had a chance to integrate its MtxNo inputs. STNLayer // GPLayer represents a globus pallidus layer in the BG, including: // GPeOut, GPeIn, GPeTA (arkypallidal), and GPi. // Typically just a single unit per Pool representing a given stripe. GPLayer // VThalLayer represents a BG gated thalamic layer, // which receives BG gating in the form of an // inhibitory projection from GPi. Located // mainly in the Ventral thalamus: VA / VM / VL, // and also parts of MD mediodorsal thalamus. VThalLayer LayerTypesN )
The layer types
func (*LayerTypes) FromString ¶ added in v1.7.0
func (i *LayerTypes) FromString(s string) error
func (LayerTypes) MarshalJSON ¶ added in v1.7.0
func (ev LayerTypes) MarshalJSON() ([]byte, error)
func (LayerTypes) String ¶ added in v1.7.0
func (i LayerTypes) String() string
func (*LayerTypes) UnmarshalJSON ¶ added in v1.7.0
func (ev *LayerTypes) UnmarshalJSON(b []byte) error
type LayerVals ¶ added in v1.7.0
type LayerVals struct { ActAvg ActAvgVals `view:"inline" desc:"running-average activation levels used for Ge scaling and adaptive inhibition"` CorSim CorSimStats `desc:"correlation (centered cosine aka normalized dot product) similarity between ActM, ActP states"` NeuroMod NeuroModVals `view:"inline" desc:"neuromodulatory values: global to the layer, copied from Context"` Special LaySpecialVals `` /* 282-byte string literal not displayed */ }
LayerVals holds extra layer state that is updated per layer. It is sync'd down from the GPU to the CPU after every Cycle.
type LearnNeurParams ¶
type LearnNeurParams struct { CaLrn CaLrnParams `` /* 376-byte string literal not displayed */ CaSpk CaSpkParams `` /* 456-byte string literal not displayed */ LrnNMDA chans.NMDAParams `` /* 266-byte string literal not displayed */ TrgAvgAct TrgAvgActParams `` /* 126-byte string literal not displayed */ RLRate RLRateParams `` /* 184-byte string literal not displayed */ NeuroMod NeuroModParams `` /* 221-byte string literal not displayed */ }
axon.LearnNeurParams manages learning-related parameters at the neuron-level. This is mainly the running average activations that drive learning
func (*LearnNeurParams) CaFmSpike ¶ added in v1.3.5
func (ln *LearnNeurParams) CaFmSpike(nrn *Neuron)
CaFmSpike updates all spike-driven calcium variables, including CaLrn and CaSpk. Computed after new activation for current cycle is updated.
func (*LearnNeurParams) DecayCaLrnSpk ¶ added in v1.5.1
func (ln *LearnNeurParams) DecayCaLrnSpk(nrn *Neuron, decay float32)
DecayNeurCa decays neuron-level calcium learning and spiking variables by given factor. Note: this is NOT called by default and is generally not useful, causing variability in these learning factors as a function of the decay parameter that then has impacts on learning rates etc. It is only here for reference or optional testing.
func (*LearnNeurParams) Defaults ¶
func (ln *LearnNeurParams) Defaults()
func (*LearnNeurParams) InitNeurCa ¶ added in v1.3.9
func (ln *LearnNeurParams) InitNeurCa(nrn *Neuron)
InitCaLrnSpk initializes the neuron-level calcium learning and spking variables. Called by InitWts (at start of learning).
func (*LearnNeurParams) LrnNMDAFmRaw ¶ added in v1.3.11
func (ln *LearnNeurParams) LrnNMDAFmRaw(nrn *Neuron, geTot float32)
LrnNMDAFmRaw updates the separate NMDA conductance and calcium values based on GeTot = GeRaw + external ge conductance. These are the variables that drive learning -- can be the same as activation but also can be different for testing learning Ca effects independent of activation effects.
func (*LearnNeurParams) Update ¶
func (ln *LearnNeurParams) Update()
type LearnSynParams ¶
type LearnSynParams struct { Learn slbool.Bool `desc:"enable learning for this projection"` LRate LRateParams `desc:"learning rate parameters, supporting two levels of modulation on top of base learning rate."` Trace TraceParams `desc:"trace-based learning parameters"` KinaseCa kinase.CaParams `view:"inline" desc:"kinase calcium Ca integration parameters"` // contains filtered or unexported fields }
LearnSynParams manages learning-related parameters at the synapse-level.
func (*LearnSynParams) CHLdWt ¶
func (ls *LearnSynParams) CHLdWt(suCaP, suCaD, ruCaP, ruCaD float32) float32
CHLdWt returns the error-driven weight change component for a CHL contrastive hebbian learning rule, optionally using the checkmark temporally eXtended Contrastive Attractor Learning (XCAL) function
func (*LearnSynParams) Defaults ¶
func (ls *LearnSynParams) Defaults()
func (*LearnSynParams) DeltaDWt ¶ added in v1.5.1
func (ls *LearnSynParams) DeltaDWt(plus, minus float32) float32
DeltaDWt returns the error-driven weight change component for a simple delta between a minus and plus phase factor, optionally using the checkmark temporally eXtended Contrastive Attractor Learning (XCAL) function
func (*LearnSynParams) Update ¶
func (ls *LearnSynParams) Update()
type MatrixParams ¶ added in v1.7.0
type MatrixParams struct { // GPHasPools bool `desc:"do the GP pathways that we drive have separate pools that compete for selecting one out of multiple options in parallel (true) or is it a single big competition for Go vs. No (false). If true, then Matrix must also have pools "` GateThr float32 `desc:"threshold on layer Avg SpkMax for Matrix Go and VThal layers to count as having gated"` NoGoGeLrn float32 `` /* 288-byte string literal not displayed */ OtherMatrixIdx int32 `` /* 130-byte string literal not displayed */ ThalLay1Idx int32 `` /* 169-byte string literal not displayed */ ThalLay2Idx int32 `` /* 169-byte string literal not displayed */ ThalLay3Idx int32 `` /* 169-byte string literal not displayed */ ThalLay4Idx int32 `` /* 169-byte string literal not displayed */ ThalLay5Idx int32 `` /* 169-byte string literal not displayed */ }
MatrixParams has parameters for BG Striatum Matrix MSN layers These are the main Go / NoGo gating units in BG. DA, ACh learning rate modulation is pre-computed on the recv neuron RLRate variable via NeuroMod. Also uses Pool.Gated for InvertNoGate, updated in PlusPhase prior to DWt call. Must set Learn.NeuroMod.DAMod = D1Mod or D2Mod via SetBuildConfig("DAMod").
func (*MatrixParams) Defaults ¶ added in v1.7.0
func (mp *MatrixParams) Defaults()
func (*MatrixParams) Update ¶ added in v1.7.0
func (mp *MatrixParams) Update()
type MatrixPrjnParams ¶ added in v1.7.0
type MatrixPrjnParams struct { CurTrlDA slbool.Bool `` /* 277-byte string literal not displayed */ NoGateLRate float32 `` /* 272-byte string literal not displayed */ AChDecay float32 `` /* 167-byte string literal not displayed */ UseHasRew slbool.Bool `` /* 182-byte string literal not displayed */ }
MatrixPrjnParams for trace-based learning in the MatrixPrjn. A trace of synaptic co-activity is formed, and then modulated by dopamine whenever it occurs. This bridges the temporal gap between gating activity and subsequent activity, and is based biologically on synaptic tags. Trace is reset at time of reward based on ACh level from CINs.
func (*MatrixPrjnParams) Defaults ¶ added in v1.7.0
func (tp *MatrixPrjnParams) Defaults()
func (*MatrixPrjnParams) TraceDecay ¶ added in v1.7.0
func (tp *MatrixPrjnParams) TraceDecay(ctx *Context, ach float32) float32
TraceDecay returns the decay factor as a function of ach level and context
func (*MatrixPrjnParams) Update ¶ added in v1.7.0
func (tp *MatrixPrjnParams) Update()
type NetThreads ¶ added in v1.6.2
type NetThreads struct { Neurons int `desc:"for basic neuron-level computation -- highly parallel and linear in memory -- should be able to use a lot of threads"` SendSpike int `` /* 174-byte string literal not displayed */ SynCa int `` /* 142-byte string literal not displayed */ }
NetThreads parameterizes how many goroutines to use for each task
func (*NetThreads) Set ¶ added in v1.6.2
func (nt *NetThreads) Set(neurons, sendSpike, synCa int) error
Set sets number of goroutines manually for each task This exists mainly for testing, just use SetDefaults in normal use, and GOMAXPROCS=1 to force single-threaded operation.
func (*NetThreads) SetDefaults ¶ added in v1.6.2
func (nt *NetThreads) SetDefaults(nNeurons, nPrjns, nLayers int)
SetDefaults uses heuristics to determine the number of goroutines to use for each task: Neurons, SendSpike, SynCa.
func (*NetThreads) String ¶ added in v1.7.1
func (nt *NetThreads) String() string
type Network ¶
type Network struct { NetworkBase SlowInterval int `` /* 174-byte string literal not displayed */ SlowCtr int `inactive:"+" desc:"counter for how long it has been since last SlowAdapt step"` }
axon.Network has parameters for running a basic rate-coded Axon network
func NewNetwork ¶ added in v1.2.94
NewNetwork returns a new axon Network
func (*Network) AddAmygdala ¶ added in v1.7.0
func (nt *Network) AddAmygdala(prefix string, neg bool, nUs, unY, unX int, space float32) (blaPosAcq, blaPosExt, blaNegAcq, blaNegExt, cemPos, cemNeg, pptg AxonLayer)
AddAmygdala adds a full amygdala complex including BLA, CeM, and PPTg. Inclusion of negative valence is optional with neg arg -- neg* layers are nil if not included.
func (*Network) AddBG ¶ added in v1.7.0
func (nt *Network) AddBG(prefix string, nPoolsY, nPoolsX, nNeurY, nNeurX, gpNeurY, gpNeurX int, space float32) (mtxGo, mtxNo, gpeOut, gpeIn, gpeTA, stnp, stns, gpi AxonLayer)
AddBG adds MtxGo, MtxNo, GPeOut, GPeIn, GPeTA, STNp, STNs, GPi layers, with given optional prefix. Only the Matrix has pool-based 4D shape by default -- use pool for "role" like elements where matches need to be detected. All GP / STN layers have gpNeur neurons. Appropriate connections are made between layers, using standard styles. space is the spacing between layers (2 typical). A CIN or more widely used RSalienceLayer should be added and project ACh to the MtxGo, No layers.
func (*Network) AddBG4D ¶ added in v1.7.0
func (nt *Network) AddBG4D(prefix string, nPoolsY, nPoolsX, nNeurY, nNeurX, gpNeurY, gpNeurX int, space float32) (mtxGo, mtxNo, gpeOut, gpeIn, gpeTA, stnp, stns, gpi AxonLayer)
AddBG4D adds MtxGo, MtxNo, GPeOut, GPeIn, GPeTA, STNp, STNs, GPi layers, with given optional prefix. This version makes 4D pools throughout the GP layers, with Pools representing separable gating domains. All GP / STN layers have gpNeur neurons. Appropriate PoolOneToOne connections are made between layers, using standard styles. space is the spacing between layers (2 typical) A CIN or more widely used RSalienceLayer should be added and project ACh to the MtxGo, No layers.
func (*Network) AddBLALayers ¶ added in v1.7.0
func (nt *Network) AddBLALayers(prefix string, pos bool, nUs, unY, unX int, rel relpos.Relations, space float32) (acq, ext AxonLayer)
AddBLALayers adds two BLA layers, acquisition / extinction / D1 / D2, for positive or negative valence
func (*Network) AddCINLayer ¶ added in v1.7.0
AddCINLayer adds a RSalienceLayer unsigned reward salience coding ACh layer which sends ACh to given Matrix Go and No layers (names), and is default located to the right of the MtxNo layer with given spacing. CIN is a cholinergic interneuron interspersed in the striatum that shows these response properties and modulates learning in the striatum around US and CS events. If other ACh modulation is needed, a global RSalienceLayer can be used.
func (*Network) AddCTLayer2D ¶ added in v1.7.0
AddCTLayer2D adds a CT Layer of given size, with given name.
func (*Network) AddCTLayer4D ¶ added in v1.7.0
AddCTLayer4D adds a CT Layer of given size, with given name.
func (*Network) AddClampDaLayer ¶ added in v1.7.0
AddClampDaLayer adds a ClampDaLayer of given name
func (*Network) AddGPeLayer2D ¶ added in v1.7.0
AddGPLayer2D adds a GPLayer of given size, with given name. Must set the GPType BuildConfig setting to appropriate GPLayerType
func (*Network) AddGPeLayer4D ¶ added in v1.7.0
AddGPLayer4D adds a GPLayer of given size, with given name. Makes a 4D structure with Pools representing separable gating domains.
func (*Network) AddGPiLayer2D ¶ added in v1.7.0
AddGPiLayer2D adds a GPiLayer of given size, with given name.
func (*Network) AddGPiLayer4D ¶ added in v1.7.0
AddGPiLayer4D adds a GPiLayer of given size, with given name. Makes a 4D structure with Pools representing separable gating domains.
func (*Network) AddInputPulv2D ¶ added in v1.7.0
func (nt *Network) AddInputPulv2D(name string, nNeurY, nNeurX int, space float32) (emer.Layer, *Layer)
AddInputPulv2D adds an Input and Layer of given size, with given name. The Input layer is set as the Driver of the Layer. Both layers have SetClass(name) called to allow shared params.
func (*Network) AddInputPulv4D ¶ added in v1.7.0
func (nt *Network) AddInputPulv4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, space float32) (emer.Layer, *Layer)
AddInputPulv4D adds an Input and Layer of given size, with given name. The Input layer is set as the Driver of the Layer. Both layers have SetClass(name) called to allow shared params.
func (*Network) AddMatrixLayer ¶ added in v1.7.0
func (nt *Network) AddMatrixLayer(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, da DAModTypes) *Layer
AddMatrixLayer adds a MatrixLayer of given size, with given name. Assumes that a 4D structure will be used, with Pools representing separable gating domains. da gives the DaReceptor type (D1R = Go, D2R = NoGo)
func (*Network) AddPPTgLayer ¶ added in v1.7.0
AddPPTgLayer adds a PPTgLayer
func (*Network) AddPTMaintLayer2D ¶ added in v1.7.2
AddPTMaintLayer2D adds a PTMaintLayer of given size, with given name.
func (*Network) AddPTMaintLayer4D ¶ added in v1.7.2
AddPTMaintLayer4D adds a PTMaintLayer of given size, with given name.
func (*Network) AddPTMaintThalForSuper ¶ added in v1.7.2
func (nt *Network) AddPTMaintThalForSuper(super, ct emer.Layer, suffix string, superToPT, ptSelf, ctToThal prjn.Pattern, space float32) (pt, thal emer.Layer)
AddPTMaintThalForSuper adds a PTMaint pyramidal tract active maintenance layer and a Thalamus layer for given superficial layer (deep.SuperLayer) and associated CT with given suffix (e.g., MD, VM). PT and Thal have SetClass(super.Name()) called to allow shared params. Projections are made with given classes: SuperToPT, PTSelfMaint, CTtoThal, PTtoThal, ThalToPT The PT and Thal layers are positioned behind the CT layer.
func (*Network) AddPulvForSuper ¶ added in v1.7.0
AddPulvForSuper adds a Pulvinar for given superficial layer (SuperLayer) with a P suffix. The Pulv.Driver is set to Super. The Pulv layer needs other CT connections from higher up to predict this layer. Pulvinar is positioned behind the CT layer.
func (*Network) AddPulvLayer2D ¶ added in v1.7.0
AddPulvLayer2D adds a Pulvinar Layer of given size, with given name.
func (*Network) AddPulvLayer4D ¶ added in v1.7.0
AddPulvLayer4D adds a Pulvinar Layer of given size, with given name.
func (*Network) AddRSalienceAChLayer ¶ added in v1.7.0
AddRSalienceAChLayer adds an RSalienceAChLayer unsigned reward salience coding ACh layer.
func (*Network) AddRWLayers ¶ added in v1.7.0
func (nt *Network) AddRWLayers(prefix string, rel relpos.Relations, space float32) (rew, rp, da AxonLayer)
AddRWLayers adds simple Rescorla-Wagner (PV only) dopamine system, with a primary Reward layer, a RWPred prediction layer, and a dopamine layer that computes diff. Only generates DA when Rew layer has external input -- otherwise zero.
func (*Network) AddRewLayer ¶ added in v1.7.0
AddRewLayer adds a RewLayer of given name
func (*Network) AddSTNLayer2D ¶ added in v1.7.0
AddSTNLayer2D adds a subthalamic nucleus Layer of given size, with given name.
func (*Network) AddSTNLayer4D ¶ added in v1.7.0
AddSTNLayer4D adds a subthalamic nucleus Layer of given size, with given name. Makes a 4D structure with Pools representing separable gating domains.
func (*Network) AddSuperCT2D ¶ added in v1.7.0
func (nt *Network) AddSuperCT2D(name string, shapeY, shapeX int, space float32, pat prjn.Pattern) (super, ct emer.Layer)
AddSuperCT2D adds a superficial (SuperLayer) and corresponding CT (CT suffix) layer with CTCtxtPrjn projection from Super to CT using given projection pattern, and NO Pulv Pulvinar. CT is placed Behind Super.
func (*Network) AddSuperCT4D ¶ added in v1.7.0
func (nt *Network) AddSuperCT4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, space float32, pat prjn.Pattern) (super, ct emer.Layer)
AddSuperCT4D adds a superficial (SuperLayer) and corresponding CT (CT suffix) layer with CTCtxtPrjn projection from Super to CT using given projection pattern, and NO Pulv Pulvinar. CT is placed Behind Super.
func (*Network) AddSuperLayer2D ¶ added in v1.7.0
AddSuperLayer2D adds a Super Layer of given size, with given name.
func (*Network) AddSuperLayer4D ¶ added in v1.7.0
AddSuperLayer4D adds a Super Layer of given size, with given name.
func (*Network) AddTDLayers ¶ added in v1.7.0
func (nt *Network) AddTDLayers(prefix string, rel relpos.Relations, space float32) (rew, rp, ri, td AxonLayer)
AddTDLayers adds the standard TD temporal differences layers, generating a DA signal. Projection from Rew to RewInteg is given class TDRewToInteg -- should have no learning and 1 weight.
func (*Network) AddThalLayer2D ¶ added in v1.7.0
AddThalLayer2D adds a BG gated thalamus (e.g., VA/VL/VM, MD) Layer of given size, with given name. This version has a 2D structure
func (*Network) AddThalLayer4D ¶ added in v1.7.0
AddThalLayer4D adds a BG gated thalamus (e.g., VA/VL/VM, MD) Layer of given size, with given name. This version has a 4D structure, with Pools representing separable gating domains.
func (*Network) ClearTargExt ¶ added in v1.2.65
func (nt *Network) ClearTargExt()
ClearTargExt clears external inputs Ext that were set from target values Target. This can be called to simulate alpha cycles within theta cycles, for example.
func (*Network) CollectDWts ¶
CollectDWts writes all of the synaptic DWt values to given dwts slice which is pre-allocated to given nwts size if dwts is nil, in which case the method returns true so that the actual length of dwts can be passed next time around. Used for MPI sharing of weight changes across processors.
func (*Network) ConnectCTSelf ¶ added in v1.7.0
ConnectCTSelf adds a Self (Lateral) CTCtxtPrjn projection within a CT layer, in addition to a regular lateral projection, which supports active maintenance. The CTCtxtPrjn has a Class label of CTSelfCtxt, and the regular one is CTSelfMaint
func (*Network) ConnectCtxtToCT ¶ added in v1.7.0
ConnectCtxtToCT adds a CTCtxtPrjn from given sending layer to a CT layer
func (*Network) ConnectPTMaintSelf ¶ added in v1.7.2
ConnectPTMaintSelf adds a Self (Lateral) projection within a PTMaintLayer, which supports active maintenance, with a class of PTSelfMaint
func (*Network) ConnectSuperToCT ¶ added in v1.7.0
ConnectSuperToCT adds a CTCtxtPrjn from given sending Super layer to a CT layer This automatically sets the FmSuper flag to engage proper defaults, Uses given projection pattern -- e.g., Full, OneToOne, or PoolOneToOne
func (*Network) ConnectToBLA ¶ added in v1.7.0
ConnectToBLA adds a BLAPrjn from given sending layer to a BLA layer
func (*Network) ConnectToMatrix ¶ added in v1.7.0
ConnectToMatrix adds a MatrixPrjn from given sending layer to a matrix layer
func (*Network) ConnectToPulv ¶ added in v1.7.0
func (nt *Network) ConnectToPulv(super, ct, pulv emer.Layer, toPulvPat, fmPulvPat prjn.Pattern) (toPulv, toSuper, toCT emer.Prjn)
ConnectToPulv connects Super and CT with given Pulv: CT -> Pulv is class CTToPulv, From Pulv = type = Back, class = FmPulv toPulvPat is the prjn.Pattern CT -> Pulv and fmPulvPat is Pulv -> CT, Super Typically Pulv is a different shape than Super and CT, so use Full or appropriate topological pattern
func (*Network) ConnectToRWPrjn ¶ added in v1.7.0
ConnectToRWPred adds a RWPrjn from given sending layer to a RWPred layer
func (*Network) Cycle ¶
Cycle runs one cycle of activation updating. It just calls the CycleImpl method through the AxonNetwork interface, thereby ensuring any specialized algorithm-specific version is called as needed (in general, strongly prefer updating the Layer specific version).
func (*Network) DWt ¶
DWt computes the weight change (learning) based on current running-average activation values
func (*Network) DWtImpl ¶
DWtImpl computes the weight change (learning) based on current running-average activation values
func (*Network) DecayState ¶
DecayState decays activation state by given proportion e.g., 1 = decay completely, and 0 = decay not at all. glong = separate decay factor for long-timescale conductances (g) This is called automatically in NewState, but is avail here for ad-hoc decay cases.
func (*Network) DecayStateByType ¶ added in v1.7.1
func (nt *Network) DecayStateByType(ctx *Context, decay, glong float32, types ...LayerTypes)
DecayStateByType decays activation state for given class name(s) by given proportion e.g., 1 = decay completely, and 0 = decay not at all. glong = separate decay factor for long-timescale conductances (g)
func (*Network) Defaults ¶
func (nt *Network) Defaults()
Defaults sets all the default parameters for all layers and projections
func (*Network) InitActs ¶
func (nt *Network) InitActs()
InitActs fully initializes activation state -- not automatically called
func (*Network) InitExt ¶
func (nt *Network) InitExt()
InitExt initializes external input state -- call prior to applying external inputs to layers
func (*Network) InitGScale ¶ added in v1.2.92
func (nt *Network) InitGScale()
InitGScale computes the initial scaling factor for synaptic input conductances G, stored in GScale.Scale, based on sending layer initial activation.
func (*Network) InitTopoSWts ¶ added in v1.2.75
func (nt *Network) InitTopoSWts()
InitTopoSWts initializes SWt structural weight parameters from prjn types that support topographic weight patterns, having flags set to support it, includes: prjn.PoolTile prjn.Circle. call before InitWts if using Topo wts
func (*Network) InitWts ¶
func (nt *Network) InitWts()
InitWts initializes synaptic weights and all other associated long-term state variables including running-average state values (e.g., layer running average activations etc)
func (*Network) LRateMod ¶ added in v1.6.13
LRateMod sets the LRate modulation parameter for Prjns, which is for dynamic modulation of learning rate (see also LRateSched). Updates the effective learning rate factor accordingly.
func (*Network) LRateSched ¶ added in v1.6.13
LRateSched sets the schedule-based learning rate multiplier. See also LRateMod. Updates the effective learning rate factor accordingly.
func (*Network) LayersSetOff ¶
LayersSetOff sets the Off flag for all layers to given setting
func (*Network) MinusPhase ¶ added in v1.2.63
MinusPhase does updating after end of minus phase
func (*Network) MinusPhaseImpl ¶ added in v1.2.63
MinusPhaseImpl does updating after end of minus phase
func (*Network) NewState ¶ added in v1.2.63
NewState handles all initialization at start of new input pattern. Should already have presented the external input to the network at this point. Does NOT call InitGScale()
func (*Network) NewStateImpl ¶ added in v1.2.63
NewStateImpl handles all initialization at start of new input state
func (*Network) PlusPhaseImpl ¶ added in v1.2.63
PlusPhaseImpl does updating after end of plus phase
func (*Network) SetDWts ¶
SetDWts sets the DWt weight changes from given array of floats, which must be correct size navg is the number of processors aggregated in these dwts -- some variables need to be averaged instead of summed (e.g., ActAvg)
func (*Network) SetSubMean ¶ added in v1.6.11
SetSubMean sets the SubMean parameters in all the layers in the network trgAvg is for Learn.TrgAvgAct.SubMean prjn is for the prjns Learn.Trace.SubMean in both cases, it is generally best to have both parameters set to 0 at the start of learning
func (*Network) SizeReport ¶
SizeReport returns a string reporting the size of each layer and projection in the network, and total memory footprint.
func (*Network) SlowAdapt ¶ added in v1.2.37
SlowAdapt is the layer-level slow adaptation functions: Synaptic scaling, GScale conductance scaling, and adapting inhibition
func (*Network) SynVarNames ¶
SynVarNames returns the names of all the variables on the synapses in this network. Not all projections need to support all variables, but must safely return 0's for unsupported ones. The order of this list determines NetView variable display order. This is typically a global list so do not modify!
func (*Network) SynVarProps ¶
SynVarProps returns properties for variables
func (*Network) TargToExt ¶ added in v1.2.65
func (nt *Network) TargToExt()
TargToExt sets external input Ext from target values Target This is done at end of MinusPhase to allow targets to drive activity in plus phase. This can be called separately to simulate alpha cycles within theta cycles, for example.
func (*Network) UnLesionNeurons ¶
func (nt *Network) UnLesionNeurons()
UnLesionNeurons unlesions neurons in all layers in the network. Provides a clean starting point for subsequent lesion experiments.
func (*Network) UnitVarNames ¶
UnitVarNames returns a list of variable names available on the units in this network. Not all layers need to support all variables, but must safely return 0's for unsupported ones. The order of this list determines NetView variable display order. This is typically a global list so do not modify!
func (*Network) UnitVarProps ¶
UnitVarProps returns properties for variables
func (*Network) UpdateExtFlags ¶
func (nt *Network) UpdateExtFlags()
UpdateExtFlags updates the neuron flags for external input based on current layer Type field -- call this if the Type has changed since the last ApplyExt* method call.
func (*Network) UpdateParams ¶
func (nt *Network) UpdateParams()
UpdateParams updates all the derived parameters if any have changed, for all layers and projections
func (*Network) WtFmDWt ¶
WtFmDWt updates the weights from delta-weight changes. Also calls SynScale every Interval times
func (*Network) WtFmDWtImpl ¶
WtFmDWtImpl updates the weights from delta-weight changes.
type NetworkBase ¶ added in v1.4.5
type NetworkBase struct { EmerNet emer.Network `` /* 274-byte string literal not displayed */ Nm string `desc:"overall name of network -- helps discriminate if there are multiple"` WtsFile string `desc:"filename of last weights file loaded or saved"` LayMap map[string]emer.Layer `view:"-" desc:"map of name to layers -- layer names must be unique"` LayClassMap map[string][]string `view:"-" desc:"map of layer classes -- made during Build"` MinPos mat32.Vec3 `view:"-" desc:"minimum display position in network"` MaxPos mat32.Vec3 `view:"-" desc:"maximum display position in network"` MetaData map[string]string `` /* 194-byte string literal not displayed */ CPURecvSpikes bool `` /* 285-byte string literal not displayed */ // Implementation level code below: MaxDelay uint32 `view:"-" desc:"maximum synaptic delay across any projection in the network -- used for sizing the GBuf accumulation buffer."` Layers emer.Layers `desc:"array of layers, via emer.Layer interface pointer"` // todo: could now have concrete list of all Layer objects here LayParams []LayerParams `view:"-" desc:"array of layer parameters, in 1-to-1 correspondence with Layers"` LayVals []LayerVals `view:"-" desc:"array of layer values, in 1-to-1 correspondence with Layers"` Neurons []Neuron `view:"-" desc:"entire network's allocation of neurons -- can be operated upon in parallel"` Prjns []AxonPrjn `view:"-" desc:"[Layers][RecvPrjns] pointers to all projections in the network, via the AxonPrjn interface"` PrjnParams []PrjnParams `view:"-" desc:"[Layers][RecvPrjns] array of projection parameters, in 1-to-1 correspondence with Prjns"` Synapses []Synapse `view:"-" desc:"[Layers][RecvPrjns][RecvNeurons] entire network's allocation of synapses"` PrjnGBuf []float32 `` /* 147-byte string literal not displayed */ PrjnGSyns []float32 `` /* 198-byte string literal not displayed */ Threads NetThreads `desc:"threading config and implementation for CPU"` RecFunTimes bool `view:"-" desc:"record function timer information"` FunTimes map[string]*timer.Time `view:"-" desc:"timers for each major function (step of processing)"` WaitGp sync.WaitGroup `view:"-" desc:"network-level wait group for synchronizing threaded layer calls"` }
NetworkBase manages the basic structural components of a network (layers). The main Network then can just have the algorithm-specific code.
func (*NetworkBase) AddLayer ¶ added in v1.4.5
AddLayer adds a new layer with given name and shape to the network. 2D and 4D layer shapes are generally preferred but not essential -- see AddLayer2D and 4D for convenience methods for those. 4D layers enable pool (unit-group) level inhibition in Axon networks, for example. shape is in row-major format with outer-most dimensions first: e.g., 4D 3, 2, 4, 5 = 3 rows (Y) of 2 cols (X) of pools, with each unit group having 4 rows (Y) of 5 (X) units.
func (*NetworkBase) AddLayer2D ¶ added in v1.4.5
AddLayer2D adds a new layer with given name and 2D shape to the network. 2D and 4D layer shapes are generally preferred but not essential.
func (*NetworkBase) AddLayer4D ¶ added in v1.4.5
func (nt *NetworkBase) AddLayer4D(name string, nPoolsY, nPoolsX, nNeurY, nNeurX int, typ emer.LayerType) emer.Layer
AddLayer4D adds a new layer with given name and 4D shape to the network. 4D layers enable pool (unit-group) level inhibition in Axon networks, for example. shape is in row-major format with outer-most dimensions first: e.g., 4D 3, 2, 4, 5 = 3 rows (Y) of 2 cols (X) of pools, with each pool having 4 rows (Y) of 5 (X) neurons.
func (*NetworkBase) AddLayerInit ¶ added in v1.4.5
AddLayerInit is implementation routine that takes a given layer and adds it to the network, and initializes and configures it properly.
func (*NetworkBase) AllParams ¶ added in v1.4.5
func (nt *NetworkBase) AllParams() string
AllParams returns a listing of all parameters in the Network.
func (*NetworkBase) AllPrjnScales ¶ added in v1.4.5
func (nt *NetworkBase) AllPrjnScales() string
AllPrjnScales returns a listing of all PrjnScale parameters in the Network in all Layers, Recv projections. These are among the most important and numerous of parameters (in larger networks) -- this helps keep track of what they all are set to.
func (*NetworkBase) ApplyParams ¶ added in v1.4.5
ApplyParams applies given parameter style Sheet to layers and prjns in this network. Calls UpdateParams to ensure derived parameters are all updated. If setMsg is true, then a message is printed to confirm each parameter that is set. it always prints a message if a parameter fails to be set. returns true if any params were set, and error if there were any errors.
func (*NetworkBase) BidirConnectLayerNames ¶ added in v1.4.5
func (nt *NetworkBase) BidirConnectLayerNames(low, high string, pat prjn.Pattern) (lowlay, highlay emer.Layer, fwdpj, backpj emer.Prjn, err error)
BidirConnectLayerNames establishes bidirectional projections between two layers, referenced by name, with low = the lower layer that sends a Forward projection to the high layer, and receives a Back projection in the opposite direction. Returns error if not successful. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) BidirConnectLayers ¶ added in v1.4.5
func (nt *NetworkBase) BidirConnectLayers(low, high emer.Layer, pat prjn.Pattern) (fwdpj, backpj emer.Prjn)
BidirConnectLayers establishes bidirectional projections between two layers, with low = lower layer that sends a Forward projection to the high layer, and receives a Back projection in the opposite direction. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) BidirConnectLayersPy ¶ added in v1.4.5
func (nt *NetworkBase) BidirConnectLayersPy(low, high emer.Layer, pat prjn.Pattern)
BidirConnectLayersPy establishes bidirectional projections between two layers, with low = lower layer that sends a Forward projection to the high layer, and receives a Back projection in the opposite direction. Does not yet actually connect the units within the layers -- that requires Build. Py = python version with no return vals.
func (*NetworkBase) Bounds ¶ added in v1.4.5
func (nt *NetworkBase) Bounds() (min, max mat32.Vec3)
func (*NetworkBase) BoundsUpdt ¶ added in v1.4.5
func (nt *NetworkBase) BoundsUpdt()
BoundsUpdt updates the Min / Max display bounds for 3D display
func (*NetworkBase) Build ¶ added in v1.4.5
func (nt *NetworkBase) Build() error
Build constructs the layer and projection state based on the layer shapes and patterns of interconnectivity. Configures threading using heuristics based on final network size.
func (*NetworkBase) BuildPrjnGBuf ¶ added in v1.7.2
func (nt *NetworkBase) BuildPrjnGBuf()
BuildPrjnGBuf builds the PrjnGBuf, PrjnGSyns, based on the MaxDelay values in thePrjnParams, which should have been configured by this point. Called by default in InitWts()
func (*NetworkBase) ConnectLayerNames ¶ added in v1.4.5
func (nt *NetworkBase) ConnectLayerNames(send, recv string, pat prjn.Pattern, typ emer.PrjnType) (rlay, slay emer.Layer, pj emer.Prjn, err error)
ConnectLayerNames establishes a projection between two layers, referenced by name adding to the recv and send projection lists on each side of the connection. Returns error if not successful. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) ConnectLayers ¶ added in v1.4.5
func (nt *NetworkBase) ConnectLayers(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType) emer.Prjn
ConnectLayers establishes a projection between two layers, adding to the recv and send projection lists on each side of the connection. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) ConnectLayersPrjn ¶ added in v1.4.5
func (nt *NetworkBase) ConnectLayersPrjn(send, recv emer.Layer, pat prjn.Pattern, typ emer.PrjnType, pj emer.Prjn) emer.Prjn
ConnectLayersPrjn makes connection using given projection between two layers, adding given prjn to the recv and send projection lists on each side of the connection. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) DeleteAll ¶ added in v1.4.5
func (nt *NetworkBase) DeleteAll()
DeleteAll deletes all layers, prepares network for re-configuring and building
func (*NetworkBase) FunTimerStart ¶ added in v1.4.5
func (nt *NetworkBase) FunTimerStart(fun string)
FunTimerStart starts function timer for given function name -- ensures creation of timer
func (*NetworkBase) FunTimerStop ¶ added in v1.4.5
func (nt *NetworkBase) FunTimerStop(fun string)
FunTimerStop stops function timer -- timer must already exist
func (*NetworkBase) InitName ¶ added in v1.4.5
func (nt *NetworkBase) InitName(net emer.Network, name string)
InitName MUST be called to initialize the network's pointer to itself as an emer.Network which enables the proper interface methods to be called. Also sets the name.
func (*NetworkBase) Label ¶ added in v1.4.5
func (nt *NetworkBase) Label() string
func (*NetworkBase) LateralConnectLayer ¶ added in v1.4.5
LateralConnectLayer establishes a self-projection within given layer. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) LateralConnectLayerPrjn ¶ added in v1.4.5
func (nt *NetworkBase) LateralConnectLayerPrjn(lay emer.Layer, pat prjn.Pattern, pj emer.Prjn) emer.Prjn
LateralConnectLayerPrjn makes lateral self-projection using given projection. Does not yet actually connect the units within the layers -- that requires Build.
func (*NetworkBase) LayerByName ¶ added in v1.4.5
func (nt *NetworkBase) LayerByName(name string) emer.Layer
LayerByName returns a layer by looking it up by name in the layer map (nil if not found). Will create the layer map if it is nil or a different size than layers slice, but otherwise needs to be updated manually.
func (*NetworkBase) LayerByNameTry ¶ added in v1.4.5
func (nt *NetworkBase) LayerByNameTry(name string) (emer.Layer, error)
LayerByNameTry returns a layer by looking it up by name -- returns error message if layer is not found
func (*NetworkBase) LayerMapParallel ¶ added in v1.6.17
func (nt *NetworkBase) LayerMapParallel(fun func(ly AxonLayer), funame string, nThreads int)
LayerMapParallel applies function of given name to all layers using nThreads go routines if nThreads > 1, otherwise runs sequentially.
func (*NetworkBase) LayerMapSeq ¶ added in v1.6.17
func (nt *NetworkBase) LayerMapSeq(fun func(ly AxonLayer), funame string)
LayerMapSeq applies function of given name to all layers sequentially.
func (*NetworkBase) LayersByClass ¶ added in v1.4.5
func (nt *NetworkBase) LayersByClass(classes ...string) []string
LayersByClass returns a list of layer names by given class(es). Lists are compiled when network Build() function called. The layer Type is always included as a Class, along with any other space-separated strings specified in Class for parameter styling, etc. If no classes are passed, all layer names in order are returned.
func (*NetworkBase) LayersByType ¶ added in v1.7.1
func (nt *NetworkBase) LayersByType(layType ...LayerTypes) []string
LayersByType returns a list of layer names by given layer types. Lists are compiled when network Build() function called. The layer Type is always included as a Class, along with any other space-separated strings specified in Class for parameter styling, etc. If no classes are passed, all layer names in order are returned.
func (*NetworkBase) Layout ¶ added in v1.4.5
func (nt *NetworkBase) Layout()
Layout computes the 3D layout of layers based on their relative position settings
func (*NetworkBase) MakeLayMap ¶ added in v1.4.5
func (nt *NetworkBase) MakeLayMap()
MakeLayMap updates layer map based on current layers
func (*NetworkBase) NLayers ¶ added in v1.4.5
func (nt *NetworkBase) NLayers() int
func (*NetworkBase) Name ¶ added in v1.4.5
func (nt *NetworkBase) Name() string
emer.Network interface methods:
func (*NetworkBase) NeuronFun ¶ added in v1.6.0
func (nt *NetworkBase) NeuronFun(fun func(ly AxonLayer, ni uint32, nrn *Neuron), funame string)
NeuronFun applies function of given name to all neurons, using NetThreads.Neurons number of goroutines.
func (*NetworkBase) NeuronMapParallel ¶ added in v1.6.17
func (nt *NetworkBase) NeuronMapParallel(fun func(ly AxonLayer, ni uint32, nrn *Neuron), funame string, nThreads int)
NeuronMapParallel applies function of given name to all neurons using as many go routines as configured in NetThreads.Neurons.
func (*NetworkBase) NeuronMapSequential ¶ added in v1.6.17
func (nt *NetworkBase) NeuronMapSequential(fun func(ly AxonLayer, ni uint32, nrn *Neuron), funame string)
NeuronMapSequential applies function of given name to all neurons sequentially.
func (*NetworkBase) NonDefaultParams ¶ added in v1.4.5
func (nt *NetworkBase) NonDefaultParams() string
NonDefaultParams returns a listing of all parameters in the Network that are not at their default values -- useful for setting param styles etc.
func (*NetworkBase) OpenWtsCpp ¶ added in v1.4.5
func (nt *NetworkBase) OpenWtsCpp(filename gi.FileName) error
OpenWtsCpp opens network weights (and any other state that adapts with learning) from old C++ emergent format. If filename has .gz extension, then file is gzip uncompressed.
func (*NetworkBase) OpenWtsJSON ¶ added in v1.4.5
func (nt *NetworkBase) OpenWtsJSON(filename gi.FileName) error
OpenWtsJSON opens network weights (and any other state that adapts with learning) from a JSON-formatted file. If filename has .gz extension, then file is gzip uncompressed.
func (*NetworkBase) PrjnMapParallel ¶ added in v1.6.17
func (nt *NetworkBase) PrjnMapParallel(fun func(prjn AxonPrjn), funame string, nThreads int)
PrjnMapParallel applies function of given name to all projections using nThreads go routines if nThreads > 1, otherwise runs sequentially.
func (*NetworkBase) PrjnMapSeq ¶ added in v1.6.17
func (nt *NetworkBase) PrjnMapSeq(fun func(pj AxonPrjn), funame string)
PrjnMapSeq applies function of given name to all projections sequentially.
func (*NetworkBase) ReadWtsCpp ¶ added in v1.4.5
func (nt *NetworkBase) ReadWtsCpp(r io.Reader) error
ReadWtsCpp reads the weights from old C++ emergent format. Reads entire file into a temporary weights.Weights structure that is then passed to Layers etc using SetWts method.
func (*NetworkBase) ReadWtsJSON ¶ added in v1.4.5
func (nt *NetworkBase) ReadWtsJSON(r io.Reader) error
ReadWtsJSON reads network weights from the receiver-side perspective in a JSON text format. Reads entire file into a temporary weights.Weights structure that is then passed to Layers etc using SetWts method.
func (*NetworkBase) SaveWtsJSON ¶ added in v1.4.5
func (nt *NetworkBase) SaveWtsJSON(filename gi.FileName) error
SaveWtsJSON saves network weights (and any other state that adapts with learning) to a JSON-formatted file. If filename has .gz extension, then file is gzip compressed.
func (*NetworkBase) SendSpikeFun ¶ added in v1.6.2
func (nt *NetworkBase) SendSpikeFun(fun func(ly AxonLayer), funame string)
SendSpikeFun applies function of given name to all layers using as many goroutines as configured in NetThreads.SendSpike
func (*NetworkBase) SetWts ¶ added in v1.4.5
func (nt *NetworkBase) SetWts(nw *weights.Network) error
SetWts sets the weights for this network from weights.Network decoded values
func (*NetworkBase) StdVertLayout ¶ added in v1.4.5
func (nt *NetworkBase) StdVertLayout()
StdVertLayout arranges layers in a standard vertical (z axis stack) layout, by setting the Rel settings
func (*NetworkBase) SynCaFun ¶ added in v1.6.2
func (nt *NetworkBase) SynCaFun(fun func(pj AxonPrjn), funame string)
SynCaFun applies function of given name to all projections, using NetThreads.SynCa number of goroutines.
func (*NetworkBase) ThreadReport ¶ added in v1.7.1
func (nt *NetworkBase) ThreadReport()
ThreadsReport reports the number of threads used
func (*NetworkBase) TimerReport ¶ added in v1.4.5
func (nt *NetworkBase) TimerReport()
TimerReport reports the amount of time spent in each function, and in each thread
func (*NetworkBase) VarRange ¶ added in v1.4.5
func (nt *NetworkBase) VarRange(varNm string) (min, max float32, err error)
VarRange returns the min / max values for given variable todo: support r. s. projection values
func (*NetworkBase) WriteWtsJSON ¶ added in v1.4.5
func (nt *NetworkBase) WriteWtsJSON(w io.Writer) error
WriteWtsJSON writes the weights from this layer from the receiver-side perspective in a JSON text format. We build in the indentation logic to make it much faster and more efficient.
type NeuroModParams ¶ added in v1.7.0
type NeuroModParams struct { DAMod DAModTypes `desc:"effects of dopamine modulation on excitatory and inhibitory conductances"` DAModGain float32 `` /* 194-byte string literal not displayed */ DALRateMod float32 `` /* 165-byte string literal not displayed */ AChLRateMod float32 `` /* 168-byte string literal not displayed */ AChDisInhib float32 `min:"0" def:"0,5" desc:"amount of extra Gi inhibition added in proportion to 1 - ACh level -- makes ACh disinhibitory"` BurstGain float32 `` /* 189-byte string literal not displayed */ DipGain float32 `` /* 249-byte string literal not displayed */ // contains filtered or unexported fields }
NeuroModParams specifies the effects of neuromodulators on neural activity and learning rate. These can apply to any neuron type, and are applied in the core cycle update equations.
func (*NeuroModParams) Defaults ¶ added in v1.7.0
func (nm *NeuroModParams) Defaults()
func (*NeuroModParams) GGain ¶ added in v1.7.0
func (nm *NeuroModParams) GGain(da float32) float32
GGain returns effective Ge and Gi gain factor given dopamine (DA) +/- burst / dip value (0 = tonic level). factor is 1 for no modulation, otherwise higher or lower.
func (*NeuroModParams) GiFmACh ¶ added in v1.7.0
func (nm *NeuroModParams) GiFmACh(ach float32) float32
GIFmACh returns amount of extra inhibition to add based on disinhibitory effects of ACh -- no inhibition when ACh = 1, extra when < 1.
func (*NeuroModParams) LRMod ¶ added in v1.7.0
func (nm *NeuroModParams) LRMod(da, ach float32) float32
LRMod returns overall learning rate modulation factor due to neuromodulation from given dopamine (DA) and ACh inputs. If DALRateMod is true and DAMod == D1Mod or D2Mod, then the sign is a function of the DA
func (*NeuroModParams) LRModFact ¶ added in v1.7.0
func (nm *NeuroModParams) LRModFact(pct, val float32) float32
LRModFact returns learning rate modulation factor for given inputs.
func (*NeuroModParams) Update ¶ added in v1.7.0
func (nm *NeuroModParams) Update()
type NeuroModVals ¶ added in v1.7.0
type NeuroModVals struct { Rew float32 `` /* 186-byte string literal not displayed */ HasRew slbool.Bool `inactive:"+" desc:"must be set to true when a reward is present -- otherwise Rew is ignored"` RewPred float32 `inactive:"+" desc:"reward prediction -- computed by a special reward prediction layer"` PrevPred float32 `inactive:"+" desc:"previous time step reward prediction -- e.g., for TDPredLayer"` DA float32 `` /* 279-byte string literal not displayed */ ACh float32 `` /* 259-byte string literal not displayed */ NE float32 `inactive:"+" desc:"norepinepherine -- not yet in use"` Ser float32 `inactive:"+" desc:"serotonin -- not yet in use"` AChRaw float32 `inactive:"+" desc:"raw ACh value used in updating global ACh value by RSalienceAChLayer"` // contains filtered or unexported fields }
NeuroModVals neuromodulatory values -- they are global to the layer and affect learning rate and other neural activity parameters of neurons.
func (*NeuroModVals) NewState ¶ added in v1.7.0
func (nm *NeuroModVals) NewState()
NewState is called by Context.NewState at start of new trial
func (*NeuroModVals) Reset ¶ added in v1.7.0
func (nm *NeuroModVals) Reset()
func (*NeuroModVals) SetRew ¶ added in v1.7.0
func (nm *NeuroModVals) SetRew(rew float32, hasRew bool)
SetRew is a convenience function for setting the external reward
type Neuron ¶
type Neuron struct { Flags NeuronFlags `desc:"bit flags for binary state variables"` NeurIdx uint32 `desc:"index of this neuron within its owning layer"` LayIdx uint32 `desc:"index of the layer that this neuron belongs to -- needed for neuron-level parallel code."` SubPool uint32 `` /* 214-byte string literal not displayed */ SubPoolN uint32 `desc:"index in network-wide list of all pools"` Spike float32 `desc:"whether neuron has spiked or not on this cycle (0 or 1)"` Spiked float32 `` /* 224-byte string literal not displayed */ Act float32 `` /* 402-byte string literal not displayed */ ActInt float32 `` /* 478-byte string literal not displayed */ ActM float32 `` /* 228-byte string literal not displayed */ ActP float32 `` /* 229-byte string literal not displayed */ Ext float32 `desc:"external input: drives activation of unit from outside influences (e.g., sensory input)"` Target float32 `desc:"target value: drives learning to produce this activation value"` Ge float32 `desc:"total excitatory conductance, including all forms of excitation (e.g., NMDA) -- does *not* include Gbar.E"` Gi float32 `desc:"total inhibitory synaptic conductance -- the net inhibitory input to the neuron -- does *not* include Gbar.I"` Gk float32 `` /* 148-byte string literal not displayed */ Inet float32 `desc:"net current produced by all channels -- drives update of Vm"` Vm float32 `desc:"membrane potential -- integrates Inet current over time"` VmDend float32 `desc:"dendritic membrane potential -- has a slower time constant, is not subject to the VmR reset after spiking"` CaSyn float32 `` /* 459-byte string literal not displayed */ CaSpkM float32 `` /* 294-byte string literal not displayed */ CaSpkP float32 `` /* 328-byte string literal not displayed */ CaSpkD float32 `` /* 325-byte string literal not displayed */ CaSpkPM float32 `desc:"minus-phase snapshot of the CaSpkP value -- similar to ActM but using a more directly spike-integrated value."` CaLrn float32 `` /* 669-byte string literal not displayed */ CaM float32 `` /* 174-byte string literal not displayed */ CaP float32 `` /* 192-byte string literal not displayed */ CaD float32 `` /* 192-byte string literal not displayed */ CaDiff float32 `desc:"difference between CaP - CaD -- this is the error signal that drives error-driven learning."` SpkMaxCa float32 `` /* 213-byte string literal not displayed */ SpkMax float32 `` /* 235-byte string literal not displayed */ SpkPrv float32 `` /* 155-byte string literal not displayed */ SpkSt1 float32 `` /* 235-byte string literal not displayed */ SpkSt2 float32 `` /* 236-byte string literal not displayed */ RLRate float32 `` /* 191-byte string literal not displayed */ ActAvg float32 `` /* 194-byte string literal not displayed */ AvgPct float32 `` /* 158-byte string literal not displayed */ TrgAvg float32 `` /* 169-byte string literal not displayed */ DTrgAvg float32 `` /* 164-byte string literal not displayed */ AvgDif float32 `` /* 173-byte string literal not displayed */ Attn float32 `desc:"Attentional modulation factor, which can be set by special layers such as the TRC -- multiplies Ge"` ISI float32 `desc:"current inter-spike-interval -- counts up since last spike. Starts at -1 when initialized."` ISIAvg float32 `` /* 320-byte string literal not displayed */ GeNoiseP float32 `` /* 201-byte string literal not displayed */ GeNoise float32 `desc:"integrated noise excitatory conductance, added into Ge"` GiNoiseP float32 `` /* 201-byte string literal not displayed */ GiNoise float32 `desc:"integrated noise inhibotyr conductance, added into Gi"` GeExt float32 `desc:"extra excitatory conductance added to Ge -- from Ext input, GeCtxt etc"` GeRaw float32 `desc:"raw excitatory conductance (net input) received from senders = current raw spiking drive"` GeSyn float32 `` /* 214-byte string literal not displayed */ GeBase float32 `desc:"baseline level of Ge, added to GeRaw, for intrinsic excitability"` GiRaw float32 `desc:"raw inhibitory conductance (net input) received from senders = current raw spiking drive"` GiSyn float32 `` /* 293-byte string literal not displayed */ GiBase float32 `desc:"baseline level of Gi, added to GiRaw, for intrinsic excitability"` GModRaw float32 `desc:"modulatory conductance, received from GType = ModulatoryG projections"` GModSyn float32 `desc:"modulatory conductance, received from GType = ModulatoryG projections"` GeSynMax float32 `desc:"maximum GeSyn value across the ThetaCycle"` GeSynPrv float32 `desc:"previous GeSynMax value from the previous ThetaCycle"` SSGi float32 `desc:"SST+ somatostatin positive slow spiking inhibition"` SSGiDend float32 `desc:"amount of SST+ somatostatin positive slow spiking inhibition applied to dendritic Vm (VmDend)"` Gak float32 `desc:"conductance of A-type K potassium channels"` GeM float32 `` /* 165-byte string literal not displayed */ GiM float32 `` /* 168-byte string literal not displayed */ MahpN float32 `desc:"accumulating voltage-gated gating value for the medium time scale AHP"` SahpCa float32 `desc:"slowly accumulating calcium value that drives the slow AHP"` SahpN float32 `desc:"sAHP gating value"` GknaMed float32 `` /* 131-byte string literal not displayed */ GknaSlow float32 `` /* 129-byte string literal not displayed */ GnmdaSyn float32 `desc:"integrated NMDA recv synaptic current -- adds GeRaw and decays with time constant"` Gnmda float32 `` /* 137-byte string literal not displayed */ GnmdaLrn float32 `` /* 159-byte string literal not displayed */ NmdaCa float32 `desc:"NMDA calcium computed from GnmdaLrn, drives learning via CaM"` SnmdaO float32 `` /* 314-byte string literal not displayed */ SnmdaI float32 `` /* 255-byte string literal not displayed */ GgabaB float32 `` /* 127-byte string literal not displayed */ GABAB float32 `desc:"GABA-B / GIRK activation -- time-integrated value with rise and decay time constants"` GABABx float32 `desc:"GABA-B / GIRK internal drive variable -- gets the raw activation and decays"` Gvgcc float32 `desc:"conductance (via Ca) for VGCC voltage gated calcium channels"` VgccM float32 `desc:"activation gate of VGCC channels"` VgccH float32 `desc:"inactivation gate of VGCC channels"` VgccCa float32 `desc:"instantaneous VGCC calcium flux -- can be driven by spiking or directly from Gvgcc"` VgccCaInt float32 `desc:"time-integrated VGCC calcium flux -- this is actually what drives learning"` SKCai float32 `` /* 158-byte string literal not displayed */ SKCaM float32 `desc:"Calcium-gated potassium channel gating factor, driven by SKCai via a Hill equation as in chans.SKPCaParams."` Gsk float32 `desc:"Calcium-gated potassium channel conductance as a function of Gbar * SKCaM."` Burst float32 `desc:"5IB bursting activation value, computed by thresholding regular CaSpkP value in Super superficial layers"` BurstPrv float32 `desc:"previous Burst bursting activation from prior time step -- used for context-based learning"` CtxtGe float32 `desc:"context (temporally delayed) excitatory conductance, driven by deep bursting at end of the plus phase, for CT layers."` CtxtGeRaw float32 `` /* 138-byte string literal not displayed */ // contains filtered or unexported fields }
axon.Neuron holds all of the neuron (unit) level variables. This is the most basic version, without any optional features. All variables accessible via Unit interface must be float32 and start at the top, in contiguous order
func (*Neuron) ClearFlag ¶
func (nrn *Neuron) ClearFlag(flag NeuronFlags)
func (*Neuron) HasFlag ¶
func (nrn *Neuron) HasFlag(flag NeuronFlags) bool
func (*Neuron) SetFlag ¶
func (nrn *Neuron) SetFlag(flag NeuronFlags)
func (*Neuron) VarByIndex ¶
VarByIndex returns variable using index (0 = first variable in NeuronVars list)
type NeuronFlags ¶ added in v1.6.4
type NeuronFlags int32
NeuronFlags are bit-flags encoding relevant binary state for neurons
const ( // NeuronOff flag indicates that this neuron has been turned off (i.e., lesioned) NeuronOff NeuronFlags = 1 // NeuronHasExt means the neuron has external input in its Ext field NeuronHasExt NeuronFlags = 1 << 2 // NeuronHasTarg means the neuron has external target input in its Target field NeuronHasTarg NeuronFlags = 1 << 3 // NeuronHasCmpr means the neuron has external comparison input in its Target field -- used for computing // comparison statistics but does not drive neural activity ever NeuronHasCmpr NeuronFlags = 1 << 4 )
The neuron flags
func (NeuronFlags) String ¶ added in v1.6.4
func (i NeuronFlags) String() string
type Pool ¶
type Pool struct {
StIdx, EdIdx uint32 `inactive:"+" desc:"starting and ending (exlusive) layer-wise indexes for the list of neurons in this pool"`
StIdxG, EdIdxG uint32 `view:"-" desc:"starting and ending (exlusive) global network-wide indexes for the list of neurons in this pool"`
LayIdx uint32 `view:"-" desc:"layer index in global layer list"`
PoolIdx uint32 `view:"-" desc:"pool index in global pool list: [Layer][Pool]"`
LayPoolIdx uint32 `view:"-" desc:"pool index for layer-wide pool, only if this is not a LayPool"`
IsLayPool slbool.Bool `inactive:"+" desc:"is this a layer-wide pool? if not, it represents a sub-pool of units within a 4D layer"`
Gated slbool.Bool `inactive:"+" desc:"for special types where relevant (e.g., MatrixLayer, VThalLayer), indicates if the pool was gated"`
Inhib fsfffb.Inhib `inactive:"+" desc:"fast-slow FFFB inhibition values"`
AvgMax PoolAvgMax `desc:"average and max values for relevant variables in this pool, at different time scales"`
AvgDif minmax.AvgMax32 `inactive:"+" view:"inline" desc:"absolute value of AvgDif differences from actual neuron ActPct relative to TrgAvg"`
// contains filtered or unexported fields
}
Pool contains computed values for FS-FFFB inhibition, and various other state values for layers and pools (unit groups) that can be subject to inhibition
type PoolAvgMax ¶ added in v1.7.0
type PoolAvgMax struct { CaSpkP AvgMaxPhases `` /* 252-byte string literal not displayed */ CaSpkD AvgMaxPhases `inactive:"+" view:"inline" desc:"avg and maximum CaSpkD longer-term depression / DAPK1 signal in layer"` SpkMax AvgMaxPhases `` /* 136-byte string literal not displayed */ Act AvgMaxPhases `inactive:"+" view:"inline" desc:"avg and maximum Act firing rate value"` Ge AvgMaxPhases `inactive:"+" view:"inline" desc:"avg and maximum Ge excitatory conductance value"` Gi AvgMaxPhases `inactive:"+" view:"inline" desc:"avg and maximum Gi inhibitory conductance value"` }
PoolAvgMax contains the average and maximum values over a Pool of neurons for different variables of interest, at Cycle, Minus and Plus phase timescales. All of the cycle level values are updated at the *start* of the cycle based on values from the prior cycle -- thus are 1 cycle behind in general.
func (*PoolAvgMax) CalcAvg ¶ added in v1.7.0
func (am *PoolAvgMax) CalcAvg()
CalcAvg does CalcAvg on Cycle level
func (*PoolAvgMax) CycleToMinus ¶ added in v1.7.0
func (am *PoolAvgMax) CycleToMinus()
CycleToMinus grabs current Cycle values into the Minus phase values
func (*PoolAvgMax) CycleToPlus ¶ added in v1.7.0
func (am *PoolAvgMax) CycleToPlus()
CycleToPlus grabs current Cycle values into the Plus phase values
func (*PoolAvgMax) Init ¶ added in v1.7.0
func (am *PoolAvgMax) Init()
Init does Init on Cycle level -- for update start
func (*PoolAvgMax) UpdateVals ¶ added in v1.7.0
func (am *PoolAvgMax) UpdateVals(nrn *Neuron, ni int32)
UpdateVals for neuron values
type Prjn ¶
type Prjn struct { PrjnBase Params *PrjnParams `desc:"all prjn-level parameters -- these must remain constant once configured"` }
axon.Prjn is a basic Axon projection with synaptic learning parameters
func (*Prjn) AsAxon ¶
AsAxon returns this prjn as a axon.Prjn -- all derived prjns must redefine this to return the base Prjn type, so that the AxonPrjn interface does not need to include accessors to all the basic stuff.
func (*Prjn) DWt ¶
DWt computes the weight change (learning), based on synaptically-integrated spiking, computed at the Theta cycle interval. This is the trace version for hidden units, and uses syn CaP - CaD for targets.
func (*Prjn) DWtSubMean ¶ added in v1.2.23
DWtSubMean subtracts the mean from any projections that have SubMean > 0. This is called on *receiving* projections, prior to WtFmDwt.
func (*Prjn) InitGBuffs ¶ added in v1.5.10
func (pj *Prjn) InitGBuffs()
InitGBuffs initializes the per-projection synaptic conductance buffers. This is not typically needed (called during InitWts, InitActs) but can be called when needed. Must be called to completely initialize prior activity, e.g., full Glong clearing.
func (*Prjn) InitWtSym ¶
InitWtSym initializes weight symmetry. Is given the reciprocal projection where the Send and Recv layers are reversed (see LayerBase RecipToRecvPrjn)
func (*Prjn) InitWts ¶
func (pj *Prjn) InitWts()
InitWts initializes weight values according to SWt params, enforcing current constraints.
func (*Prjn) InitWtsSyn ¶
InitWtsSyn initializes weight values based on WtInit randomness parameters for an individual synapse. It also updates the linear weight value based on the sigmoidal weight value.
func (*Prjn) LRateMod ¶ added in v1.6.13
LRateMod sets the LRate modulation parameter for Prjns, which is for dynamic modulation of learning rate (see also LRateSched). Updates the effective learning rate factor accordingly.
func (*Prjn) LRateSched ¶ added in v1.6.13
LRateSched sets the schedule-based learning rate multiplier. See also LRateMod. Updates the effective learning rate factor accordingly.
func (*Prjn) Object ¶ added in v1.7.0
func (pj *Prjn) Object() interface{}
Object returns the object with parameters to be set by emer.Params
func (*Prjn) ReadWtsJSON ¶
ReadWtsJSON reads the weights from this projection from the receiver-side perspective in a JSON text format. This is for a set of weights that were saved *for one prjn only* and is not used for the network-level ReadWtsJSON, which reads into a separate structure -- see SetWts method.
func (*Prjn) RecvSpikes ¶ added in v1.7.2
RecvSpikes receives spikes from the sending neurons at index sendIdx into the GBuf buffer on the receiver side. The buffer on the receiver side is a ring buffer, which is used for modelling the time delay between sending and receiving spikes.
func (*Prjn) RecvSynCa ¶ added in v1.3.18
RecvSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. Optimized version only updates at point of spiking. This pass goes through in recv order, filtering on recv spike. Threading: Can be called concurrently for all prjns, since it updates synapses (which are local to a single prjn).
func (*Prjn) SWtFmWt ¶ added in v1.2.45
func (pj *Prjn) SWtFmWt()
SWtFmWt updates structural, slowly-adapting SWt value based on accumulated DSWt values, which are zero-summed with additional soft bounding relative to SWt limits.
func (*Prjn) SWtRescale ¶ added in v1.2.45
func (pj *Prjn) SWtRescale()
SWtRescale rescales the SWt values to preserve the target overall mean value, using subtractive normalization.
func (*Prjn) SendSpike ¶
SendSpike sends a spike from the sending neuron at index sendIdx into the GBuf buffer on the receiver side. The buffer on the receiver side is a ring buffer, which is used for modelling the time delay between sending and receiving spikes.
func (*Prjn) SendSynCa ¶ added in v1.3.22
SendSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. Optimized version only updates at point of spiking. This pass goes through in sending order, filtering on sending spike. Threading: Can be called concurrently for all prjns, since it updates synapses (which are local to a single prjn).
func (*Prjn) SetSWtsFunc ¶ added in v1.2.75
SetSWtsFunc initializes structural SWt values using given function based on receiving and sending unit indexes.
func (*Prjn) SetSWtsRPool ¶ added in v1.2.75
SetSWtsRPool initializes SWt structural weight values using given tensor of values which has unique values for each recv neuron within a given pool.
func (*Prjn) SetSynVal ¶
SetSynVal sets value of given variable name on the synapse between given send, recv unit indexes (1D, flat indexes) returns error for access errors.
func (*Prjn) SetWtsFunc ¶
SetWtsFunc initializes synaptic Wt value using given function based on receiving and sending unit indexes. Strongly suggest calling SWtRescale after.
func (*Prjn) SlowAdapt ¶ added in v1.2.37
SlowAdapt does the slow adaptation: SWt learning and SynScale
func (*Prjn) SynFail ¶ added in v1.2.92
SynFail updates synaptic weight failure only -- normally done as part of DWt and WtFmDWt, but this call can be used during testing to update failing synapses.
func (*Prjn) SynScale ¶ added in v1.2.23
func (pj *Prjn) SynScale()
SynScale performs synaptic scaling based on running average activation vs. targets. Layer-level AvgDifFmTrgAvg function must be called first.
func (*Prjn) Update ¶ added in v1.7.0
func (pj *Prjn) Update()
Update is interface that does local update of struct vals
func (*Prjn) UpdateParams ¶
func (pj *Prjn) UpdateParams()
UpdateParams updates all params given any changes that might have been made to individual values
func (*Prjn) WriteWtsJSON ¶
WriteWtsJSON writes the weights from this projection from the receiver-side perspective in a JSON text format. We build in the indentation logic to make it much faster and more efficient.
type PrjnBase ¶ added in v1.4.14
type PrjnBase struct { AxonPrj AxonPrjn `` /* 267-byte string literal not displayed */ Off bool `desc:"inactivate this projection -- allows for easy experimentation"` Cls string `desc:"Class is for applying parameter styles, can be space separated multple tags"` Notes string `desc:"can record notes about this projection here"` Send emer.Layer `desc:"sending layer for this projection"` Recv emer.Layer `` /* 167-byte string literal not displayed */ Pat prjn.Pattern `desc:"pattern of connectivity"` Typ emer.PrjnType `` /* 154-byte string literal not displayed */ RecvConNAvgMax minmax.AvgMax32 `inactive:"+" view:"inline" desc:"average and maximum number of recv connections in the receiving layer"` SendConNAvgMax minmax.AvgMax32 `inactive:"+" view:"inline" desc:"average and maximum number of sending connections in the sending layer"` RecvCon []StartN `` /* 261-byte string literal not displayed */ Syns []Synapse `` /* 239-byte string literal not displayed */ RecvConIdx []uint32 `` /* 304-byte string literal not displayed */ SendCon []StartN `` /* 236-byte string literal not displayed */ SendSynIdx []uint32 `` /* 236-byte string literal not displayed */ SendConIdx []uint32 `` /* 394-byte string literal not displayed */ // spike aggregation values: GBuf []float32 `` /* 232-byte string literal not displayed */ GSyns []float32 `` /* 245-byte string literal not displayed */ }
PrjnBase contains the basic structural information for specifying a projection of synaptic connections between two layers, and maintaining all the synaptic connection-level data. The exact same struct object is added to the Recv and Send layers, and it manages everything about the connectivity, and methods on the Prjn handle all the relevant computation.
func (*PrjnBase) ApplyParams ¶ added in v1.4.14
ApplyParams applies given parameter style Sheet to this projection. Calls UpdateParams if anything set to ensure derived parameters are all updated. If setMsg is true, then a message is printed to confirm each parameter that is set. it always prints a message if a parameter fails to be set. returns true if any params were set, and error if there were any errors.
func (*PrjnBase) Build ¶ added in v1.7.0
Build constructs the full connectivity among the layers. Calls Validate and returns error if invalid. Pat.Connect is called to get the pattern of the connection. Then the connection indexes are configured according to that pattern. Does NOT allocate synapses -- these are set by Network from global slice.
func (*PrjnBase) Connect ¶ added in v1.4.14
Connect sets the connectivity between two layers and the pattern to use in interconnecting them
func (*PrjnBase) Init ¶ added in v1.4.14
Init MUST be called to initialize the prjn's pointer to itself as an emer.Prjn which enables the proper interface methods to be called.
func (*PrjnBase) NonDefaultParams ¶ added in v1.4.14
NonDefaultParams returns a listing of all parameters in the Layer that are not at their default values -- useful for setting param styles etc.
func (*PrjnBase) PrjnTypeName ¶ added in v1.4.14
func (*PrjnBase) RecvSyns ¶ added in v1.7.2
RecvSyns returns the receiving synapses for given receiving unit index within the receiving layer, to be iterated over for processing.
func (*PrjnBase) SendSynIdxs ¶ added in v1.7.2
SendSynIdxs returns the sending synapse indexes for given sending unit index within the sending layer, to be iterated over for processing.
func (*PrjnBase) SetConStartN ¶ added in v1.7.2
SetConStartN sets the *Con StartN values given n tensor from Pat. Returns total number of connections for this direction.
func (*PrjnBase) SetOff ¶ added in v1.4.14
SetOff individual projection. Careful: Layer.SetOff(true) will reactivate all prjns of that layer, so prjn-level lesioning should always be done last.
func (*PrjnBase) SetPattern ¶ added in v1.7.0
func (*PrjnBase) Syn1DNum ¶ added in v1.7.0
Syn1DNum returns the number of synapses for this prjn as a 1D array. This is the max idx for SynVal1D and the number of vals set by SynVals.
func (*PrjnBase) SynIdx ¶ added in v1.7.0
SynIdx returns the index of the synapse between given send, recv unit indexes (1D, flat indexes). Returns -1 if synapse not found between these two neurons. Requires searching within connections for sending unit.
func (*PrjnBase) SynVal ¶ added in v1.7.0
SynVal returns value of given variable name on the synapse between given send, recv unit indexes (1D, flat indexes). Returns mat32.NaN() for access errors (see SynValTry for error message)
func (*PrjnBase) SynVal1D ¶ added in v1.7.0
SynVal1D returns value of given variable index (from SynVarIdx) on given SynIdx. Returns NaN on invalid index. This is the core synapse var access method used by other methods, so it is the only one that needs to be updated for derived layer types.
func (*PrjnBase) SynVals ¶ added in v1.7.0
SynVals sets values of given variable name for each synapse, using the natural ordering of the synapses (receiver based for Axon), into given float32 slice (only resized if not big enough). Returns error on invalid var name.
func (*PrjnBase) SynVarIdx ¶ added in v1.7.0
SynVarIdx returns the index of given variable within the synapse, according to *this prjn's* SynVarNames() list (using a map to lookup index), or -1 and error message if not found.
func (*PrjnBase) SynVarNames ¶ added in v1.7.0
func (*PrjnBase) SynVarNum ¶ added in v1.7.0
SynVarNum returns the number of synapse-level variables for this prjn. This is needed for extending indexes in derived types.
func (*PrjnBase) SynVarProps ¶ added in v1.7.0
SynVarProps returns properties for variables
type PrjnGTypes ¶ added in v1.7.0
type PrjnGTypes int32
PrjnGTypes represents the conductance (G) effects of a given projection, including excitatory, inhibitory, and modulatory.
const ( // Excitatory projections drive Ge conductance on receiving neurons, // which send to GiRaw and GiSyn neuron variables. ExcitatoryG PrjnGTypes = iota // Inhibitory projections drive Gi inhibitory conductance, // which send to GiRaw and GiSyn neuron variables. InhibitoryG // Modulatory projections have a multiplicative effect on other inputs, // which send to GModRaw and GModSyn neuron variables. ModulatoryG // Context projections are for inputs to CT layers, which update // only at the end of the plus phase, and send to CtxtGe. ContextG PrjnGTypesN )
The projection conductance types
func (*PrjnGTypes) FromString ¶ added in v1.7.0
func (i *PrjnGTypes) FromString(s string) error
func (PrjnGTypes) MarshalJSON ¶ added in v1.7.0
func (ev PrjnGTypes) MarshalJSON() ([]byte, error)
func (PrjnGTypes) String ¶ added in v1.7.0
func (i PrjnGTypes) String() string
func (*PrjnGTypes) UnmarshalJSON ¶ added in v1.7.0
func (ev *PrjnGTypes) UnmarshalJSON(b []byte) error
type PrjnIdxs ¶ added in v1.7.0
type PrjnIdxs struct { PrjnIdx uint32 // index of the projection in global prjn list: [Layer][RecvPrjns] RecvLay uint32 // index of the receiving layer in global list of layers RecvLaySt uint32 // starting index of neurons in recv layer -- so we don't need layer to get to neurons RecvLayN uint32 // number of neurons in recv layer SendLay uint32 // index of the sending layer in global list of layers SendLaySt uint32 // starting index of neurons in sending layer -- so we don't need layer to get to neurons SendLayN uint32 // number of neurons in send layer GBufSt uint32 // start index into global PrjnGBuf global array: [Layer][RecvPrjns][RecvNeurons][MaxDelay+1] GSynSt uint32 // start index into global PrjnGSyn global array: [Layer][RecvPrjns][RecvNeurons] RecvConSt uint32 // start index into global PrjnRecvCon array: [Layer][RecvPrjns][RecvNeurons] SynapseSt uint32 // start index into global Synapse array: [Layer][RecvPrjns][Synapses] // contains filtered or unexported fields }
PrjnIdxs contains prjn-level index information into global memory arrays
func (*PrjnIdxs) RecvNIdxToLayIdx ¶ added in v1.7.2
RecvNIdxToLayIdx converts a neuron's index in network level global list of all neurons to receiving layer-specific index-- e.g., for accessing GBuf and GSyn values. Just subtracts RecvLaySt -- docu-function basically..
func (*PrjnIdxs) SendNIdxToLayIdx ¶ added in v1.7.2
SendNIdxToLayIdx converts a neuron's index in network level global list of all neurons to sending layer-specific index. Just subtracts SendLaySt -- docu-function basically..
type PrjnParams ¶ added in v1.7.0
type PrjnParams struct { PrjnType PrjnTypes `` /* 138-byte string literal not displayed */ Com SynComParams `view:"inline" desc:"synaptic communication parameters: delay, probability of failure"` PrjnScale PrjnScaleParams `` /* 215-byte string literal not displayed */ SWt SWtParams `` /* 147-byte string literal not displayed */ Learn LearnSynParams `view:"add-fields" desc:"synaptic-level learning parameters for learning in the fast LWt values."` GScale GScaleVals `view:"inline" desc:"conductance scaling values"` RLPred RLPredPrjnParams `` /* 418-byte string literal not displayed */ Matrix MatrixPrjnParams `` /* 374-byte string literal not displayed */ Idxs PrjnIdxs `view:"-" desc:"recv and send neuron-level projection index array access info"` // contains filtered or unexported fields }
PrjnParams contains all of the prjn parameters. These values must remain constant over the course of computation. On the GPU, they are loaded into a uniform.
func (*PrjnParams) AllParams ¶ added in v1.7.0
func (pj *PrjnParams) AllParams() string
func (*PrjnParams) BLAPrjnDefaults ¶ added in v1.7.0
func (pj *PrjnParams) BLAPrjnDefaults()
func (*PrjnParams) CycleSynCaSyn ¶ added in v1.7.2
func (pj *PrjnParams) CycleSynCaSyn(ctx *Context, sy *Synapse, sn, rn *Neuron)
CycleSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. This version updates every cycle, for GPU usage called on each synapse.
func (*PrjnParams) DWtSyn ¶ added in v1.7.0
func (pj *PrjnParams) DWtSyn(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool, isTarget bool)
DWtSyn is the overall entry point for weight change (learning) at given synapse. It selects appropriate function based on projection type. rpl is the receiving layer SubPool
func (*PrjnParams) DWtSynCortex ¶ added in v1.7.0
func (pj *PrjnParams) DWtSynCortex(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool, isTarget bool)
DWtSynCortex computes the weight change (learning) at given synapse for cortex. Uses synaptically-integrated spiking, computed at the Theta cycle interval. This is the trace version for hidden units, and uses syn CaP - CaD for targets.
func (*PrjnParams) DWtSynMatrix ¶ added in v1.7.0
func (pj *PrjnParams) DWtSynMatrix(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool)
DWtSynMatrix computes the weight change (learning) at given synapse, for the MatrixPrjn type.
func (*PrjnParams) DWtSynRWPred ¶ added in v1.7.0
func (pj *PrjnParams) DWtSynRWPred(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool)
DWtSynRWPred computes the weight change (learning) at given synapse, for the RWPredPrjn type
func (*PrjnParams) DWtSynTDPred ¶ added in v1.7.0
func (pj *PrjnParams) DWtSynTDPred(ctx *Context, sy *Synapse, sn, rn *Neuron, layPool, subPool *Pool)
DWtSynTDPred computes the weight change (learning) at given synapse, for the TDRewPredPrjn type
func (*PrjnParams) Defaults ¶ added in v1.7.0
func (pj *PrjnParams) Defaults()
func (*PrjnParams) GatherSpikes ¶ added in v1.7.2
func (pj *PrjnParams) GatherSpikes(ctx *Context, ly *LayerParams, ni uint32, nrn *Neuron, gRaw float32, gSyn *float32)
GatherSpikes integrates G*Raw and G*Syn values for given neuron from the given Prjn-level GRaw value, first integrating projection-level GSyn value.
func (*PrjnParams) IsExcitatory ¶ added in v1.7.0
func (pj *PrjnParams) IsExcitatory() bool
func (*PrjnParams) IsInhib ¶ added in v1.7.0
func (pj *PrjnParams) IsInhib() bool
func (*PrjnParams) RLPredPrjnDefaults ¶ added in v1.7.0
func (pj *PrjnParams) RLPredPrjnDefaults()
func (*PrjnParams) RecvSynCaSyn ¶ added in v1.7.1
func (pj *PrjnParams) RecvSynCaSyn(ctx *Context, sy *Synapse, sn *Neuron, rnCaSyn, updtThr float32)
RecvSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. Optimized version only updates at point of spiking. This pass goes through in recv order, filtering on recv spike. Threading: Can be called concurrently for all prjns, since it updates synapses (which are local to a single prjn).
func (*PrjnParams) SendSynCaSyn ¶ added in v1.7.1
func (pj *PrjnParams) SendSynCaSyn(ctx *Context, sy *Synapse, rn *Neuron, snCaSyn, updtThr float32)
SendSynCa updates synaptic calcium based on spiking, for SynSpkTheta mode. Optimized version only updates at point of spiking. This pass goes through in sending order, filtering on sending spike. Threading: Can be called concurrently for all prjns, since it updates synapses (which are local to a single prjn).
func (*PrjnParams) SynRecvLayIdx ¶ added in v1.7.2
func (pj *PrjnParams) SynRecvLayIdx(sy *Synapse) uint32
SynRecvLayIdx converts the Synapse RecvIdx of recv neuron's index in network level global list of all neurons to receiving layer-specific index.
func (*PrjnParams) SynSendLayIdx ¶ added in v1.7.2
func (pj *PrjnParams) SynSendLayIdx(sy *Synapse) uint32
SynSendLayIdx converts the Synapse SendIdx of sending neuron's index in network level global list of all neurons to sending layer-specific index.
func (*PrjnParams) Update ¶ added in v1.7.0
func (pj *PrjnParams) Update()
func (*PrjnParams) WtFmDWtSyn ¶ added in v1.7.0
func (pj *PrjnParams) WtFmDWtSyn(ctx *Context, sy *Synapse)
WtFmDWtSyn is the overall entry point for updating weights from weight changes.
func (*PrjnParams) WtFmDWtSynCortex ¶ added in v1.7.0
func (pj *PrjnParams) WtFmDWtSynCortex(ctx *Context, sy *Synapse)
WtFmDWtSynCortex updates weights from dwt changes
func (*PrjnParams) WtFmDWtSynNoLimits ¶ added in v1.7.0
func (pj *PrjnParams) WtFmDWtSynNoLimits(ctx *Context, sy *Synapse)
WtFmDWtSynNoLimits -- weight update without limits
type PrjnScaleParams ¶ added in v1.2.45
type PrjnScaleParams struct { Rel float32 `` /* 255-byte string literal not displayed */ Abs float32 `` /* 334-byte string literal not displayed */ AvgTau float32 `` /* 340-byte string literal not displayed */ AvgDt float32 `view:"-" json:"-" xml:"-" desc:"rate = 1 / tau"` }
PrjnScaleParams are projection scaling parameters: modulates overall strength of projection, using both absolute and relative factors.
func (*PrjnScaleParams) Defaults ¶ added in v1.2.45
func (ws *PrjnScaleParams) Defaults()
func (*PrjnScaleParams) FullScale ¶ added in v1.2.45
func (ws *PrjnScaleParams) FullScale(savg, snu, ncon float32) float32
FullScale returns full scaling factor, which is product of Abs * Rel * SLayActScale
func (*PrjnScaleParams) SLayActScale ¶ added in v1.2.45
func (ws *PrjnScaleParams) SLayActScale(savg, snu, ncon float32) float32
SLayActScale computes scaling factor based on sending layer activity level (savg), number of units in sending layer (snu), and number of recv connections (ncon). Uses a fixed sem_extra standard-error-of-the-mean (SEM) extra value of 2 to add to the average expected number of active connections to receive, for purposes of computing scaling factors with partial connectivity For 25% layer activity, binomial SEM = sqrt(p(1-p)) = .43, so 3x = 1.3 so 2 is a reasonable default.
func (*PrjnScaleParams) Update ¶ added in v1.2.45
func (ws *PrjnScaleParams) Update()
type PrjnTypes ¶ added in v1.7.0
type PrjnTypes int32
PrjnTypes is an axon-specific prjn type enum, that encompasses all the different algorithm types supported. Class parameter styles automatically key off of these types. The first entries must be kept synchronized with the emer.PrjnType.
const ( // Forward is a feedforward, bottom-up projection from sensory inputs to higher layers ForwardPrj PrjnTypes = iota // Back is a feedback, top-down projection from higher layers back to lower layers BackPrjn // Lateral is a lateral projection within the same layer / area LateralPrjn // Inhib is an inhibitory projection that drives inhibitory // synaptic conductances instead of the default excitatory ones. InhibPrjn // CTCtxt are projections from Superficial layers to CT layers that // send Burst activations drive updating of CtxtGe excitatory conductance, // at end of plus (51B Bursting) phase. Biologically, this projection // comes from the PT layer 5IB neurons, but it is simpler to use the // Super neurons directly, and PT are optional for most network types. // These projections also use a special learning rule that // takes into account the temporal delays in the activation states. // Can also add self context from CT for deeper temporal context. CTCtxtPrjn // RWPrjn does dopamine-modulated learning for reward prediction: // Da * Send.CaSpkP (integrated current spiking activity). // Uses RLPredPrjn parameters. // Use in RWPredLayer typically to generate reward predictions. // If the Da sign is positive, the first recv unit learns fully; // for negative, second one learns fully. Lower lrate applies for // opposite cases. Weights are positive-only. RWPrjn // TDPredPrjn does dopamine-modulated learning for reward prediction: // DWt = Da * Send.SpkPrv (activity on *previous* timestep) // Uses RLPredPrjn parameters. // Use in TDPredLayer typically to generate reward predictions. // If the Da sign is positive, the first recv unit learns fully; // for negative, second one learns fully. Lower lrate applies for // opposite cases. Weights are positive-only. TDPredPrjn // BLAPrjn implements the PVLV BLA learning rule: // dW = Ach * X_t-1 * (Y_t - Y_t-1) // The recv delta is across trials, where the US should activate on trial // boundary, to enable sufficient time for gating through to OFC, so // BLA initially learns based on US present - US absent. // It can also learn based on CS onset if there is a prior CS that predicts that. BLAPrjn // MatrixPrjn supports trace-based learning, where an initial // trace of synaptic co-activity is formed, and then modulated // by subsequent phasic dopamine & ACh when an outcome occurs. // This bridges the temporal gap between gating activity // and subsequent outcomes, and is based biologically on synaptic tags. // Trace is reset at time of reward based on ACh level (from CINs in biology). MatrixPrjn PrjnTypesN )
The projection types
func (*PrjnTypes) FromString ¶ added in v1.7.0
func (PrjnTypes) MarshalJSON ¶ added in v1.7.0
func (*PrjnTypes) UnmarshalJSON ¶ added in v1.7.0
type PulvParams ¶ added in v1.7.0
type PulvParams struct { DriveScale float32 `` /* 145-byte string literal not displayed */ FullDriveAct float32 `` /* 352-byte string literal not displayed */ DriveLayIdx int32 `` /* 132-byte string literal not displayed */ // contains filtered or unexported fields }
PulvParams provides parameters for how the plus-phase (outcome) state of Pulvinar thalamic relay cell neurons is computed from the corresponding driver neuron Burst activation (or CaSpkP if not Super)
func (*PulvParams) Defaults ¶ added in v1.7.0
func (tp *PulvParams) Defaults()
func (*PulvParams) DriveGe ¶ added in v1.7.0
func (tp *PulvParams) DriveGe(act float32) float32
DriveGe returns effective excitatory conductance to use for given driver input Burst activation
func (*PulvParams) NonDrivePct ¶ added in v1.7.0
func (tp *PulvParams) NonDrivePct(drvMax float32) float32
NonDrivePct returns the multiplier proportion of the non-driver based Ge to keep around, based on FullDriveAct and the max activity in driver layer.
func (*PulvParams) Update ¶ added in v1.7.0
func (tp *PulvParams) Update()
type RLPredPrjnParams ¶ added in v1.7.0
type RLPredPrjnParams struct { OppSignLRate float32 `desc:"how much to learn on opposite DA sign coding neuron (0..1)"` DaTol float32 `` /* 208-byte string literal not displayed */ // contains filtered or unexported fields }
RLPredPrjnParams does dopamine-modulated learning for reward prediction: Da * Send.Act Used by RWPrjn and TDPredPrjn within corresponding RWPredLayer or TDPredLayer to generate reward predictions based on its incoming weights, using linear activation function. Has no weight bounds or limits on sign etc.
func (*RLPredPrjnParams) Defaults ¶ added in v1.7.0
func (pj *RLPredPrjnParams) Defaults()
func (*RLPredPrjnParams) Update ¶ added in v1.7.0
func (pj *RLPredPrjnParams) Update()
type RLRateParams ¶ added in v1.6.13
type RLRateParams struct { On slbool.Bool `def:"true" desc:"use learning rate modulation"` SigmoidMin float32 `` /* 238-byte string literal not displayed */ Diff slbool.Bool `viewif:"On" desc:"modulate learning rate as a function of plus - minus differences"` SpkThr float32 `` /* 129-byte string literal not displayed */ DiffThr float32 `viewif:"On" def:"0.02" desc:"threshold on recv neuron error delta, i.e., |CaSpkP - CaSpkD| below which lrate is at Min value"` Min float32 `viewif:"On" def:"0.001" desc:"for Diff component, minimum learning rate value when below ActDiffThr"` // contains filtered or unexported fields }
RLRateParams are recv neuron learning rate modulation parameters. Has two factors: the derivative of the sigmoid based on CaSpkD activity levels, and based on the phase-wise differences in activity (Diff).
func (*RLRateParams) Defaults ¶ added in v1.6.13
func (rl *RLRateParams) Defaults()
func (*RLRateParams) RLRateDiff ¶ added in v1.6.13
func (rl *RLRateParams) RLRateDiff(scap, scad float32) float32
RLRateDiff returns the learning rate as a function of difference between CaSpkP and CaSpkD values
func (*RLRateParams) RLRateSigDeriv ¶ added in v1.6.13
func (rl *RLRateParams) RLRateSigDeriv(act float32, laymax float32) float32
RLRateSigDeriv returns the sigmoid derivative learning rate factor as a function of spiking activity, with mid-range values having full learning and extreme values a reduced learning rate: deriv = act * (1 - act) The activity should be CaSpkP and the layer maximum is used to normalize that to a 0-1 range.
func (*RLRateParams) Update ¶ added in v1.6.13
func (rl *RLRateParams) Update()
type RSalAChParams ¶ added in v1.7.0
type RSalAChParams struct { RewThr float32 `` /* 182-byte string literal not displayed */ Rew slbool.Bool `` /* 153-byte string literal not displayed */ RewPred slbool.Bool `desc:"use the global Context.NeuroMod.RewPred value"` SrcLay1Idx int32 `` /* 135-byte string literal not displayed */ SrcLay2Idx int32 `` /* 135-byte string literal not displayed */ SrcLay3Idx int32 `` /* 135-byte string literal not displayed */ SrcLay4Idx int32 `` /* 135-byte string literal not displayed */ SrcLay5Idx int32 `` /* 135-byte string literal not displayed */ }
RSalAChParams compute reward salience as ACh global neuromodulatory signal as a function of the MAX activation of its inputs.
func (*RSalAChParams) Defaults ¶ added in v1.7.0
func (rp *RSalAChParams) Defaults()
func (*RSalAChParams) Thr ¶ added in v1.7.0
func (rp *RSalAChParams) Thr(val float32) float32
Thr applies
func (*RSalAChParams) Update ¶ added in v1.7.0
func (rp *RSalAChParams) Update()
type RWDaParams ¶ added in v1.7.0
type RWDaParams struct { TonicGe float32 `desc:"tonic baseline Ge level for DA = 0 -- +/- are between 0 and 2*TonicGe -- just for spiking display of computed DA value"` RWPredLayIdx int32 `inactive:"+" desc:"idx of RWPredLayer to get reward prediction from -- set during Build from BuildConfig RWPredLayName"` // contains filtered or unexported fields }
RWDaParams computes a dopamine (DA) signal using simple Rescorla-Wagner learning dynamic (i.e., PV learning in the PVLV framework).
func (*RWDaParams) Defaults ¶ added in v1.7.0
func (rp *RWDaParams) Defaults()
func (*RWDaParams) GeFmDA ¶ added in v1.7.0
func (rp *RWDaParams) GeFmDA(da float32) float32
GeFmDA returns excitatory conductance from DA dopamine value
func (*RWDaParams) Update ¶ added in v1.7.0
func (rp *RWDaParams) Update()
type RWPredParams ¶ added in v1.7.0
RWPredParams parameterizes reward prediction for a simple Rescorla-Wagner learning dynamic (i.e., PV learning in the PVLV framework).
func (*RWPredParams) Defaults ¶ added in v1.7.0
func (rp *RWPredParams) Defaults()
func (*RWPredParams) Update ¶ added in v1.7.0
func (rp *RWPredParams) Update()
type RandFunIdx ¶ added in v1.7.7
type RandFunIdx uint32
const ( RandFunActPGe RandFunIdx = iota RandFunActPGi RandFunIdxN )
We use this enum to store a unique index for each function that requires random number generation. If you add a new function, you need to add a new enum entry here. RandFunIdxN is the total number of random functions. It autoincrements due to iota.
type SWtAdaptParams ¶ added in v1.2.45
type SWtAdaptParams struct { On slbool.Bool `` /* 137-byte string literal not displayed */ LRate float32 `` /* 388-byte string literal not displayed */ SubMean float32 `viewif:"On" def:"1" desc:"amount of mean to subtract from SWt delta when updating -- generally best to set to 1"` SigGain float32 `` /* 135-byte string literal not displayed */ DreamVar float32 `` /* 354-byte string literal not displayed */ // contains filtered or unexported fields }
SWtAdaptParams manages adaptation of SWt values
func (*SWtAdaptParams) Defaults ¶ added in v1.2.45
func (sp *SWtAdaptParams) Defaults()
func (*SWtAdaptParams) RndVar ¶ added in v1.2.55
func (sp *SWtAdaptParams) RndVar() float32
RndVar returns the random variance (zero mean) based on DreamVar param
func (*SWtAdaptParams) Update ¶ added in v1.2.45
func (sp *SWtAdaptParams) Update()
type SWtInitParams ¶ added in v1.2.45
type SWtInitParams struct { SPct float32 `` /* 315-byte string literal not displayed */ Mean float32 `` /* 199-byte string literal not displayed */ Var float32 `def:"0.25" desc:"initial variance in weight values, prior to constraints."` Sym slbool.Bool `` /* 149-byte string literal not displayed */ }
SWtInitParams for initial SWt values
func (*SWtInitParams) Defaults ¶ added in v1.2.45
func (sp *SWtInitParams) Defaults()
func (*SWtInitParams) RndVar ¶ added in v1.2.45
func (sp *SWtInitParams) RndVar() float32
RndVar returns the random variance in weight value (zero mean) based on Var param
func (*SWtInitParams) Update ¶ added in v1.2.45
func (sp *SWtInitParams) Update()
type SWtParams ¶ added in v1.2.45
type SWtParams struct { Init SWtInitParams `view:"inline" desc:"initialization of SWt values"` Adapt SWtAdaptParams `view:"inline" desc:"adaptation of SWt values in response to LWt learning"` Limit minmax.F32 `def:"{0.2 0.8}" view:"inline" desc:"range limits for SWt values"` }
SWtParams manages structural, slowly adapting weight values (SWt), in terms of initialization and updating over course of learning. SWts impose initial and slowly adapting constraints on neuron connectivity to encourage differentiation of neuron representations and overall good behavior in terms of not hogging the representational space. The TrgAvg activity constraint is not enforced through SWt -- it needs to be more dynamic and supported by the regular learned weights.
func (*SWtParams) InitWtsSyn ¶ added in v1.3.5
InitWtsSyn initializes weight values based on WtInit randomness parameters for an individual synapse. It also updates the linear weight value based on the sigmoidal weight value.
func (*SWtParams) LWtFmWts ¶ added in v1.2.47
LWtFmWts returns linear, learning LWt from wt and swt. LWt is set to reproduce given Wt relative to given SWt base value.
func (*SWtParams) LinFmSigWt ¶ added in v1.2.45
LinFmSigWt returns linear weight from sigmoidal contrast-enhanced weight. wt is centered at 1, and normed in range +/- 1 around that, return value is in 0-1 range, centered at .5
func (*SWtParams) SigFmLinWt ¶ added in v1.2.45
SigFmLinWt returns sigmoidal contrast-enhanced weight from linear weight, centered at 1 and normed in range +/- 1 around that in preparation for multiplying times SWt
type SpikeNoiseParams ¶ added in v1.2.94
type SpikeNoiseParams struct { On slbool.Bool `desc:"add noise simulating background spiking levels"` GeHz float32 `` /* 163-byte string literal not displayed */ Ge float32 `` /* 162-byte string literal not displayed */ GiHz float32 `` /* 177-byte string literal not displayed */ Gi float32 `` /* 162-byte string literal not displayed */ GeExpInt float32 `view:"-" json:"-" xml:"-" desc:"Exp(-Interval) which is the threshold for GeNoiseP as it is updated"` GiExpInt float32 `view:"-" json:"-" xml:"-" desc:"Exp(-Interval) which is the threshold for GiNoiseP as it is updated"` // contains filtered or unexported fields }
SpikeNoiseParams parameterizes background spiking activity impinging on the neuron, simulated using a poisson spiking process.
func (*SpikeNoiseParams) Defaults ¶ added in v1.2.94
func (an *SpikeNoiseParams) Defaults()
func (*SpikeNoiseParams) PGe ¶ added in v1.2.94
func (an *SpikeNoiseParams) PGe(ctx *Context, p *float32, ni uint32) float32
PGe updates the GeNoiseP probability, multiplying a uniform random number [0-1] and returns Ge from spiking if a spike is triggered
func (*SpikeNoiseParams) PGi ¶ added in v1.2.94
func (an *SpikeNoiseParams) PGi(ctx *Context, p *float32, ni uint32) float32
PGi updates the GiNoiseP probability, multiplying a uniform random number [0-1] and returns Gi from spiking if a spike is triggered
func (*SpikeNoiseParams) Update ¶ added in v1.2.94
func (an *SpikeNoiseParams) Update()
type SpikeParams ¶
type SpikeParams struct { Thr float32 `` /* 152-byte string literal not displayed */ VmR float32 `` /* 217-byte string literal not displayed */ Tr int32 `` /* 242-byte string literal not displayed */ RTau float32 `` /* 285-byte string literal not displayed */ Exp slbool.Bool `` /* 274-byte string literal not displayed */ ExpSlope float32 `` /* 325-byte string literal not displayed */ ExpThr float32 `` /* 127-byte string literal not displayed */ MaxHz float32 `` /* 182-byte string literal not displayed */ ISITau float32 `def:"5" min:"1" desc:"constant for integrating the spiking interval in estimating spiking rate"` ISIDt float32 `view:"-" desc:"rate = 1 / tau"` RDt float32 `view:"-" desc:"rate = 1 / tau"` // contains filtered or unexported fields }
SpikeParams contains spiking activation function params. Implements a basic thresholded Vm model, and optionally the AdEx adaptive exponential function (adapt is KNaAdapt)
func (*SpikeParams) ActFmISI ¶
func (sk *SpikeParams) ActFmISI(isi, timeInc, integ float32) float32
ActFmISI computes rate-code activation from estimated spiking interval
func (*SpikeParams) ActToISI ¶
func (sk *SpikeParams) ActToISI(act, timeInc, integ float32) float32
ActToISI compute spiking interval from a given rate-coded activation, based on time increment (.001 = 1msec default), Act.Dt.Integ
func (*SpikeParams) AvgFmISI ¶
func (sk *SpikeParams) AvgFmISI(avg *float32, isi float32)
AvgFmISI updates spiking ISI from current isi interval value
func (*SpikeParams) Defaults ¶
func (sk *SpikeParams) Defaults()
func (*SpikeParams) Update ¶
func (sk *SpikeParams) Update()
type StartN ¶ added in v1.7.2
type StartN struct { Start uint32 `desc:"starting offset"` N uint32 `desc:"number of items -- [Start:Start+N]"` }
StartN holds a starting offset index and a number of items arranged from Start to Start+N (exclusive). This is not 16 byte padded and only for use on CPU side.
type SynComParams ¶
type SynComParams struct { GType PrjnGTypes `desc:"type of conductance (G) communicated by this projection"` Delay uint32 `` /* 405-byte string literal not displayed */ MaxDelay uint32 `` /* 286-byte string literal not displayed */ PFail float32 `` /* 149-byte string literal not displayed */ PFailSWt slbool.Bool `` /* 141-byte string literal not displayed */ CPURecvSpikes slbool.Bool `` /* 332-byte string literal not displayed */ DelLen uint32 `view:"-" desc:"delay length = actual length of the GBuf buffer per neuron = Delay+1 -- just for speed"` // contains filtered or unexported fields }
SynComParams are synaptic communication parameters: used in the Prjn parameters. Includes delay and probability of failure, and Inhib for inhibitory connections, and modulatory projections that have multiplicative-like effects.
func (*SynComParams) Defaults ¶
func (sc *SynComParams) Defaults()
func (*SynComParams) Fail ¶
func (sc *SynComParams) Fail(wt *float32, swt float32)
Fail updates failure status of given weight, given SWt value
func (*SynComParams) ReadIdx ¶ added in v1.7.2
func (sc *SynComParams) ReadIdx(rnIdx uint32, cycTot int32) uint32
ReadIdx returns index for reading existing spikes from the GBuf buffer, based on the layer-based recv neuron index and the ReadOff offset from the CycleTot.
func (*SynComParams) ReadOff ¶ added in v1.7.2
func (sc *SynComParams) ReadOff(cycTot int32) uint32
ReadOff returns offset for reading existing spikes from the GBuf buffer, based on Context CycleTot counter which increments each cycle. This is logically the zero position in the ring buffer.
func (*SynComParams) RingIdx ¶ added in v1.7.2
func (sc *SynComParams) RingIdx(i uint32) uint32
RingIdx returns the wrap-around ring index for given raw index. For writing and reading spikes to GBuf buffer, based on Context.CycleTot counter. RN: 0 1 2 <- recv neuron indexes DI: 0 1 2 0 1 2 0 1 2 <- delay indexes C0: ^ v <- cycle 0, ring index: ^ = write, v = read C1: ^ v <- cycle 1, shift over by 1 -- overwrite last read C2: v ^ <- cycle 2: read out value stored on C0 -- index wraps around
func (*SynComParams) Update ¶
func (sc *SynComParams) Update()
func (*SynComParams) WriteIdx ¶ added in v1.7.2
func (sc *SynComParams) WriteIdx(rnIdx uint32, cycTot int32) uint32
WriteIdx returns actual index for writing new spikes into the GBuf buffer, based on the layer-based recv neuron index and the WriteOff offset computed from the CycleTot.
func (*SynComParams) WriteIdxOff ¶ added in v1.7.2
func (sc *SynComParams) WriteIdxOff(rnIdx, wrOff uint32) uint32
WriteIdxOff returns actual index for writing new spikes into the GBuf buffer, based on the layer-based recv neuron index and the given WriteOff offset.
func (*SynComParams) WriteOff ¶ added in v1.7.2
func (sc *SynComParams) WriteOff(cycTot int32) uint32
WriteOff returns offset for writing new spikes into the GBuf buffer, based on Context CycleTot counter which increments each cycle. This is logically the last position in the ring buffer.
func (*SynComParams) WtFail ¶
func (sc *SynComParams) WtFail(swt float32) bool
WtFail returns true if synapse should fail, as function of SWt value (optionally)
func (*SynComParams) WtFailP ¶
func (sc *SynComParams) WtFailP(swt float32) float32
WtFailP returns probability of weight (synapse) failure given current SWt value
type Synapse ¶
type Synapse struct { RecvIdx uint32 `desc:"receiving neuron index in network's global list of neurons"` SendIdx uint32 `desc:"sending neuron index in network's global list of neurons"` PrjnIdx uint32 `desc:"projection index in global list of projections organized as [Layers][RecvPrjns]"` CaUpT int32 `desc:"time in CycleTot of last updating of Ca values at the synapse level, for optimized synaptic-level Ca integration."` Wt float32 `` /* 282-byte string literal not displayed */ LWt float32 `` /* 309-byte string literal not displayed */ SWt float32 `` /* 466-byte string literal not displayed */ DWt float32 `desc:"delta (change in) synaptic weight, from learning -- updates LWt which then updates Wt."` DSWt float32 `desc:"change in SWt slow synaptic weight -- accumulates DWt"` Ca float32 `desc:"Raw calcium singal for Kinase learning: SpikeG * (send.CaSyn * recv.CaSyn)"` CaM float32 `desc:"first stage running average (mean) Ca calcium level (like CaM = calmodulin), feeds into CaP"` CaP float32 `` /* 165-byte string literal not displayed */ CaD float32 `` /* 164-byte string literal not displayed */ Tr float32 `` /* 158-byte string literal not displayed */ DTr float32 `desc:"delta (change in) Tr trace of synaptic activity over time"` // contains filtered or unexported fields }
axon.Synapse holds state for the synaptic connection between neurons
func (*Synapse) SetVarByIndex ¶
func (*Synapse) SetVarByName ¶
SetVarByName sets synapse variable to given value
func (*Synapse) VarByIndex ¶
VarByIndex returns variable using index (0 = first variable in SynapseVars list)
type TDDaParams ¶ added in v1.7.0
type TDDaParams struct { TonicGe float32 `desc:"tonic baseline Ge level for DA = 0 -- +/- are between 0 and 2*TonicGe -- just for spiking display of computed DA value"` TDIntegLayIdx int32 `inactive:"+" desc:"idx of TDIntegLayer to get reward prediction from -- set during Build from BuildConfig TDIntegLayName"` // contains filtered or unexported fields }
TDDaParams are params for dopamine (DA) signal as the temporal difference (TD) between the TDIntegLayer activations in the minus and plus phase.
func (*TDDaParams) Defaults ¶ added in v1.7.0
func (tp *TDDaParams) Defaults()
func (*TDDaParams) GeFmDA ¶ added in v1.7.0
func (tp *TDDaParams) GeFmDA(da float32) float32
GeFmDA returns excitatory conductance from DA dopamine value
func (*TDDaParams) Update ¶ added in v1.7.0
func (tp *TDDaParams) Update()
type TDIntegParams ¶ added in v1.7.0
type TDIntegParams struct { Discount float32 `desc:"discount factor -- how much to discount the future prediction from TDPred"` PredGain float32 `desc:"gain factor on TD rew pred activations"` TDPredLayIdx int32 `inactive:"+" desc:"idx of TDPredLayer to get reward prediction from -- set during Build from BuildConfig TDPredLayName"` // contains filtered or unexported fields }
TDIntegParams are params for reward integrator layer
func (*TDIntegParams) Defaults ¶ added in v1.7.0
func (tp *TDIntegParams) Defaults()
func (*TDIntegParams) Update ¶ added in v1.7.0
func (tp *TDIntegParams) Update()
type TopoInhibParams ¶ added in v1.2.85
type TopoInhibParams struct { On slbool.Bool `desc:"use topographic inhibition"` Width int32 `viewif:"On" desc:"half-width of topographic inhibition within layer"` Sigma float32 `viewif:"On" desc:"normalized gaussian sigma as proportion of Width, for gaussian weighting"` Wrap slbool.Bool `viewif:"On" desc:"half-width of topographic inhibition within layer"` Gi float32 `viewif:"On" desc:"overall inhibition multiplier for topographic inhibition (generally <= 1)"` FF float32 `` /* 133-byte string literal not displayed */ FB float32 `` /* 139-byte string literal not displayed */ FF0 float32 `` /* 186-byte string literal not displayed */ WidthWt float32 `inactive:"+" desc:"weight value at width -- to assess the value of Sigma"` // contains filtered or unexported fields }
TopoInhibParams provides for topographic gaussian inhibition integrating over neighborhood. TODO: not currently being used
func (*TopoInhibParams) Defaults ¶ added in v1.2.85
func (ti *TopoInhibParams) Defaults()
func (*TopoInhibParams) GiFmGeAct ¶ added in v1.2.85
func (ti *TopoInhibParams) GiFmGeAct(ge, act, ff0 float32) float32
func (*TopoInhibParams) Update ¶ added in v1.2.85
func (ti *TopoInhibParams) Update()
type TraceParams ¶ added in v1.5.1
type TraceParams struct { Tau float32 `` /* 126-byte string literal not displayed */ SubMean float32 `` /* 409-byte string literal not displayed */ Dt float32 `view:"-" json:"-" xml:"-" inactive:"+" desc:"rate = 1 / tau"` // contains filtered or unexported fields }
TraceParams manages learning rate parameters
func (*TraceParams) Defaults ¶ added in v1.5.1
func (tp *TraceParams) Defaults()
func (*TraceParams) TrFmCa ¶ added in v1.5.1
func (tp *TraceParams) TrFmCa(tr float32, ca float32) float32
TrFmCa returns updated trace factor as function of a synaptic calcium update factor and current trace
func (*TraceParams) Update ¶ added in v1.5.1
func (tp *TraceParams) Update()
type TrgAvgActParams ¶ added in v1.2.45
type TrgAvgActParams struct { On slbool.Bool `desc:"whether to use target average activity mechanism to scale synaptic weights"` ErrLRate float32 `` /* 255-byte string literal not displayed */ SynScaleRate float32 `` /* 289-byte string literal not displayed */ SubMean float32 `` /* 235-byte string literal not displayed */ TrgRange minmax.F32 `` /* 181-byte string literal not displayed */ Permute slbool.Bool `` /* 236-byte string literal not displayed */ Pool slbool.Bool `` /* 206-byte string literal not displayed */ // contains filtered or unexported fields }
TrgAvgActParams govern the target and actual long-term average activity in neurons. Target value is adapted by neuron-wise error and difference in actual vs. target. drives synaptic scaling at a slow timescale (Network.SlowInterval).
func (*TrgAvgActParams) Defaults ¶ added in v1.2.45
func (ta *TrgAvgActParams) Defaults()
func (*TrgAvgActParams) Update ¶ added in v1.2.45
func (ta *TrgAvgActParams) Update()
Source Files ¶
- act.go
- act_prjn.go
- axon.go
- context.go
- damodtypes_string.go
- deep_layers.go
- deep_net.go
- deep_prjns.go
- doc.go
- gplayertypes_string.go
- gpu.go
- hebbprjn.go
- helpers.go
- inhib.go
- layer.go
- layer_compute.go
- layerbase.go
- layerparams.go
- layertypes.go
- layertypes_string.go
- layervals.go
- learn.go
- logging.go
- looper.go
- network.go
- networkbase.go
- neuromod.go
- neuron.go
- neuronflags_string.go
- pcore_layers.go
- pcore_net.go
- pcore_prjns.go
- pool.go
- prjn.go
- prjn_compute.go
- prjnbase.go
- prjngtypes_string.go
- prjnparams.go
- prjntypes.go
- prjntypes_string.go
- pvlv_layers.go
- pvlv_net.go
- pvlv_prjns.go
- rand.go
- rl_layers.go
- rl_net.go
- rl_prjns.go
- synapse.go
- threads.go
- version.go