Documentation ¶
Overview ¶
Package native is a Go implementation of the BLAS API. This implementation panics when the input arguments are invalid as per the standard, for example if a vector increment is zero. Please note that the treatment of NaN values is not specified, and differs among the BLAS implementations. github.com/gonum/blas/blas64 provides helpful wrapper functions to the BLAS interface. The rest of this text describes the layout of the data for the input types.
Please note that in the function documentation, x[i] refers to the i^th element of the vector, which will be different from the i^th element of the slice if incX != 1.
See http://www.netlib.org/lapack/explore-html/d4/de1/_l_i_c_e_n_s_e_source.html for more license information.
Vector arguments are effectively strided slices. They have two input arguments, a number of elements, n, and an increment, incX. The increment specifies the distance between elements of the vector. The actual Go slice may be longer than necessary. The increment may be positive or negative, except in functions with only a single vector argument where the increment may only be positive. If the increment is negative, s[0] is the last element in the slice. Note that this is not the same as counting backward from the end of the slice, as len(s) may be longer than necessary. So, for example, if n = 5 and incX = 3, the elements of s are
[0 * * 1 * * 2 * * 3 * * 4 * * * ...]
where ∗ elements are never accessed. If incX = -3, the same elements are accessed, just in reverse order (4, 3, 2, 1, 0).
Dense matrices are specified by a number of rows, a number of columns, and a stride. The stride specifies the number of entries in the slice between the first element of successive rows. The stride must be at least as large as the number of columns but may be longer.
[a00 ... a0n a0* ... a1stride-1 a21 ... amn am* ... amstride-1]
Thus, dense[i*ld + j] refers to the {i, j}th element of the matrix.
Symmetric and triangular matrices (non-packed) are stored identically to Dense, except that only elements in one triangle of the matrix are accessed.
Packed symmetric and packed triangular matrices are laid out with the entries condensed such that all of the unreferenced elements are removed. So, the upper triangular matrix
[ 1 2 3 0 4 5 0 0 6 ]
and the lower-triangular matrix
[ 1 0 0 2 3 0 4 5 6 ]
will both be compacted as [1 2 3 4 5 6]. The (i, j) element of the original dense matrix can be found at element i*n - (i-1)*i/2 + j for upper triangular, and at element i * (i+1) /2 + j for lower triangular.
Banded matrices are laid out in a compact format, constructed by removing the zeros in the rows and aligning the diagonals. For example, the matrix
[ 1 2 3 0 0 0 4 5 6 7 0 0 0 8 9 10 11 0 0 0 12 13 14 15 0 0 0 16 17 18 0 0 0 0 19 20 ]
implicitly becomes (∗ entries are never accessed)
[ * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 * 19 20 * * ]
which is given to the BLAS routine as [∗ 1 2 3 4 ...].
See http://www.crest.iu.edu/research/mtl/reference/html/banded.html for more information
Index ¶
- type Implementation
- func (Implementation) Dasum(n int, x []float64, incX int) float64
- func (Implementation) Daxpy(n int, alpha float64, x []float64, incX int, y []float64, incY int)
- func (Implementation) Dcopy(n int, x []float64, incX int, y []float64, incY int)
- func (Implementation) Ddot(n int, x []float64, incX int, y []float64, incY int) float64
- func (Implementation) Dgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float64, a []float64, lda int, ...)
- func (Implementation) Dgemm(tA, tB blas.Transpose, m, n, k int, alpha float64, a []float64, lda int, ...)
- func (Implementation) Dgemv(tA blas.Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, ...)
- func (Implementation) Dger(m, n int, alpha float64, x []float64, incX int, y []float64, incY int, ...)
- func (Implementation) Dnrm2(n int, x []float64, incX int) float64
- func (Implementation) Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64)
- func (Implementation) Drotg(a, b float64) (c, s, r, z float64)
- func (Implementation) Drotm(n int, x []float64, incX int, y []float64, incY int, p blas.DrotmParams)
- func (Implementation) Drotmg(d1, d2, x1, y1 float64) (p blas.DrotmParams, rd1, rd2, rx1 float64)
- func (Implementation) Dsbmv(ul blas.Uplo, n, k int, alpha float64, a []float64, lda int, x []float64, ...)
- func (Implementation) Dscal(n int, alpha float64, x []float64, incX int)
- func (Implementation) Dsdot(n int, x []float32, incX int, y []float32, incY int) float64
- func (Implementation) Dspmv(ul blas.Uplo, n int, alpha float64, a []float64, x []float64, incX int, ...)
- func (Implementation) Dspr(ul blas.Uplo, n int, alpha float64, x []float64, incX int, a []float64)
- func (Implementation) Dspr2(ul blas.Uplo, n int, alpha float64, x []float64, incX int, y []float64, ...)
- func (Implementation) Dswap(n int, x []float64, incX int, y []float64, incY int)
- func (Implementation) Dsymm(s blas.Side, ul blas.Uplo, m, n int, alpha float64, a []float64, lda int, ...)
- func (Implementation) Dsymv(ul blas.Uplo, n int, alpha float64, a []float64, lda int, x []float64, ...)
- func (Implementation) Dsyr(ul blas.Uplo, n int, alpha float64, x []float64, incX int, a []float64, ...)
- func (Implementation) Dsyr2(ul blas.Uplo, n int, alpha float64, x []float64, incX int, y []float64, ...)
- func (Implementation) Dsyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, ...)
- func (Implementation) Dsyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, ...)
- func (Implementation) Dtbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float64, lda int, ...)
- func (Implementation) Dtbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float64, lda int, ...)
- func (Implementation) Dtpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float64, x []float64, ...)
- func (Implementation) Dtpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float64, x []float64, ...)
- func (Implementation) Dtrmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, ...)
- func (Implementation) Dtrmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float64, lda int, ...)
- func (Implementation) Dtrsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, ...)
- func (Implementation) Dtrsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float64, lda int, ...)
- func (Implementation) Idamax(n int, x []float64, incX int) int
- func (Implementation) Isamax(n int, x []float32, incX int) int
- func (Implementation) Sasum(n int, x []float32, incX int) float32
- func (Implementation) Saxpy(n int, alpha float32, x []float32, incX int, y []float32, incY int)
- func (Implementation) Scopy(n int, x []float32, incX int, y []float32, incY int)
- func (Implementation) Sdot(n int, x []float32, incX int, y []float32, incY int) float32
- func (Implementation) Sdsdot(n int, alpha float32, x []float32, incX int, y []float32, incY int) float32
- func (Implementation) Sgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, ...)
- func (Implementation) Sgemm(tA, tB blas.Transpose, m, n, k int, alpha float32, a []float32, lda int, ...)
- func (Implementation) Sgemv(tA blas.Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, ...)
- func (Implementation) Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, ...)
- func (Implementation) Snrm2(n int, x []float32, incX int) float32
- func (Implementation) Srot(n int, x []float32, incX int, y []float32, incY int, c float32, s float32)
- func (Implementation) Srotg(a, b float32) (c, s, r, z float32)
- func (Implementation) Srotm(n int, x []float32, incX int, y []float32, incY int, p blas.SrotmParams)
- func (Implementation) Srotmg(d1, d2, x1, y1 float32) (p blas.SrotmParams, rd1, rd2, rx1 float32)
- func (Implementation) Ssbmv(ul blas.Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, ...)
- func (Implementation) Sscal(n int, alpha float32, x []float32, incX int)
- func (Implementation) Sspmv(ul blas.Uplo, n int, alpha float32, a []float32, x []float32, incX int, ...)
- func (Implementation) Sspr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32)
- func (Implementation) Sspr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, ...)
- func (Implementation) Sswap(n int, x []float32, incX int, y []float32, incY int)
- func (Implementation) Ssymm(s blas.Side, ul blas.Uplo, m, n int, alpha float32, a []float32, lda int, ...)
- func (Implementation) Ssymv(ul blas.Uplo, n int, alpha float32, a []float32, lda int, x []float32, ...)
- func (Implementation) Ssyr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32, ...)
- func (Implementation) Ssyr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, ...)
- func (Implementation) Ssyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, ...)
- func (Implementation) Ssyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, ...)
- func (Implementation) Stbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, ...)
- func (Implementation) Stbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, ...)
- func (Implementation) Stpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, ...)
- func (Implementation) Stpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, ...)
- func (Implementation) Strmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, ...)
- func (Implementation) Strmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, ...)
- func (Implementation) Strsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, ...)
- func (Implementation) Strsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, ...)
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Implementation ¶
type Implementation struct{}
func (Implementation) Dasum ¶
func (Implementation) Dasum(n int, x []float64, incX int) float64
Dasum computes the sum of the absolute values of the elements of x.
\sum_i |x[i]|
Dasum returns 0 if incX is negative.
func (Implementation) Dcopy ¶
Dcopy copies the elements of x into the elements of y.
y[i] = x[i] for all i
func (Implementation) Dgbmv ¶
func (Implementation) Dgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dgbmv computes
y = alpha * A * x + beta * y if tA == blas.NoTrans y = alpha * A^T * x + beta * y if tA == blas.Trans or blas.ConjTrans
where a is an m×n band matrix kL subdiagonals and kU super-diagonals, and m and n refer to the size of the full dense matrix it represents. x and y are vectors, and alpha and beta are scalars.
func (Implementation) Dgemm ¶
func (Implementation) Dgemm(tA, tB blas.Transpose, m, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
Dgemm computes
C = beta * C + alpha * A * B,
where A, B, and C are dense matrices, and alpha and beta are scalars. tA and tB specify whether A or B are transposed.
func (Implementation) Dgemv ¶
func (Implementation) Dgemv(tA blas.Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dgemv computes
y = alpha * a * x + beta * y if tA = blas.NoTrans y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func (Implementation) Dger ¶
func (Implementation) Dger(m, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64, lda int)
Dger performs the rank-one operation
A += alpha * x * y^T
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func (Implementation) Dnrm2 ¶
func (Implementation) Dnrm2(n int, x []float64, incX int) float64
Dnrm2 computes the Euclidean norm of a vector,
sqrt(\sum_i x[i] * x[i]).
This function returns 0 if incX is negative.
func (Implementation) Drot ¶
func (Implementation) Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64)
Drot applies a plane transformation.
x[i] = c * x[i] + s * y[i] y[i] = c * y[i] - s * x[i]
func (Implementation) Drotg ¶
func (Implementation) Drotg(a, b float64) (c, s, r, z float64)
Drotg computes the plane rotation
_ _ _ _ _ _ | c s | | a | | r | | -s c | * | b | = | 0 | ‾ ‾ ‾ ‾ ‾ ‾
where
r = ±√(a^2 + b^2) c = a/r, the cosine of the plane rotation s = b/r, the sine of the plane rotation
NOTE: There is a discrepancy between the refence implementation and the BLAS technical manual regarding the sign for r when a or b are zero. Drotg agrees with the definition in the manual and other common BLAS implementations.
func (Implementation) Drotm ¶
func (Implementation) Drotm(n int, x []float64, incX int, y []float64, incY int, p blas.DrotmParams)
Drotm applies the modified Givens rotation to the 2×n matrix.
func (Implementation) Drotmg ¶
func (Implementation) Drotmg(d1, d2, x1, y1 float64) (p blas.DrotmParams, rd1, rd2, rx1 float64)
Drotmg computes the modified Givens rotation. See http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html for more details.
func (Implementation) Dsbmv ¶
func (Implementation) Dsbmv(ul blas.Uplo, n, k int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dsbmv performs
y = alpha * A * x + beta * y
where A is an n×n symmetric banded matrix, x and y are vectors, and alpha and beta are scalars.
func (Implementation) Dscal ¶
func (Implementation) Dscal(n int, alpha float64, x []float64, incX int)
Dscal scales x by alpha.
x[i] *= alpha
Dscal has no effect if incX < 0.
func (Implementation) Dsdot ¶
Dsdot computes the dot product of the two vectors
\sum_i x[i]*y[i]
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Dspmv ¶
func (Implementation) Dspmv(ul blas.Uplo, n int, alpha float64, a []float64, x []float64, incX int, beta float64, y []float64, incY int)
Dspmv performs
y = alpha * A * x + beta * y,
where A is an n×n symmetric matrix in packed format, x and y are vectors and alpha and beta are scalars.
func (Implementation) Dspr ¶
Dspr computes the rank-one operation
a += alpha * x * x^T
where a is an n×n symmetric matrix in packed format, x is a vector, and alpha is a scalar.
func (Implementation) Dspr2 ¶
func (Implementation) Dspr2(ul blas.Uplo, n int, alpha float64, x []float64, incX int, y []float64, incY int, ap []float64)
Dspr2 performs the symmetric rank-2 update
A += alpha * x * y^T + alpha * y * x^T,
where A is an n×n symmetric matrix in packed format, x and y are vectors, and alpha is a scalar.
func (Implementation) Dswap ¶
Dswap exchanges the elements of two vectors.
x[i], y[i] = y[i], x[i] for all i
func (Implementation) Dsymm ¶
func (Implementation) Dsymm(s blas.Side, ul blas.Uplo, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
Dsymm performs one of
C = alpha * A * B + beta * C, if side == blas.Left, C = alpha * B * A + beta * C, if side == blas.Right,
where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha is a scalar.
func (Implementation) Dsymv ¶
func (Implementation) Dsymv(ul blas.Uplo, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int)
Dsymv computes
y = alpha * A * x + beta * y,
where a is an n×n symmetric matrix, x and y are vectors, and alpha and beta are scalars.
func (Implementation) Dsyr ¶
func (Implementation) Dsyr(ul blas.Uplo, n int, alpha float64, x []float64, incX int, a []float64, lda int)
Dsyr performs the rank-one update
a += alpha * x * x^T
where a is an n×n symmetric matrix, and x is a vector.
func (Implementation) Dsyr2 ¶
func (Implementation) Dsyr2(ul blas.Uplo, n int, alpha float64, x []float64, incX int, y []float64, incY int, a []float64, lda int)
Dsyr2 performs the symmetric rank-two update
A += alpha * x * y^T + alpha * y * x^T
where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
func (Implementation) Dsyr2k ¶
func (Implementation) Dsyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int)
Dsyr2k performs the symmetric rank 2k operation
C = alpha * A * B^T + alpha * B * A^T + beta * C
where C is an n×n symmetric matrix. A and B are n×k matrices if tA == NoTrans and k×n otherwise. alpha and beta are scalars.
func (Implementation) Dsyrk ¶
func (Implementation) Dsyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, beta float64, c []float64, ldc int)
Dsyrk performs the symmetric rank-k operation
C = alpha * A * A^T + beta*C
C is an n×n symmetric matrix. A is an n×k matrix if tA == blas.NoTrans, and a k×n matrix otherwise. alpha and beta are scalars.
func (Implementation) Dtbmv ¶
func (Implementation) Dtbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float64, lda int, x []float64, incX int)
Dtbmv computes
x = A * x if tA == blas.NoTrans x = A^T * x if tA == blas.Trans or blas.ConjTrans
where A is an n×n triangular banded matrix with k diagonals, and x is a vector.
func (Implementation) Dtbsv ¶
func (Implementation) Dtbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float64, lda int, x []float64, incX int)
Dtbsv solves
A * x = b
where A is an n×n triangular banded matrix with k diagonals in packed format, and x is a vector. At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
func (Implementation) Dtpmv ¶
func (Implementation) Dtpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float64, x []float64, incX int)
Dtpmv computes
x = A * x if tA == blas.NoTrans x = A^T * x if tA == blas.Trans or blas.ConjTrans
where A is an n×n unit triangular matrix in packed format, and x is a vector.
func (Implementation) Dtpsv ¶
func (Implementation) Dtpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float64, x []float64, incX int)
Dtpsv solves
A * x = b if tA == blas.NoTrans A^T * x = b if tA == blas.Trans or blas.ConjTrans
where A is an n×n triangular matrix in packed format and x is a vector. At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
func (Implementation) Dtrmm ¶
func (Implementation) Dtrmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int)
Dtrmm performs
B = alpha * A * B, if tA == blas.NoTrans and side == blas.Left, B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Left, B = alpha * B * A, if tA == blas.NoTrans and side == blas.Right, B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and side == blas.Right,
where A is an n×n or m×m triangular matrix, and B is an m×n matrix.
func (Implementation) Dtrmv ¶
func (Implementation) Dtrmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float64, lda int, x []float64, incX int)
Dtrmv computes
x = A * x if tA == blas.NoTrans x = A^T * x if tA == blas.Trans or blas.ConjTrans
A is an n×n Triangular matrix and x is a vector.
func (Implementation) Dtrsm ¶
func (Implementation) Dtrsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int)
Dtrsm solves
A * X = alpha * B, if tA == blas.NoTrans side == blas.Left, A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Left, X * A = alpha * B, if tA == blas.NoTrans side == blas.Right, X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Right,
where A is an n×n or m×m triangular matrix, X is an m×n matrix, and alpha is a scalar.
At entry to the function, X contains the values of B, and the result is stored in place into X.
No check is made that A is invertible.
func (Implementation) Dtrsv ¶
func (Implementation) Dtrsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float64, lda int, x []float64, incX int)
Dtrsv solves
A * x = b if tA == blas.NoTrans A^T * x = b if tA == blas.Trans or blas.ConjTrans
A is an n×n triangular matrix and x is a vector. At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
func (Implementation) Idamax ¶
func (Implementation) Idamax(n int, x []float64, incX int) int
Idamax returns the index of an element of x with the largest absolute value. If there are multiple such indices the earliest is returned. Idamax returns -1 if n == 0.
func (Implementation) Isamax ¶
func (Implementation) Isamax(n int, x []float32, incX int) int
Isamax returns the index of an element of x with the largest absolute value. If there are multiple such indices the earliest is returned. Isamax returns -1 if n == 0.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sasum ¶
func (Implementation) Sasum(n int, x []float32, incX int) float32
Sasum computes the sum of the absolute values of the elements of x.
\sum_i |x[i]|
Sasum returns 0 if incX is negative.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Saxpy ¶
Saxpy adds alpha times x to y
y[i] += alpha * x[i] for all i
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Scopy ¶
Scopy copies the elements of x into the elements of y.
y[i] = x[i] for all i
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sdot ¶
Sdot computes the dot product of the two vectors
\sum_i x[i]*y[i]
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sdsdot ¶
func (Implementation) Sdsdot(n int, alpha float32, x []float32, incX int, y []float32, incY int) float32
Sdsdot computes the dot product of the two vectors plus a constant
alpha + \sum_i x[i]*y[i]
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgbmv ¶
func (Implementation) Sgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Sgbmv computes
y = alpha * A * x + beta * y if tA == blas.NoTrans y = alpha * A^T * x + beta * y if tA == blas.Trans or blas.ConjTrans
where a is an m×n band matrix kL subdiagonals and kU super-diagonals, and m and n refer to the size of the full dense matrix it represents. x and y are vectors, and alpha and beta are scalars.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgemm ¶
func (Implementation) Sgemm(tA, tB blas.Transpose, m, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
Sgemm computes
C = beta * C + alpha * A * B,
where A, B, and C are dense matrices, and alpha and beta are scalars. tA and tB specify whether A or B are transposed.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgemv ¶
func (Implementation) Sgemv(tA blas.Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Sgemv computes
y = alpha * a * x + beta * y if tA = blas.NoTrans y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sger ¶
func (Implementation) Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int)
Sger performs the rank-one operation
A += alpha * x * y^T
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Snrm2 ¶
func (Implementation) Snrm2(n int, x []float32, incX int) float32
Snrm2 computes the Euclidean norm of a vector,
sqrt(\sum_i x[i] * x[i]).
This function returns 0 if incX is negative.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srot ¶
func (Implementation) Srot(n int, x []float32, incX int, y []float32, incY int, c float32, s float32)
Srot applies a plane transformation.
x[i] = c * x[i] + s * y[i] y[i] = c * y[i] - s * x[i]
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srotg ¶
func (Implementation) Srotg(a, b float32) (c, s, r, z float32)
Srotg computes the plane rotation
_ _ _ _ _ _ | c s | | a | | r | | -s c | * | b | = | 0 | ‾ ‾ ‾ ‾ ‾ ‾
where
r = ±√(a^2 + b^2) c = a/r, the cosine of the plane rotation s = b/r, the sine of the plane rotation
NOTE: There is a discrepancy between the refence implementation and the BLAS technical manual regarding the sign for r when a or b are zero. Srotg agrees with the definition in the manual and other common BLAS implementations.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srotm ¶
func (Implementation) Srotm(n int, x []float32, incX int, y []float32, incY int, p blas.SrotmParams)
Srotm applies the modified Givens rotation to the 2×n matrix.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Srotmg ¶
func (Implementation) Srotmg(d1, d2, x1, y1 float32) (p blas.SrotmParams, rd1, rd2, rx1 float32)
Srotmg computes the modified Givens rotation. See http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html for more details.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssbmv ¶
func (Implementation) Ssbmv(ul blas.Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Ssbmv performs
y = alpha * A * x + beta * y
where A is an n×n symmetric banded matrix, x and y are vectors, and alpha and beta are scalars.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sscal ¶
func (Implementation) Sscal(n int, alpha float32, x []float32, incX int)
Sscal scales x by alpha.
x[i] *= alpha
Sscal has no effect if incX < 0.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sspmv ¶
func (Implementation) Sspmv(ul blas.Uplo, n int, alpha float32, a []float32, x []float32, incX int, beta float32, y []float32, incY int)
Sspmv performs
y = alpha * A * x + beta * y,
where A is an n×n symmetric matrix in packed format, x and y are vectors and alpha and beta are scalars.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sspr ¶
Sspr computes the rank-one operation
a += alpha * x * x^T
where a is an n×n symmetric matrix in packed format, x is a vector, and alpha is a scalar.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sspr2 ¶
func (Implementation) Sspr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, ap []float32)
Sspr2 performs the symmetric rank-2 update
A += alpha * x * y^T + alpha * y * x^T,
where A is an n×n symmetric matrix in packed format, x and y are vectors, and alpha is a scalar.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sswap ¶
Sswap exchanges the elements of two vectors.
x[i], y[i] = y[i], x[i] for all i
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssymm ¶
func (Implementation) Ssymm(s blas.Side, ul blas.Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
Ssymm performs one of
C = alpha * A * B + beta * C, if side == blas.Left, C = alpha * B * A + beta * C, if side == blas.Right,
where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha is a scalar.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssymv ¶
func (Implementation) Ssymv(ul blas.Uplo, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int)
Ssymv computes
y = alpha * A * x + beta * y,
where a is an n×n symmetric matrix, x and y are vectors, and alpha and beta are scalars.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr ¶
func (Implementation) Ssyr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32, lda int)
Ssyr performs the rank-one update
a += alpha * x * x^T
where a is an n×n symmetric matrix, and x is a vector.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr2 ¶
func (Implementation) Ssyr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int)
Ssyr2 performs the symmetric rank-two update
A += alpha * x * y^T + alpha * y * x^T
where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr2k ¶
func (Implementation) Ssyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int)
Ssyr2k performs the symmetric rank 2k operation
C = alpha * A * B^T + alpha * B * A^T + beta * C
where C is an n×n symmetric matrix. A and B are n×k matrices if tA == NoTrans and k×n otherwise. alpha and beta are scalars.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyrk ¶
func (Implementation) Ssyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int)
Ssyrk performs the symmetric rank-k operation
C = alpha * A * A^T + beta*C
C is an n×n symmetric matrix. A is an n×k matrix if tA == blas.NoTrans, and a k×n matrix otherwise. alpha and beta are scalars.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stbmv ¶
func (Implementation) Stbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int)
Stbmv computes
x = A * x if tA == blas.NoTrans x = A^T * x if tA == blas.Trans or blas.ConjTrans
where A is an n×n triangular banded matrix with k diagonals, and x is a vector.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stbsv ¶
func (Implementation) Stbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int)
Stbsv solves
A * x = b
where A is an n×n triangular banded matrix with k diagonals in packed format, and x is a vector. At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stpmv ¶
func (Implementation) Stpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int)
Stpmv computes
x = A * x if tA == blas.NoTrans x = A^T * x if tA == blas.Trans or blas.ConjTrans
where A is an n×n unit triangular matrix in packed format, and x is a vector.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stpsv ¶
func (Implementation) Stpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int)
Stpsv solves
A * x = b if tA == blas.NoTrans A^T * x = b if tA == blas.Trans or blas.ConjTrans
where A is an n×n triangular matrix in packed format and x is a vector. At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strmm ¶
func (Implementation) Strmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int)
Strmm performs
B = alpha * A * B, if tA == blas.NoTrans and side == blas.Left, B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Left, B = alpha * B * A, if tA == blas.NoTrans and side == blas.Right, B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and side == blas.Right,
where A is an n×n or m×m triangular matrix, and B is an m×n matrix.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strmv ¶
func (Implementation) Strmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int)
Strmv computes
x = A * x if tA == blas.NoTrans x = A^T * x if tA == blas.Trans or blas.ConjTrans
A is an n×n Triangular matrix and x is a vector.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strsm ¶
func (Implementation) Strsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int)
Strsm solves
A * X = alpha * B, if tA == blas.NoTrans side == blas.Left, A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Left, X * A = alpha * B, if tA == blas.NoTrans side == blas.Right, X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Right,
where A is an n×n or m×m triangular matrix, X is an m×n matrix, and alpha is a scalar.
At entry to the function, X contains the values of B, and the result is stored in place into X.
No check is made that A is invertible.
Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strsv ¶
func (Implementation) Strsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int)
Strsv solves
A * x = b if tA == blas.NoTrans A^T * x = b if tA == blas.Trans or blas.ConjTrans
A is an n×n triangular matrix and x is a vector. At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Float32 implementations are autogenerated and not directly tested.