Documentation ¶
Overview ¶
Package blas32 provides a simple interface to the float32 BLAS API.
Index ¶
- func Asum(n int, x Vector) float32
- func Axpy(n int, alpha float32, x, y Vector)
- func Copy(n int, x, y Vector)
- func DDot(n int, x, y Vector) float64
- func Dot(n int, x, y Vector) float32
- func Gbmv(t blas.Transpose, alpha float32, a Band, x Vector, beta float32, y Vector)
- func Gemm(tA, tB blas.Transpose, alpha float32, a, b General, beta float32, c General)
- func Gemv(t blas.Transpose, alpha float32, a General, x Vector, beta float32, y Vector)
- func Ger(alpha float32, x, y Vector, a General)
- func Iamax(n int, x Vector) int
- func Implementation() blas.Float32
- func Nrm2(n int, x Vector) float32
- func Rot(n int, x, y Vector, c, s float32)
- func Rotg(a, b float32) (c, s, r, z float32)
- func Rotm(n int, x, y Vector, p blas.SrotmParams)
- func Rotmg(d1, d2, b1, b2 float32) (p blas.SrotmParams, rd1, rd2, rb1 float32)
- func SDDot(n int, alpha float32, x, y Vector) float32
- func Sbmv(alpha float32, a SymmetricBand, x Vector, beta float32, y Vector)
- func Scal(n int, alpha float32, x Vector)
- func Spmv(alpha float32, a SymmetricPacked, x Vector, beta float32, y Vector)
- func Spr(alpha float32, x Vector, a SymmetricPacked)
- func Spr2(alpha float32, x, y Vector, a SymmetricPacked)
- func Swap(n int, x, y Vector)
- func Symm(s blas.Side, alpha float32, a Symmetric, b General, beta float32, c General)
- func Symv(alpha float32, a Symmetric, x Vector, beta float32, y Vector)
- func Syr(alpha float32, x Vector, a Symmetric)
- func Syr2(alpha float32, x, y Vector, a Symmetric)
- func Syr2k(t blas.Transpose, alpha float32, a, b General, beta float32, c Symmetric)
- func Syrk(t blas.Transpose, alpha float32, a General, beta float32, c Symmetric)
- func Tbmv(t blas.Transpose, a TriangularBand, x Vector)
- func Tbsv(t blas.Transpose, a TriangularBand, x Vector)
- func Tpmv(t blas.Transpose, a TriangularPacked, x Vector)
- func Tpsv(t blas.Transpose, a TriangularPacked, x Vector)
- func Trmm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General)
- func Trmv(t blas.Transpose, a Triangular, x Vector)
- func Trsm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General)
- func Trsv(t blas.Transpose, a Triangular, x Vector)
- func Use(b blas.Float32)
- type Band
- type General
- type Symmetric
- type SymmetricBand
- type SymmetricPacked
- type Triangular
- type TriangularBand
- type TriangularPacked
- type Vector
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Asum ¶
Asum computes the sum of the absolute values of the elements of x:
\sum_i |x[i]|.
Asum will panic if the vector increment is negative.
func Gbmv ¶
Gbmv computes
y = alpha * A * x + beta * y, if t == blas.NoTrans, y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
func Gemm ¶
Gemm computes
C = alpha * A * B + beta * C,
where A, B, and C are dense matrices, and alpha and beta are scalars. tA and tB specify whether A or B are transposed.
func Gemv ¶
Gemv computes
y = alpha * A * x + beta * y, if t == blas.NoTrans, y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Ger ¶
Ger performs a rank-1 update
A += alpha * x * y^T,
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Iamax ¶
Iamax returns the index of an element of x with the largest absolute value. If there are multiple such indices the earliest is returned. Iamax returns -1 if n == 0.
Iamax will panic if the vector increment is negative.
func Implementation ¶
Implementation returns the current BLAS float32 implementation.
Implementation allows direct calls to the current the BLAS float32 implementation giving finer control of parameters.
func Nrm2 ¶
Nrm2 computes the Euclidean norm of the vector x:
sqrt(\sum_i x[i]*x[i]).
Nrm2 will panic if the vector increment is negative.
func Rot ¶
Rot applies a plane transformation to n points represented by the vectors x and y:
x[i] = c*x[i] + s*y[i], y[i] = -s*x[i] + c*y[i], for all i.
func Rotg ¶
Rotg computes the parameters of a Givens plane rotation so that
⎡ c s⎤ ⎡a⎤ ⎡r⎤ ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
where a and b are the Cartesian coordinates of a given point. c, s, and r are defined as
r = ±Sqrt(a^2 + b^2), c = a/r, the cosine of the rotation angle, s = a/r, the sine of the rotation angle,
and z is defined such that
if |a| > |b|, z = s, otherwise if c != 0, z = 1/c, otherwise z = 1.
func Rotm ¶
func Rotm(n int, x, y Vector, p blas.SrotmParams)
Rotm applies the modified Givens rotation to n points represented by the vectors x and y.
func Rotmg ¶
func Rotmg(d1, d2, b1, b2 float32) (p blas.SrotmParams, rd1, rd2, rb1 float32)
Rotmg computes the modified Givens rotation. See http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html for more details.
func SDDot ¶
SDDot computes the dot product of the two vectors adding a constant:
alpha + \sum_i x[i]*y[i].
func Sbmv ¶
func Sbmv(alpha float32, a SymmetricBand, x Vector, beta float32, y Vector)
Sbmv performs
y = alpha * A * x + beta * y,
where A is an n×n symmetric band matrix, x and y are vectors, and alpha and beta are scalars.
func Scal ¶
Scal scales the vector x by alpha:
x[i] *= alpha for all i.
Scal will panic if the vector increment is negative.
func Spmv ¶
func Spmv(alpha float32, a SymmetricPacked, x Vector, beta float32, y Vector)
Spmv performs
y = alpha * A * x + beta * y,
where A is an n×n symmetric matrix in packed format, x and y are vectors, and alpha and beta are scalars.
func Spr ¶
func Spr(alpha float32, x Vector, a SymmetricPacked)
Spr performs the rank-1 update
A += alpha * x * x^T,
where A is an n×n symmetric matrix in packed format, x is a vector, and alpha is a scalar.
func Spr2 ¶
func Spr2(alpha float32, x, y Vector, a SymmetricPacked)
Spr2 performs a rank-2 update
A += alpha * x * y^T + alpha * y * x^T,
where A is an n×n symmetric matrix in packed format, x and y are vectors, and alpha is a scalar.
func Symm ¶
Symm performs
C = alpha * A * B + beta * C, if s == blas.Left, C = alpha * B * A + beta * C, if s == blas.Right,
where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha is a scalar.
func Symv ¶
Symv computes
y = alpha * A * x + beta * y,
where A is an n×n symmetric matrix, x and y are vectors, and alpha and beta are scalars.
func Syr ¶
Syr performs a rank-1 update
A += alpha * x * x^T,
where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
func Syr2 ¶
Syr2 performs a rank-2 update
A += alpha * x * y^T + alpha * y * x^T,
where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
func Syr2k ¶
Syr2k performs a symmetric rank-2k update
C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans, C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans and k×n matrices otherwise, and alpha and beta are scalars.
func Syrk ¶
Syrk performs a symmetric rank-k update
C = alpha * A * A^T + beta * C, if t == blas.NoTrans, C = alpha * A^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and a k×n matrix otherwise, and alpha and beta are scalars.
func Tbmv ¶
func Tbmv(t blas.Transpose, a TriangularBand, x Vector)
Tbmv computes
x = A * x, if t == blas.NoTrans, x = A^T * x, if t == blas.Trans or blas.ConjTrans,
where A is an n×n triangular band matrix, and x is a vector.
func Tbsv ¶
func Tbsv(t blas.Transpose, a TriangularBand, x Vector)
Tbsv solves
A * x = b, if t == blas.NoTrans, A^T * x = b, if t == blas.Trans or blas.ConjTrans,
where A is an n×n triangular band matrix, and x and b are vectors.
At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
func Tpmv ¶
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector)
Tpmv computes
x = A * x, if t == blas.NoTrans, x = A^T * x, if t == blas.Trans or blas.ConjTrans,
where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpsv ¶
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector)
Tpsv solves
A * x = b, if t == blas.NoTrans, A^T * x = b, if t == blas.Trans or blas.ConjTrans,
where A is an n×n triangular matrix in packed format, and x and b are vectors.
At entry to the function, x contains the values of b, and the result is stored in place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
func Trmm ¶
Trmm performs
B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left, B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left, B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right, B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
func Trmv ¶
func Trmv(t blas.Transpose, a Triangular, x Vector)
Trmv computes
x = A * x, if t == blas.NoTrans, x = A^T * x, if t == blas.Trans or blas.ConjTrans,
where A is an n×n triangular matrix, and x is a vector.
func Trsm ¶
Trsm solves
A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left, A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left, X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right, X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a scalar.
At entry to the function, X contains the values of B, and the result is stored in-place into X.
No check is made that A is invertible.
func Trsv ¶
func Trsv(t blas.Transpose, a Triangular, x Vector)
Trsv solves
A * x = b, if t == blas.NoTrans, A^T * x = b, if t == blas.Trans or blas.ConjTrans,
where A is an n×n triangular matrix, and x and b are vectors.
At entry to the function, x contains the values of b, and the result is stored in-place into x.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Types ¶
type SymmetricBand ¶
SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricPacked ¶
SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type Triangular ¶
Triangular represents a triangular matrix using the conventional storage scheme.
type TriangularBand ¶
TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularPacked ¶
TriangularPacked represents a triangular matrix using the packed storage scheme.