Documentation ¶
Overview ¶
Package distuv provides univariate random distribution types.
Index ¶
- Variables
- type Bernoulli
- func (b Bernoulli) CDF(x float64) float64
- func (b Bernoulli) Entropy() float64
- func (b Bernoulli) ExKurtosis() float64
- func (b Bernoulli) LogProb(x float64) float64
- func (b Bernoulli) Mean() float64
- func (b Bernoulli) Median() float64
- func (Bernoulli) NumParameters() int
- func (b Bernoulli) Prob(x float64) float64
- func (b Bernoulli) Quantile(p float64) float64
- func (b Bernoulli) Rand() float64
- func (b Bernoulli) Skewness() float64
- func (b Bernoulli) StdDev() float64
- func (b Bernoulli) Survival(x float64) float64
- func (b Bernoulli) Variance() float64
- type Beta
- func (b Beta) CDF(x float64) float64
- func (b Beta) ExKurtosis() float64
- func (b Beta) LogProb(x float64) float64
- func (b Beta) Mean() float64
- func (b Beta) Mode() float64
- func (b Beta) NumParameters() int
- func (b Beta) Prob(x float64) float64
- func (b Beta) Quantile(p float64) float64
- func (b Beta) Rand() float64
- func (b Beta) StdDev() float64
- func (b Beta) Survival(x float64) float64
- func (b Beta) Variance() float64
- type Categorical
- func (c Categorical) CDF(x float64) float64
- func (c Categorical) Entropy() float64
- func (c Categorical) Len() int
- func (c Categorical) LogProb(x float64) float64
- func (c Categorical) Mean() float64
- func (c Categorical) Prob(x float64) float64
- func (c Categorical) Rand() float64
- func (c Categorical) Reweight(idx int, w float64)
- func (c Categorical) ReweightAll(w []float64)
- type ChiSquared
- func (c ChiSquared) CDF(x float64) float64
- func (c ChiSquared) ExKurtosis() float64
- func (c ChiSquared) LogProb(x float64) float64
- func (c ChiSquared) Mean() float64
- func (c ChiSquared) Mode() float64
- func (c ChiSquared) NumParameters() int
- func (c ChiSquared) Prob(x float64) float64
- func (c ChiSquared) Quantile(p float64) float64
- func (c ChiSquared) Rand() float64
- func (c ChiSquared) StdDev() float64
- func (c ChiSquared) Survival(x float64) float64
- func (c ChiSquared) Variance() float64
- type Exponential
- func (e Exponential) CDF(x float64) float64
- func (e *Exponential) ConjugateUpdate(suffStat []float64, nSamples float64, priorStrength []float64)
- func (e Exponential) Entropy() float64
- func (Exponential) ExKurtosis() float64
- func (e *Exponential) Fit(samples, weights []float64)
- func (e Exponential) LogProb(x float64) float64
- func (e Exponential) Mean() float64
- func (e Exponential) Median() float64
- func (Exponential) Mode() float64
- func (Exponential) NumParameters() int
- func (Exponential) NumSuffStat() int
- func (e Exponential) Prob(x float64) float64
- func (e Exponential) Quantile(p float64) float64
- func (e Exponential) Rand() float64
- func (e Exponential) Score(deriv []float64, x float64) []float64
- func (e Exponential) ScoreInput(x float64) float64
- func (Exponential) Skewness() float64
- func (e Exponential) StdDev() float64
- func (Exponential) SuffStat(samples, weights, suffStat []float64) (nSamples float64)
- func (e Exponential) Survival(x float64) float64
- func (e Exponential) Variance() float64
- type F
- func (f F) CDF(x float64) float64
- func (f F) ExKurtosis() float64
- func (f F) LogProb(x float64) float64
- func (f F) Mean() float64
- func (f F) Mode() float64
- func (f F) NumParameters() int
- func (f F) Prob(x float64) float64
- func (f F) Quantile(p float64) float64
- func (f F) Rand() float64
- func (f F) Skewness() float64
- func (f F) StdDev() float64
- func (f F) Survival(x float64) float64
- func (f F) Variance() float64
- type Gamma
- func (g Gamma) CDF(x float64) float64
- func (g Gamma) ExKurtosis() float64
- func (g Gamma) LogProb(x float64) float64
- func (g Gamma) Mean() float64
- func (g Gamma) Mode() float64
- func (Gamma) NumParameters() int
- func (g Gamma) Prob(x float64) float64
- func (g Gamma) Quantile(p float64) float64
- func (g Gamma) Rand() float64
- func (g Gamma) StdDev() float64
- func (g Gamma) Survival(x float64) float64
- func (g Gamma) Variance() float64
- type Laplace
- func (l Laplace) CDF(x float64) float64
- func (l Laplace) Entropy() float64
- func (l Laplace) ExKurtosis() float64
- func (l *Laplace) Fit(samples, weights []float64)
- func (l Laplace) LogProb(x float64) float64
- func (l Laplace) MarshalParameters(p []Parameter)
- func (l Laplace) Mean() float64
- func (l Laplace) Median() float64
- func (l Laplace) Mode() float64
- func (l Laplace) NumParameters() int
- func (l Laplace) Prob(x float64) float64
- func (l Laplace) Quantile(p float64) float64
- func (l Laplace) Rand() float64
- func (l Laplace) Score(deriv []float64, x float64) []float64
- func (l Laplace) ScoreInput(x float64) float64
- func (Laplace) Skewness() float64
- func (l Laplace) StdDev() float64
- func (l Laplace) Survival(x float64) float64
- func (l *Laplace) UnmarshalParameters(p []Parameter)
- func (l Laplace) Variance() float64
- type LogNormal
- func (l LogNormal) CDF(x float64) float64
- func (l LogNormal) Entropy() float64
- func (l LogNormal) ExKurtosis() float64
- func (l LogNormal) LogProb(x float64) float64
- func (l LogNormal) Mean() float64
- func (l LogNormal) Median() float64
- func (l LogNormal) Mode() float64
- func (LogNormal) NumParameters() int
- func (l LogNormal) Prob(x float64) float64
- func (l LogNormal) Quantile(p float64) float64
- func (l LogNormal) Rand() float64
- func (l LogNormal) Skewness() float64
- func (l LogNormal) StdDev() float64
- func (l LogNormal) Survival(x float64) float64
- func (l LogNormal) Variance() float64
- type LogProber
- type Normal
- func (n Normal) CDF(x float64) float64
- func (n *Normal) ConjugateUpdate(suffStat []float64, nSamples float64, priorStrength []float64)
- func (n Normal) Entropy() float64
- func (Normal) ExKurtosis() float64
- func (n *Normal) Fit(samples, weights []float64)
- func (n Normal) LogProb(x float64) float64
- func (n Normal) Mean() float64
- func (n Normal) Median() float64
- func (n Normal) Mode() float64
- func (Normal) NumParameters() int
- func (Normal) NumSuffStat() int
- func (n Normal) Prob(x float64) float64
- func (n Normal) Quantile(p float64) float64
- func (n Normal) Rand() float64
- func (n Normal) Score(deriv []float64, x float64) []float64
- func (n Normal) ScoreInput(x float64) float64
- func (Normal) Skewness() float64
- func (n Normal) StdDev() float64
- func (Normal) SuffStat(samples, weights, suffStat []float64) (nSamples float64)
- func (n Normal) Survival(x float64) float64
- func (n Normal) Variance() float64
- type Parameter
- type Quantiler
- type RandLogProber
- type Rander
- type StudentsT
- func (s StudentsT) CDF(x float64) float64
- func (s StudentsT) LogProb(x float64) float64
- func (s StudentsT) Mean() float64
- func (s StudentsT) Mode() float64
- func (StudentsT) NumParameters() int
- func (s StudentsT) Prob(x float64) float64
- func (s StudentsT) Quantile(p float64) float64
- func (s StudentsT) Rand() float64
- func (s StudentsT) StdDev() float64
- func (s StudentsT) Survival(x float64) float64
- func (s StudentsT) Variance() float64
- type Uniform
- func (u Uniform) CDF(x float64) float64
- func (u Uniform) Entropy() float64
- func (Uniform) ExKurtosis() float64
- func (u Uniform) LogProb(x float64) float64
- func (u Uniform) MarshalParameters(p []Parameter)
- func (u Uniform) Mean() float64
- func (u Uniform) Median() float64
- func (Uniform) NumParameters() int
- func (u Uniform) Prob(x float64) float64
- func (u Uniform) Quantile(p float64) float64
- func (u Uniform) Rand() float64
- func (Uniform) Skewness() float64
- func (u Uniform) StdDev() float64
- func (u Uniform) Survival(x float64) float64
- func (u *Uniform) UnmarshalParameters(p []Parameter)
- func (u Uniform) Variance() float64
- type Weibull
- func (w Weibull) CDF(x float64) float64
- func (w Weibull) Entropy() float64
- func (w Weibull) ExKurtosis() float64
- func (w Weibull) LogCDF(x float64) complex128
- func (w Weibull) LogProb(x float64) float64
- func (w Weibull) LogSurvival(x float64) float64
- func (w Weibull) Mean() float64
- func (w Weibull) Median() float64
- func (w Weibull) Mode() float64
- func (Weibull) NumParameters() int
- func (w Weibull) Prob(x float64) float64
- func (w Weibull) Quantile(p float64) float64
- func (w Weibull) Rand() float64
- func (w Weibull) Score(deriv []float64, x float64) []float64
- func (w Weibull) ScoreInput(x float64) float64
- func (w Weibull) Skewness() float64
- func (w Weibull) StdDev() float64
- func (w Weibull) Survival(x float64) float64
- func (w Weibull) Variance() float64
Examples ¶
Constants ¶
This section is empty.
Variables ¶
var UnitNormal = Normal{Mu: 0, Sigma: 1}
UnitNormal is an instantiation of the normal distribution with Mu = 0 and Sigma = 1.
var UnitUniform = Uniform{Min: 0, Max: 1}
UnitUniform is an instantiation of the uniform distribution with Min = 0 and Max = 1.
Functions ¶
This section is empty.
Types ¶
type Bernoulli ¶
Bernoulli represents a random variable whose value is 1 with probability p and value of zero with probability 1-P. The value of P must be between 0 and 1. More information at https://en.wikipedia.org/wiki/Bernoulli_distribution.
func (Bernoulli) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (Bernoulli) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Bernoulli) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (Bernoulli) Quantile ¶
Quantile returns the inverse of the cumulative probability distribution.
type Beta ¶
type Beta struct { // Alpha is the left shape parameter of the distribution. Alpha must be greater // than 0. Alpha float64 // Beta is the right shape parameter of the distribution. Beta must be greater // than 0. Beta float64 Source *rand.Rand }
Beta implements the Beta distribution, a two-parameter continuous distribution with support between 0 and 1.
The beta distribution has density function
x^(α-1) * (1-x)^(β-1) * Γ(α+β) / (Γ(α)*Γ(β))
For more information, see https://en.wikipedia.org/wiki/Beta_distribution
func (Beta) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (Beta) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Beta) Mode ¶
Mode returns the mode of the distribution.
Mode returns NaN if either parameter is less than or equal to 1 as a special case.
func (Beta) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
type Categorical ¶
type Categorical struct {
// contains filtered or unexported fields
}
Categorical is an extension of the Bernouilli distribution where x takes values {0, 1, ..., len(w)-1} where w is the weight vector. Categorical must be initialized with NewCategorical.
func NewCategorical ¶
func NewCategorical(w []float64, src *rand.Rand) Categorical
NewCategorical constructs a new categorical distribution where the probability that x equals i is proportional to w[i]. All of the weights must be nonnegative, and at least one of the weights must be positive.
func (Categorical) CDF ¶
func (c Categorical) CDF(x float64) float64
CDF computes the value of the cumulative density function at x.
func (Categorical) Entropy ¶
func (c Categorical) Entropy() float64
Entropy returns the entropy of the distribution.
func (Categorical) Len ¶
func (c Categorical) Len() int
Len returns the number of values x could possibly take (the length of the initial supplied weight vector).
func (Categorical) LogProb ¶
func (c Categorical) LogProb(x float64) float64
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Categorical) Mean ¶
func (c Categorical) Mean() float64
Mean returns the mean of the probability distribution.
func (Categorical) Prob ¶
func (c Categorical) Prob(x float64) float64
Prob computes the value of the probability density function at x.
func (Categorical) Rand ¶
func (c Categorical) Rand() float64
Rand returns a random draw from the categorical distribution.
func (Categorical) Reweight ¶
func (c Categorical) Reweight(idx int, w float64)
Reweight sets the weight of item idx to w. The input weight must be non-negative, and after reweighting at least one of the weights must be positive.
func (Categorical) ReweightAll ¶
func (c Categorical) ReweightAll(w []float64)
ReweightAll resets the weights of the distribution. ReweightAll panics if len(w) != c.Len. All of the weights must be nonnegative, and at least one of the weights must be positive.
type ChiSquared ¶
type ChiSquared struct { // K is the shape parameter, corresponding to the degrees of freedom. Must // be greater than 0. K float64 Src *rand.Rand }
ChiSquared implements the χ² distribution, a one parameter distribution with support on the positive numbers.
The density function is given by
1/(2^{k/2} * Γ(k/2)) * x^{k/2 - 1} * e^{-x/2}
It is a special case of the Gamma distribution, Γ(k/2, 1/2).
For more information, see https://en.wikipedia.org/wiki/Chi-squared_distribution.
func (ChiSquared) CDF ¶
func (c ChiSquared) CDF(x float64) float64
CDF computes the value of the cumulative density function at x.
func (ChiSquared) ExKurtosis ¶
func (c ChiSquared) ExKurtosis() float64
ExKurtosis returns the excess kurtosis of the distribution.
func (ChiSquared) LogProb ¶
func (c ChiSquared) LogProb(x float64) float64
LogProb computes the natural logarithm of the value of the probability density function at x.
func (ChiSquared) Mean ¶
func (c ChiSquared) Mean() float64
Mean returns the mean of the probability distribution.
func (ChiSquared) Mode ¶
func (c ChiSquared) Mode() float64
Mode returns the mode of the distribution.
func (ChiSquared) NumParameters ¶
func (c ChiSquared) NumParameters() int
NumParameters returns the number of parameters in the distribution.
func (ChiSquared) Prob ¶
func (c ChiSquared) Prob(x float64) float64
Prob computes the value of the probability density function at x.
func (ChiSquared) Quantile ¶
func (c ChiSquared) Quantile(p float64) float64
Quantile returns the inverse of the cumulative distribution function.
func (ChiSquared) Rand ¶
func (c ChiSquared) Rand() float64
Rand returns a random sample drawn from the distribution.
func (ChiSquared) StdDev ¶
func (c ChiSquared) StdDev() float64
StdDev returns the standard deviation of the probability distribution.
func (ChiSquared) Survival ¶
func (c ChiSquared) Survival(x float64) float64
Survival returns the survival function (complementary CDF) at x.
func (ChiSquared) Variance ¶
func (c ChiSquared) Variance() float64
Variance returns the variance of the probability distribution.
type Exponential ¶
Exponential represents the exponential distribution (https://en.wikipedia.org/wiki/Exponential_distribution).
func (Exponential) CDF ¶
func (e Exponential) CDF(x float64) float64
CDF computes the value of the cumulative density function at x.
func (*Exponential) ConjugateUpdate ¶
func (e *Exponential) ConjugateUpdate(suffStat []float64, nSamples float64, priorStrength []float64)
ConjugateUpdate updates the parameters of the distribution from the sufficient statistics of a set of samples. The sufficient statistics, suffStat, have been observed with nSamples observations. The prior values of the distribution are those currently in the distribution, and have been observed with priorStrength samples.
For the exponential distribution, the sufficient statistic is the inverse of the mean of the samples. The prior is having seen priorStrength[0] samples with inverse mean Exponential.Rate As a result of this function, Exponential.Rate is updated based on the weighted samples, and priorStrength is modified to include the new number of samples observed.
This function panics if len(suffStat) != 1 or len(priorStrength) != 1.
func (Exponential) Entropy ¶
func (e Exponential) Entropy() float64
Entropy returns the entropy of the distribution.
func (Exponential) ExKurtosis ¶
func (Exponential) ExKurtosis() float64
ExKurtosis returns the excess kurtosis of the distribution.
func (*Exponential) Fit ¶
func (e *Exponential) Fit(samples, weights []float64)
Fit sets the parameters of the probability distribution from the data samples x with relative weights w. If weights is nil, then all the weights are 1. If weights is not nil, then the len(weights) must equal len(samples).
func (Exponential) LogProb ¶
func (e Exponential) LogProb(x float64) float64
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Exponential) Mean ¶
func (e Exponential) Mean() float64
Mean returns the mean of the probability distribution.
func (Exponential) Median ¶
func (e Exponential) Median() float64
Median returns the median of the probability distribution.
func (Exponential) Mode ¶
func (Exponential) Mode() float64
Mode returns the mode of the probability distribution.
func (Exponential) NumParameters ¶
func (Exponential) NumParameters() int
NumParameters returns the number of parameters in the distribution.
func (Exponential) NumSuffStat ¶
func (Exponential) NumSuffStat() int
NumSuffStat returns the number of sufficient statistics for the distribution.
func (Exponential) Prob ¶
func (e Exponential) Prob(x float64) float64
Prob computes the value of the probability density function at x.
func (Exponential) Quantile ¶
func (e Exponential) Quantile(p float64) float64
Quantile returns the inverse of the cumulative probability distribution.
func (Exponential) Rand ¶
func (e Exponential) Rand() float64
Rand returns a random sample drawn from the distribution.
func (Exponential) Score ¶
func (e Exponential) Score(deriv []float64, x float64) []float64
Score returns the score function with respect to the parameters of the distribution at the input location x. The score function is the derivative of the log-likelihood at x with respect to the parameters
(∂/∂θ) log(p(x;θ))
If deriv is non-nil, len(deriv) must equal the number of parameters otherwise Score will panic, and the derivative is stored in-place into deriv. If deriv is nil a new slice will be allocated and returned.
The order is [∂LogProb / ∂Rate].
For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
Special cases:
Score(0) = [NaN]
func (Exponential) ScoreInput ¶
func (e Exponential) ScoreInput(x float64) float64
ScoreInput returns the score function with respect to the input of the distribution at the input location specified by x. The score function is the derivative of the log-likelihood
(d/dx) log(p(x)) .
Special cases:
ScoreInput(0) = NaN
func (Exponential) Skewness ¶
func (Exponential) Skewness() float64
Skewness returns the skewness of the distribution.
func (Exponential) StdDev ¶
func (e Exponential) StdDev() float64
StdDev returns the standard deviation of the probability distribution.
func (Exponential) SuffStat ¶
func (Exponential) SuffStat(samples, weights, suffStat []float64) (nSamples float64)
SuffStat computes the sufficient statistics of set of samples to update the distribution. The sufficient statistics are stored in place, and the effective number of samples are returned.
The exponential distribution has one sufficient statistic, the average rate of the samples.
If weights is nil, the weights are assumed to be 1, otherwise panics if len(samples) != len(weights). Panics if len(suffStat) != NumSuffStat().
func (Exponential) Survival ¶
func (e Exponential) Survival(x float64) float64
Survival returns the survival function (complementary CDF) at x.
func (Exponential) Variance ¶
func (e Exponential) Variance() float64
Variance returns the variance of the probability distribution.
type F ¶
type F struct { D1 float64 // Degrees of freedom for the numerator D2 float64 // Degrees of freedom for the denominator Source *rand.Rand }
F implements the F-distribution, a two-parameter continuous distribution with support over the positive real numbers.
The F-distribution has density function
sqrt(((d1*x)^d1) * d2^d2 / ((d1*x+d2)^(d1+d2))) / (x * B(d1/2,d2/2))
where B is the beta function.
For more information, see https://en.wikipedia.org/wiki/F-distribution
func (F) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
ExKurtosis returns NaN if the D2 parameter is less or equal to 8.
func (F) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (F) Mean ¶
Mean returns the mean of the probability distribution.
Mean returns NaN if the D2 parameter is less than or equal to 2.
func (F) Mode ¶
Mode returns the mode of the distribution.
Mode returns NaN if the D1 parameter is less than or equal to 2.
func (F) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (F) Skewness ¶
Skewness returns the skewness of the distribution.
Skewness returns NaN if the D2 parameter is less than or equal to 6.
func (F) StdDev ¶
StdDev returns the standard deviation of the probability distribution.
StdDev returns NaN if the D2 parameter is less than or equal to 4.
type Gamma ¶
type Gamma struct { // Alpha is the shape parameter of the distribution. Alpha must be greater // than 0. If Alpha == 1, this is equivalent to an exponential distribution. Alpha float64 // Beta is the rate parameter of the distribution. Beta must be greater than 0. // If Beta == 2, this is equivalent to a Chi-Squared distribution. Beta float64 Source *rand.Rand }
Gamma implements the Gamma distribution, a two-parameter continuous distribution with support over the positive real numbers.
The gamma distribution has density function
β^α / Γ(α) x^(α-1)e^(-βx)
For more information, see https://en.wikipedia.org/wiki/Gamma_distribution
func (Gamma) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (Gamma) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Gamma) Mode ¶
Mode returns the mode of the normal distribution.
The mode is NaN in the special case where the Alpha (shape) parameter is less than 1.
func (Gamma) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (Gamma) Rand ¶
Rand returns a random sample drawn from the distribution.
Rand panics if either alpha or beta is <= 0.
type Laplace ¶
type Laplace struct { Mu float64 // Mean of the Laplace distribution Scale float64 // Scale of the Laplace distribution Source *rand.Rand }
Laplace represents the Laplace distribution (https://en.wikipedia.org/wiki/Laplace_distribution).
func (Laplace) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (*Laplace) Fit ¶
Fit sets the parameters of the probability distribution from the data samples x with relative weights w. If weights is nil, then all the weights are 1. If weights is not nil, then the len(weights) must equal len(samples).
Note: Laplace distribution has no FitPrior because it has no sufficient statistics.
func (Laplace) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Laplace) MarshalParameters ¶
MarshalParameters implements the ParameterMarshaler interface
func (Laplace) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (Laplace) Score ¶
Score returns the score function with respect to the parameters of the distribution at the input location x. The score function is the derivative of the log-likelihood at x with respect to the parameters
(∂/∂θ) log(p(x;θ))
If deriv is non-nil, len(deriv) must equal the number of parameters otherwise Score will panic, and the derivative is stored in-place into deriv. If deriv is nil a new slice will be allocated and returned.
The order is [∂LogProb / ∂Mu, ∂LogProb / ∂Scale].
For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
Special cases:
Score(0) = [0, -0.5/l.Scale]
func (Laplace) ScoreInput ¶
ScoreInput returns the score function with respect to the input of the distribution at the input location specified by x. The score function is the derivative of the log-likelihood
(d/dx) log(p(x)) .
Special cases:
ScoreInput(l.Mu) = 0
func (*Laplace) UnmarshalParameters ¶
UnmarshalParameters implements the ParameterMarshaler interface
type LogNormal ¶
LogNormal represents a random variable whose log is normally distributed. The probability density function is given by
1/(x σ √2π) exp(-(ln(x)-μ)^2)/(2σ^2))
func (LogNormal) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (LogNormal) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (LogNormal) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (LogNormal) Quantile ¶
Quantile returns the inverse of the cumulative probability distribution.
type Normal ¶
type Normal struct { Mu float64 // Mean of the normal distribution Sigma float64 // Standard deviation of the normal distribution Source *rand.Rand }
Normal respresents a normal (Gaussian) distribution (https://en.wikipedia.org/wiki/Normal_distribution).
Example ¶
package main import ( "fmt" "github.com/gonum/stat" "github.com/gonum/stat/distuv" ) func main() { // Create a normal distribution dist := distuv.Normal{ Mu: 2, Sigma: 5, } data := make([]float64, 1e5) // Draw some random values from the standard normal distribution for i := range data { data[i] = dist.Rand() } mean, std := stat.MeanStdDev(data, nil) meanErr := stat.StdErr(std, float64(len(data))) fmt.Printf("mean= %1.1f ± %0.1v\n", mean, meanErr) }
Output: mean= 2.0 ± 0.02
func (*Normal) ConjugateUpdate ¶
ConjugateUpdate updates the parameters of the distribution from the sufficient statistics of a set of samples. The sufficient statistics, suffStat, have been observed with nSamples observations. The prior values of the distribution are those currently in the distribution, and have been observed with priorStrength samples.
For the normal distribution, the sufficient statistics are the mean and uncorrected standard deviation of the samples. The prior is having seen strength[0] samples with mean Normal.Mu and strength[1] samples with standard deviation Normal.Sigma. As a result of this function, Normal.Mu and Normal.Sigma are updated based on the weighted samples, and strength is modified to include the new number of samples observed.
This function panics if len(suffStat) != 2 or len(priorStrength) != 2.
func (Normal) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (*Normal) Fit ¶
Fit sets the parameters of the probability distribution from the data samples x with relative weights w. If weights is nil, then all the weights are 1. If weights is not nil, then the len(weights) must equal len(samples).
func (Normal) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Normal) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (Normal) NumSuffStat ¶
NumSuffStat returns the number of sufficient statistics for the distribution.
func (Normal) Score ¶
Score returns the score function with respect to the parameters of the distribution at the input location x. The score function is the derivative of the log-likelihood at x with respect to the parameters
(∂/∂θ) log(p(x;θ))
If deriv is non-nil, len(deriv) must equal the number of parameters otherwise Score will panic, and the derivative is stored in-place into deriv. If deriv is nil a new slice will be allocated and returned.
The order is [∂LogProb / ∂Mu, ∂LogProb / ∂Sigma].
For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
func (Normal) ScoreInput ¶
ScoreInput returns the score function with respect to the input of the distribution at the input location specified by x. The score function is the derivative of the log-likelihood
(d/dx) log(p(x)) .
func (Normal) SuffStat ¶
SuffStat computes the sufficient statistics of a set of samples to update the distribution. The sufficient statistics are stored in place, and the effective number of samples are returned.
The normal distribution has two sufficient statistics, the mean of the samples and the standard deviation of the samples.
If weights is nil, the weights are assumed to be 1, otherwise panics if len(samples) != len(weights). Panics if len(suffStat) != NumSuffStat().
type RandLogProber ¶
type StudentsT ¶
type StudentsT struct { // Mu is the location parameter of the distribution, and the mean of the // distribution Mu float64 // Sigma is the scale parameter of the distribution. It is related to the // standard deviation by std = Sigma * sqrt(Nu/(Nu-2)) Sigma float64 // Nu is the shape prameter of the distribution, representing the number of // degrees of the distribution, and one less than the number of observations // from a Normal distribution. Nu float64 Src *rand.Rand }
StudentsT implements the three-parameter Student's T distribution, a distribution over the real numbers.
The Student's T distribution has density function
Γ((ν+1)/2) / (sqrt(νπ) Γ(ν/2) σ) (1 + 1/ν * ((x-μ)/σ)^2)^(-(ν+1)/2)
The Student's T distribution approaches the normal distribution as ν → ∞.
For more information, see https://en.wikipedia.org/wiki/Student%27s_t-distribution, specifically https://en.wikipedia.org/wiki/Student%27s_t-distribution#Non-standardized_Student.27s_t-distribution .
The standard Student's T distribution is with Mu = 0, and Sigma = 1.
func (StudentsT) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (StudentsT) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (StudentsT) StdDev ¶
StdDev returns the standard deviation of the probability distribution.
The standard deviation is undefined for ν <= 1, and this returns math.NaN().
type Uniform ¶
Uniform represents a continuous uniform distribution (https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29).
func (Uniform) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (Uniform) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x.
func (Uniform) MarshalParameters ¶
MarshalParameters implements the ParameterMarshaler interface
func (Uniform) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (*Uniform) UnmarshalParameters ¶
UnmarshalParameters implements the ParameterMarshaler interface
type Weibull ¶
type Weibull struct { // Shape parameter of the distribution. A value of 1 represents // the exponential distribution. A value of 2 represents the // Rayleigh distribution. Valid range is (0,+∞). K float64 // Scale parameter of the distribution. Valid range is (0,+∞). Lambda float64 // Source of random numbers Source *rand.Rand }
Weibull distribution. Valid range for x is [0,+∞).
func (Weibull) ExKurtosis ¶
ExKurtosis returns the excess kurtosis of the distribution.
func (Weibull) LogCDF ¶
func (w Weibull) LogCDF(x float64) complex128
LogCDF computes the value of the log of the cumulative density function at x.
func (Weibull) LogProb ¶
LogProb computes the natural logarithm of the value of the probability density function at x. Zero is returned if x is less than zero.
Special cases occur when x == 0, and the result depends on the shape parameter as follows:
If 0 < K < 1, LogProb returns +Inf. If K == 1, LogProb returns 0. If K > 1, LogProb returns -Inf.
func (Weibull) LogSurvival ¶
Survival returns the log of the survival function (complementary CDF) at x.
func (Weibull) Mode ¶
Mode returns the mode of the normal distribution.
The mode is NaN in the special case where the K (shape) parameter is less than 1.
func (Weibull) NumParameters ¶
NumParameters returns the number of parameters in the distribution.
func (Weibull) Score ¶
Score returns the score function with respect to the parameters of the distribution at the input location x. The score function is the derivative of the log-likelihood at x with respect to the parameters
(∂/∂θ) log(p(x;θ))
If deriv is non-nil, len(deriv) must equal the number of parameters otherwise Score will panic, and the derivative is stored in-place into deriv. If deriv is nil a new slice will be allocated and returned.
The order is [∂LogProb / ∂K, ∂LogProb / ∂λ].
For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
Special cases:
Score(0) = [NaN, NaN]
func (Weibull) ScoreInput ¶
ScoreInput returns the score function with respect to the input of the distribution at the input location specified by x. The score function is the derivative of the log-likelihood
(d/dx) log(p(x)) .
Special cases:
ScoreInput(0) = NaN