Documentation ¶
Overview ¶
Package rill provides composable channel-based concurrency primitives for Go that simplify parallel processing, batching, and stream handling. It offers building blocks for constructing concurrent pipelines from reusable parts while maintaining precise control over concurrency levels. The package reduces boilerplate, abstracts away goroutine orchestration, features centralized error handling, and has zero external dependencies.
Streams and Try Containers ¶
In this package, a stream refers to a channel of Try containers. A Try container is a simple struct that holds a value and an error. When an "empty stream" is referred to, it means a channel of Try containers that has been closed and was never written to.
Most functions in this package are concurrent, and the level of concurrency can be controlled by the argument n. Some functions share common behaviors and characteristics, which are described below.
Non-blocking functions ¶
Functions such as Map, Filter, and Batch take a stream as an input and return a new stream as an output. They do not block and return the output stream immediately. All the processing is done in the background by the goroutine pools they spawn. These functions forward all errors from the input stream to the output stream. Any errors returned by the user-provided functions are also sent to the output stream. When such a function reaches the end of the input stream, it closes the output stream, stops processing and cleans up resources.
Such functions are designed to be composed together to build complex processing pipelines:
stage2 := rill.Map(input, ...) stage3 := rill.Batch(stage2, ...) stage4 := rill.Map(stage3, ...) results := rill.Unbatch(stage4, ...) // consume the results and handle errors with some blocking function
Blocking functions ¶
Functions such as ForEach, Reduce and MapReduce are used at the last stage of the pipeline to consume the stream and return the final result or error.
Usually, these functions block until one of the following conditions is met:
- The end of the stream is reached. In this case, the function returns the final result.
- An error is encountered either in the input stream or in some user-provided function. In this case, the function returns the error.
In case of an early termination (before reaching the end of the input stream), such functions initiate background draining of the remaining items. This is done to prevent goroutine leaks by ensuring that all goroutines feeding the stream are allowed to complete. The input stream should not be used anymore after calling such functions.
It's also possible to consume the pipeline results manually, for example using a for-range loop. In this case, add a deferred call to DrainNB before the loop to ensure that goroutines are not leaked.
defer rill.DrainNB(results) for res := range results { if res.Error != nil { return res.Error } // process res.Value }
Unordered functions ¶
Functions such as Map, Filter, and FlatMap write items to the output stream as soon as they become available. Due to the concurrent nature of these functions, the order of items in the output stream may not match the order of items in the input stream. These functions prioritize performance and concurrency over maintaining the original order.
Ordered functions ¶
Functions such as OrderedMap or OrderedFilter preserve the order of items from the input stream. These functions are still concurrent, but use special synchronization techniques to ensure that items are written to the output stream in the same order as they were read from the input stream. This additional synchronization has some overhead, but it is negligible for i/o bound workloads.
Some other functions, such as ToSlice, Batch or First are not concurrent and are ordered by nature.
Error handling ¶
Error handling can be non-trivial in concurrent applications. Rill simplifies this by providing a structured error handling approach. As described above, all errors are automatically propagated down the pipeline to the final stage, where they can be caught. This allows the pipeline to terminate after the first error is encountered and return it to the caller.
In cases where more complex error handling logic is required, the Catch function can be used. It can catch and handle errors at any point in the pipeline, providing the flexibility to handle not only the first error, but any of them.
Example ¶
This example demonstrates a Rill pipeline that fetches users from an API, updates their status to active and saves them back. Both operations are performed concurrently
package main import ( "context" "fmt" "github.com/destel/rill" "github.com/destel/rill/mockapi" ) func main() { ctx := context.Background() // Convert a slice of user IDs into a stream ids := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Read users from the API. // Concurrency = 3 users := rill.Map(ids, 3, func(id int) (*mockapi.User, error) { return mockapi.GetUser(ctx, id) }) // Activate users. // Concurrency = 2 err := rill.ForEach(users, 2, func(u *mockapi.User) error { if u.IsActive { fmt.Printf("User %d is already active\n", u.ID) return nil } u.IsActive = true err := mockapi.SaveUser(ctx, u) if err != nil { return err } fmt.Printf("User saved: %+v\n", u) return nil }) // Handle errors fmt.Println("Error:", err) }
Output:
Example (Batching) ¶
This example demonstrates a Rill pipeline that fetches users from an API, and updates their status to active and saves them back. Users are fetched concurrently and in batches to reduce the number of API calls.
package main import ( "context" "fmt" "github.com/destel/rill" "github.com/destel/rill/mockapi" ) func main() { ctx := context.Background() // Convert a slice of user IDs into a stream ids := rill.FromSlice([]int{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, }, nil) // Group IDs into batches of 5 idBatches := rill.Batch(ids, 5, -1) // Bulk fetch users from the API // Concurrency = 3 userBatches := rill.Map(idBatches, 3, func(ids []int) ([]*mockapi.User, error) { return mockapi.GetUsers(ctx, ids) }) // Transform the stream of batches back into a flat stream of users users := rill.Unbatch(userBatches) // Activate users. // Concurrency = 2 err := rill.ForEach(users, 2, func(u *mockapi.User) error { if u.IsActive { fmt.Printf("User %d is already active\n", u.ID) return nil } u.IsActive = true err := mockapi.SaveUser(ctx, u) if err != nil { return err } fmt.Printf("User saved: %+v\n", u) return nil }) // Handle errors fmt.Println("Error:", err) }
Output:
Example (BatchingRealTime) ¶
This example demonstrates how batching can be used to group similar concurrent database updates into a single query. The UpdateUserTimestamp function is used to update the last_active_at column in the users table. Updates are not executed immediately, but are rather queued and then sent to the database in batches of up to 5.
When updates are sparse, it can take some time to collect a full batch. In this case the Batch function emits partial batches, ensuring that updates are delayed by at most 100ms.
For simplicity, this example does not have retries, error handling and synchronization
package main import ( "fmt" "time" "github.com/destel/rill" ) func main() { // Start the background worker that processes the updates go updateUserTimestampWorker() // Do some updates. They'll be automatically grouped into // batches: [1,2,3,4,5], [6,7], [8] UpdateUserTimestamp(1) UpdateUserTimestamp(2) UpdateUserTimestamp(3) UpdateUserTimestamp(4) UpdateUserTimestamp(5) UpdateUserTimestamp(6) UpdateUserTimestamp(7) time.Sleep(500 * time.Millisecond) // simulate sparse updates UpdateUserTimestamp(8) // Wait for the updates to be processed // In real-world application, different synchronization mechanisms would be used. time.Sleep(1 * time.Second) } // This is the queue of user IDs to update. var userIDsToUpdate = make(chan int) // UpdateUserTimestamp is the public API for updating the last_active_at column in the users table func UpdateUserTimestamp(userID int) { userIDsToUpdate <- userID } // This is a background worker that sends queued updates to the database in batches. // For simplicity, there are no retries, error handling and synchronization func updateUserTimestampWorker() { ids := rill.FromChan(userIDsToUpdate, nil) idBatches := rill.Batch(ids, 5, 100*time.Millisecond) _ = rill.ForEach(idBatches, 1, func(batch []int) error { fmt.Printf("Executed: UPDATE users SET last_active_at = NOW() WHERE id IN (%v)\n", batch) return nil }) }
Output:
Example (Context) ¶
This example demonstrates how to gracefully stop a pipeline on the first error. The CheckAllUsersExist uses several concurrent workers and returns an error as soon as it encounters a non-existent user. Such early return triggers the context cancellation, which in turn stops all remaining users fetches.
package main import ( "context" "fmt" "github.com/destel/rill" "github.com/destel/rill/mockapi" ) func main() { ctx := context.Background() // ID 999 doesn't exist, so fetching will stop after hitting it. err := CheckAllUsersExist(ctx, 3, []int{1, 2, 3, 4, 5, 999, 7, 8, 9, 10, 11, 12, 13, 14, 15}) fmt.Printf("Check result: %v\n", err) } // CheckAllUsersExist uses several concurrent workers to checks if all users with given IDs exist. func CheckAllUsersExist(ctx context.Context, concurrency int, ids []int) error { ctx, cancel := context.WithCancel(ctx) defer cancel() idsStream := rill.Generate(func(send func(int), sendErr func(error)) { for _, id := range ids { if ctx.Err() != nil { return } send(id) } }) users := rill.Map(idsStream, concurrency, func(id int) (*mockapi.User, error) { u, err := mockapi.GetUser(ctx, id) if err != nil { return nil, fmt.Errorf("failed to fetch user %d: %w", id, err) } fmt.Printf("Fetched user %d\n", id) return u, nil }) return rill.Err(users) }
Output:
Example (FanIn_FanOut) ¶
This example demonstrates how to use the Fan-in and Fan-out patterns to send messages through multiple servers concurrently.
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of messages into a stream messages := rill.FromSlice([]string{ "message1", "message2", "message3", "message4", "message5", "message6", "message7", "message8", "message9", "message10", }, nil) // Fan-out the messages to three servers results1 := rill.Map(messages, 2, func(message string) (string, error) { return message, sendMessage(message, "server1") }) results2 := rill.Map(messages, 2, func(message string) (string, error) { return message, sendMessage(message, "server2") }) results3 := rill.Map(messages, 2, func(message string) (string, error) { return message, sendMessage(message, "server3") }) // Fan-in the results from all servers into a single stream results := rill.Merge(results1, results2, results3) // Handle errors err := rill.Err(results) fmt.Println("Error:", err) } // Helper function that simulates sending a message through a server func sendMessage(message string, server string) error { randomSleep(500 * time.Millisecond) fmt.Printf("Sent through %s: %s\n", server, message) return nil } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
Example (FlatMap) ¶
This example demonstrates using FlatMap to fetch users from multiple departments concurrently. Additionally, it demonstrates how to write a reusable streaming wrapper over paginated API calls - the StreamUsers function
package main import ( "context" "fmt" "github.com/destel/rill" "github.com/destel/rill/mockapi" ) func main() { ctx := context.Background() // Start with a stream of department names departments := rill.FromSlice([]string{"IT", "Finance", "Marketing", "Support", "Engineering"}, nil) // Stream users from all departments concurrently. // At most 3 departments at the same time. users := rill.FlatMap(departments, 3, func(department string) <-chan rill.Try[*mockapi.User] { return StreamUsers(ctx, &mockapi.UserQuery{Department: department}) }) // Print the users from the combined stream err := rill.ForEach(users, 1, func(user *mockapi.User) error { fmt.Printf("%+v\n", user) return nil }) fmt.Println("Error:", err) } // StreamUsers is a reusable streaming wrapper around the mockapi.ListUsers function. // It iterates through all listing pages and uses [Generate] to simplify sending users and errors to the resulting stream. // This function is useful both on its own and as part of larger pipelines. func StreamUsers(ctx context.Context, query *mockapi.UserQuery) <-chan rill.Try[*mockapi.User] { return rill.Generate(func(send func(*mockapi.User), sendErr func(error)) { var currentQuery mockapi.UserQuery if query != nil { currentQuery = *query } for page := 0; ; page++ { currentQuery.Page = page users, err := mockapi.ListUsers(ctx, ¤tQuery) if err != nil { sendErr(err) return } if len(users) == 0 { break } for _, user := range users { send(user) } } }) }
Output:
Example (Ordering) ¶
This example demonstrates how to find the first file containing a specific string among 1000 large files hosted online.
Downloading all files at once would consume too much memory, while processing them one-by-one would take too long. And traditional concurrency patterns do not preserve the order of files, and would make it challenging to find the first match.
The combination of OrderedFilter and First functions solves the problem, while downloading and holding in memory at most 5 files at the same time.
package main import ( "bytes" "context" "fmt" "github.com/destel/rill" "github.com/destel/rill/mockapi" ) func main() { ctx := context.Background() // The string to search for in the downloaded files needle := []byte("26") // Generate a stream of URLs from https://example.com/file-0.txt // to https://example.com/file-999.txt urls := rill.Generate(func(send func(string), sendErr func(error)) { for i := 0; i < 1000 && ctx.Err() == nil; i++ { send(fmt.Sprintf("https://example.com/file-%d.txt", i)) } }) // Download and process the files // At most 5 files are downloaded and held in memory at the same time matchedUrls := rill.OrderedFilter(urls, 5, func(url string) (bool, error) { fmt.Println("Downloading:", url) content, err := mockapi.DownloadFile(ctx, url) if err != nil { return false, err } // keep only URLs of files that contain the needle return bytes.Contains(content, needle), nil }) // Find the first matched URL firstMatchedUrl, found, err := rill.First(matchedUrls) if err != nil { fmt.Println("Error:", err) return } // Print the result if found { fmt.Println("Found in:", firstMatchedUrl) } else { fmt.Println("Not found") } }
Output:
Index ¶
- func All[A any](in <-chan Try[A], n int, f func(A) (bool, error)) (bool, error)
- func Any[A any](in <-chan Try[A], n int, f func(A) (bool, error)) (bool, error)
- func Batch[A any](in <-chan Try[A], size int, timeout time.Duration) <-chan Try[[]A]
- func Buffer[A any](in <-chan A, size int) <-chan A
- func Catch[A any](in <-chan Try[A], n int, f func(error) error) <-chan Try[A]
- func Drain[A any](in <-chan A)
- func DrainNB[A any](in <-chan A)
- func Err[A any](in <-chan Try[A]) error
- func Filter[A any](in <-chan Try[A], n int, f func(A) (bool, error)) <-chan Try[A]
- func FilterMap[A, B any](in <-chan Try[A], n int, f func(A) (B, bool, error)) <-chan Try[B]
- func First[A any](in <-chan Try[A]) (value A, found bool, err error)
- func FlatMap[A, B any](in <-chan Try[A], n int, f func(A) <-chan Try[B]) <-chan Try[B]
- func ForEach[A any](in <-chan Try[A], n int, f func(A) error) error
- func FromChan[A any](values <-chan A, err error) <-chan Try[A]
- func FromChans[A any](values <-chan A, errs <-chan error) <-chan Try[A]
- func FromSeq[A any](seq iter.Seq[A], err error) <-chan Try[A]
- func FromSeq2[A any](seq iter.Seq2[A, error]) <-chan Try[A]
- func FromSlice[A any](slice []A, err error) <-chan Try[A]
- func Generate[A any](f func(send func(A), sendErr func(error))) <-chan Try[A]
- func Map[A, B any](in <-chan Try[A], n int, f func(A) (B, error)) <-chan Try[B]
- func MapReduce[A any, K comparable, V any](in <-chan Try[A], nm int, mapper func(A) (K, V, error), nr int, ...) (map[K]V, error)
- func Merge[A any](ins ...<-chan A) <-chan A
- func OrderedCatch[A any](in <-chan Try[A], n int, f func(error) error) <-chan Try[A]
- func OrderedFilter[A any](in <-chan Try[A], n int, f func(A) (bool, error)) <-chan Try[A]
- func OrderedFilterMap[A, B any](in <-chan Try[A], n int, f func(A) (B, bool, error)) <-chan Try[B]
- func OrderedFlatMap[A, B any](in <-chan Try[A], n int, f func(A) <-chan Try[B]) <-chan Try[B]
- func OrderedMap[A, B any](in <-chan Try[A], n int, f func(A) (B, error)) <-chan Try[B]
- func OrderedSplit2[A any](in <-chan Try[A], n int, f func(A) (bool, error)) (outTrue <-chan Try[A], outFalse <-chan Try[A])
- func Reduce[A any](in <-chan Try[A], n int, f func(A, A) (A, error)) (result A, hasResult bool, err error)
- func Split2[A any](in <-chan Try[A], n int, f func(A) (bool, error)) (outTrue <-chan Try[A], outFalse <-chan Try[A])
- func ToChans[A any](in <-chan Try[A]) (<-chan A, <-chan error)
- func ToSeq2[A any](in <-chan Try[A]) iter.Seq2[A, error]
- func ToSlice[A any](in <-chan Try[A]) ([]A, error)
- func Unbatch[A any](in <-chan Try[[]A]) <-chan Try[A]
- type Try
Examples ¶
- Package
- Package (Batching)
- Package (BatchingRealTime)
- Package (Context)
- Package (FanIn_FanOut)
- Package (FlatMap)
- Package (Ordering)
- All
- Any
- Batch
- Catch
- Err
- Filter
- FilterMap
- First
- FlatMap
- ForEach
- ForEach (Ordered)
- FromSeq
- FromSeq2
- Generate
- Generate (Context)
- Map
- MapReduce
- Merge
- OrderedCatch
- OrderedFilter
- OrderedFilterMap
- OrderedFlatMap
- OrderedMap
- Reduce
- ToSeq2
- ToSlice
- Unbatch
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func All ¶ added in v0.2.0
All checks if all items in the input stream satisfy the condition f. This function returns false as soon as it finds an item that does not satisfy the condition. Otherwise, it returns true, including the case when the stream was empty.
This is a blocking unordered function that processes items concurrently using n goroutines. When n = 1, processing becomes sequential, making the function ordered.
See the package documentation for more information on blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Are all numbers prime? // Concurrency = 3 ok, err := rill.All(numbers, 3, func(x int) (bool, error) { return isPrime(x), nil }) fmt.Println("Result:", ok) fmt.Println("Error:", err) } // helper function that checks if a number is prime // and simulates some additional work using sleep func isPrime(n int) bool { randomSleep(500 * time.Millisecond) if n < 2 { return false } for i := 2; i*i <= n; i++ { if n%i == 0 { return false } } return true } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func Any ¶ added in v0.2.0
Any checks if there is an item in the input stream that satisfies the condition f. This function returns true as soon as it finds such an item. Otherwise, it returns false.
Any is a blocking unordered function that processes items concurrently using n goroutines. When n = 1, processing becomes sequential, making the function ordered.
See the package documentation for more information on blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Is there at least one prime number? // Concurrency = 3 ok, err := rill.Any(numbers, 3, func(x int) (bool, error) { return isPrime(x), nil }) fmt.Println("Result: ", ok) fmt.Println("Error: ", err) } // helper function that checks if a number is prime // and simulates some additional work using sleep func isPrime(n int) bool { randomSleep(500 * time.Millisecond) if n < 2 { return false } for i := 2; i*i <= n; i++ { if n%i == 0 { return false } } return true } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func Batch ¶
Batch take a stream of items and returns a stream of batches based on a maximum size and a timeout.
A batch is emitted when one of the following conditions is met:
- The batch reaches the maximum size
- The time since the first item was added to the batch exceeds the timeout
- The input stream is closed
This function never emits empty batches. To disable the timeout and emit batches only based on the size, set the timeout to -1. Setting the timeout to zero is not supported and will result in a panic
This is a non-blocking ordered function that processes items sequentially.
See the package documentation for more information on non-blocking ordered functions and error handling.
Example ¶
Also check out the package level examples to see Batch in action
package main import ( "fmt" "time" "github.com/destel/rill" ) func main() { // Generate a stream of numbers 0 to 49, where a new number is emitted every 50ms numbers := make(chan rill.Try[int]) go func() { defer close(numbers) for i := 0; i < 50; i++ { numbers <- rill.Wrap(i, nil) time.Sleep(50 * time.Millisecond) } }() // Group numbers into batches of up to 5 batches := rill.Batch(numbers, 5, 1*time.Second) printStream(batches) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) }
Output:
func Buffer ¶
Buffer takes a channel of items and returns a buffered channel of exact same items in the same order. This can be useful for preventing write operations on the input channel from blocking, especially if subsequent stages in the processing pipeline are slow. Buffering allows up to size items to be held in memory before back pressure is applied to the upstream producer.
Typical usage of Buffer might look like this:
users := getUsers(ctx, companyID) users = rill.Buffer(users, 100) // Now work with the users channel as usual. // Up to 100 users can be buffered if subsequent stages of the pipeline are slow.
func Catch ¶
Catch allows handling errors in the middle of a stream processing pipeline. Every error encountered in the input stream is passed to the function f for handling.
The outcome depends on the return value of f:
- If f returns nil, the error is considered handled and filtered out from the output stream.
- If f returns a non-nil error, the original error is replaced with the result of f.
This is a non-blocking unordered function that handles errors concurrently using n goroutines. An ordered version of this function, OrderedCatch, is also available.
See the package documentation for more information on non-blocking unordered functions and error handling.
Example ¶
package main import ( "errors" "fmt" "math/rand" "strconv" "time" "github.com/destel/rill" ) func main() { // Convert a slice of strings into a stream strs := rill.FromSlice([]string{"1", "2", "3", "4", "5", "not a number 6", "7", "8", "9", "10"}, nil) // Convert strings to ints // Concurrency = 3 ids := rill.Map(strs, 3, func(s string) (int, error) { randomSleep(500 * time.Millisecond) // simulate some additional work return strconv.Atoi(s) }) // Catch and ignore number parsing errors // Concurrency = 2 ids = rill.Catch(ids, 2, func(err error) error { if errors.Is(err, strconv.ErrSyntax) { return nil // Ignore this error } return err }) // No error will be printed printStream(ids) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func Drain ¶
func Drain[A any](in <-chan A)
Drain consumes and discards all items from an input channel, blocking until the channel is closed.
func DrainNB ¶
func DrainNB[A any](in <-chan A)
DrainNB is a non-blocking version of Drain. It does draining in a separate goroutine.
func Err ¶ added in v0.2.0
Err returns the first error encountered in the input stream or nil if there were no errors.
This is a blocking ordered function that processes items sequentially. See the package documentation for more information on blocking ordered functions and error handling.
Example ¶
package main import ( "context" "fmt" "github.com/destel/rill" "github.com/destel/rill/mockapi" ) func main() { ctx := context.Background() // Convert a slice of users into a stream users := rill.FromSlice([]*mockapi.User{ {ID: 1, Name: "foo", Age: 25}, {ID: 2, Name: "bar", Age: 30}, {ID: 3}, // empty username is invalid {ID: 4, Name: "baz", Age: 35}, {ID: 5, Name: "qux", Age: 26}, {ID: 6, Name: "quux", Age: 27}, }, nil) // Save users. Use struct{} as a result type // Concurrency = 2 results := rill.Map(users, 2, func(user *mockapi.User) (struct{}, error) { return struct{}{}, mockapi.SaveUser(ctx, user) }) // We're only need to know if all users were saved successfully err := rill.Err(results) fmt.Println("Error:", err) }
Output:
func Filter ¶
Filter takes a stream of items of type A and filters them using a predicate function f. Returns a new stream of items that passed the filter.
This is a non-blocking unordered function that processes items concurrently using n goroutines. An ordered version of this function, OrderedFilter, is also available.
See the package documentation for more information on non-blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Keep only prime numbers // Concurrency = 3 primes := rill.Filter(numbers, 3, func(x int) (bool, error) { return isPrime(x), nil }) printStream(primes) } // helper function that checks if a number is prime // and simulates some additional work using sleep func isPrime(n int) bool { randomSleep(500 * time.Millisecond) if n < 2 { return false } for i := 2; i*i <= n; i++ { if n%i == 0 { return false } } return true } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func FilterMap ¶ added in v0.3.0
FilterMap takes a stream of items of type A, applies a function f that can filter and transform them into items of type B. Returns a new stream of transformed items that passed the filter. This operation is equivalent to a Filter followed by a Map.
This is a non-blocking unordered function that processes items concurrently using n goroutines. An ordered version of this function, OrderedFilterMap, is also available.
See the package documentation for more information on non-blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Keep only prime numbers and square them // Concurrency = 3 squares := rill.FilterMap(numbers, 3, func(x int) (int, bool, error) { if !isPrime(x) { return 0, false, nil } return x * x, true, nil }) printStream(squares) } // helper function that checks if a number is prime // and simulates some additional work using sleep func isPrime(n int) bool { randomSleep(500 * time.Millisecond) if n < 2 { return false } for i := 2; i*i <= n; i++ { if n%i == 0 { return false } } return true } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func First ¶ added in v0.2.0
First returns the first item or error encountered in the input stream, whichever comes first. The found return flag is set to false if the stream was empty, otherwise it is set to true.
This is a blocking ordered function that processes items sequentially. See the package documentation for more information on blocking ordered functions and error handling.
Example ¶
package main import ( "fmt" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Keep only the numbers divisible by 4 // Concurrency = 3; Ordered dvisibleBy4 := rill.OrderedFilter(numbers, 3, func(x int) (bool, error) { return x%4 == 0, nil }) // Get the first number divisible by 4 first, ok, err := rill.First(dvisibleBy4) fmt.Println("Result:", first, ok) fmt.Println("Error:", err) }
Output:
func FlatMap ¶
FlatMap takes a stream of items of type A and transforms each item into a new sub-stream of items of type B using a function f. Those sub-streams are then flattened into a single output stream, which is returned.
This is a non-blocking unordered function that processes items concurrently using n goroutines. An ordered version of this function, OrderedFlatMap, is also available.
See the package documentation for more information on non-blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5}, nil) // Replace each number in the input stream with three strings // Concurrency = 2 result := rill.FlatMap(numbers, 2, func(x int) <-chan rill.Try[string] { randomSleep(500 * time.Millisecond) // simulate some additional work return rill.FromSlice([]string{ fmt.Sprintf("foo%d", x), fmt.Sprintf("bar%d", x), fmt.Sprintf("baz%d", x), }, nil) }) printStream(result) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func ForEach ¶
ForEach applies a function f to each item in an input stream.
This is a blocking unordered function that processes items concurrently using n goroutines. When n = 1, processing becomes sequential, making the function ordered and similar to a regular for-range loop.
See the package documentation for more information on blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Square each number and print the result // Concurrency = 3 err := rill.ForEach(numbers, 3, func(x int) error { y := square(x) fmt.Println(y) return nil }) // Handle errors fmt.Println("Error:", err) } // helper function that squares the number // and simulates some additional work using sleep func square(x int) int { randomSleep(500 * time.Millisecond) return x * x } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
Example (Ordered) ¶
There is no ordered version of the ForEach function. To achieve ordered processing, use concurrency set to 1. If you need a concurrent and ordered ForEach, then do all processing with the OrderedMap, and then use ForEach with concurrency set to 1 at the final stage.
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Square each number // Concurrency = 3; Ordered squares := rill.OrderedMap(numbers, 3, func(x int) (int, error) { return square(x), nil }) // Print results. // Concurrency = 1; Ordered err := rill.ForEach(squares, 1, func(y int) error { fmt.Println(y) return nil }) // Handle errors fmt.Println("Error:", err) } // helper function that squares the number // and simulates some additional work using sleep func square(x int) int { randomSleep(500 * time.Millisecond) return x * x } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func FromChan ¶
FromChan converts a regular channel into a stream. Additionally, this function can take an error, that will be added to the output stream alongside the values. Either argument can be nil, in which case it is ignored. If both arguments are nil, the function returns nil.
Such function signature allows concise wrapping of functions that return a channel and an error:
stream := rill.FromChan(someFunc())
func FromChans ¶
FromChans converts a regular channel into a stream. Additionally, this function can take a channel of errors, which will be added to the output stream alongside the values. Either argument can be nil, in which case it is ignored. If both arguments are nil, the function returns nil.
Such function signature allows concise wrapping of functions that return two channels:
stream := rill.FromChans(someFunc())
func FromSeq ¶ added in v0.4.0
FromSeq converts an iterator into a stream. If err is not nil function returns a stream with a single error.
Such function signature allows concise wrapping of functions that return an iterator and an error:
stream := rill.FromSeq(someFunc())
Example ¶
// Start with an iterator that yields numbers from 1 to 10 numbersSeq := slices.Values([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) // Convert the iterator into a stream numbers := rill.FromSeq(numbersSeq, nil) // Transform each number // Concurrency = 3 squares := rill.Map(numbers, 3, func(x int) (int, error) { return square(x), nil }) printStream(squares)
Output:
func FromSeq2 ¶ added in v0.4.0
FromSeq2 converts an iterator of value-error pairs into a stream.
Example ¶
// Create an iter.Seq2 iterator that yields numbers from 1 to 10 numberSeq := func(yield func(int, error) bool) { for i := 1; i <= 10; i++ { if !yield(i, nil) { return } } } // Convert the iterator into a stream numbers := rill.FromSeq2(numberSeq) // Transform each number // Concurrency = 3 squares := rill.Map(numbers, 3, func(x int) (int, error) { return square(x), nil }) printStream(squares)
Output:
func FromSlice ¶
FromSlice converts a slice into a stream. If err is not nil function returns a stream with a single error.
Such function signature allows concise wrapping of functions that return a slice and an error:
stream := rill.FromSlice(someFunc())
func Generate ¶ added in v0.6.0
Generate is a shorthand for creating streams. It provides a more ergonomic way of sending both values and errors to a stream, manages goroutine and channel lifecycle.
stream := rill.Generate(func(send func(int), sendErr func(error)) { for i := 0; i < 100; i++ { send(i) } sendErr(someError) })
Here's how the same code would look without Generate:
stream := make(chan rill.Try[int]) go func() { defer close(stream) for i := 0; i < 100; i++ { stream <- rill.Try[int]{Value: i} } stream <- rill.Try[int]{Error: someError} }()
Example ¶
Generate a stream of URLs from https://example.com/file-0.txt to https://example.com/file-9.txt
package main import ( "fmt" "github.com/destel/rill" ) func main() { urls := rill.Generate(func(send func(string), sendErr func(error)) { for i := 0; i < 10; i++ { send(fmt.Sprintf("https://example.com/file-%d.txt", i)) } }) printStream(urls) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) }
Output:
Example (Context) ¶
Generate an infinite stream of natural numbers (1, 2, 3, ...). New numbers are sent to the stream every 500ms until the context is canceled
package main import ( "context" "fmt" "time" "github.com/destel/rill" ) func main() { ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second) defer cancel() numbers := rill.Generate(func(send func(int), sendErr func(error)) { for i := 1; ctx.Err() == nil; i++ { send(i) time.Sleep(500 * time.Millisecond) } }) printStream(numbers) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) }
Output:
func Map ¶
Map takes a stream of items of type A and transforms them into items of type B using a function f. Returns a new stream of transformed items.
This is a non-blocking unordered function that processes items concurrently using n goroutines. An ordered version of this function, OrderedMap, is also available.
See the package documentation for more information on non-blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Transform each number // Concurrency = 3 squares := rill.Map(numbers, 3, func(x int) (int, error) { return square(x), nil }) printStream(squares) } // helper function that squares the number // and simulates some additional work using sleep func square(x int) int { randomSleep(500 * time.Millisecond) return x * x } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func MapReduce ¶ added in v0.2.0
func MapReduce[A any, K comparable, V any](in <-chan Try[A], nm int, mapper func(A) (K, V, error), nr int, reducer func(V, V) (V, error)) (map[K]V, error)
MapReduce transforms the input stream into a Go map using a mapper and a reducer functions. The transformation is performed in two concurrent phases.
- The mapper function transforms each input item into a key-value pair.
- The reducer function reduces values for the same key into a single value. This phase has the same semantics as the Reduce function, in particular the reducer function must be commutative and associative.
MapReduce is a blocking unordered function that processes items concurrently using nm and nr goroutines for the mapper and reducer functions respectively. Setting nr = 1 will make the reduce phase sequential and ordered, see Reduce for more information.
See the package documentation for more information on blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "regexp" "strings" "github.com/destel/rill" ) func main() { var re = regexp.MustCompile(`\w+`) text := "Early morning brings early birds to the early market. Birds sing, the market buzzes, and the morning shines." // Convert a text into a stream of words words := rill.FromSlice(re.FindAllString(text, -1), nil) // Count the number of occurrences of each word mr, err := rill.MapReduce(words, // Map phase: Use the word as key and "1" as value // Concurrency = 3 3, func(word string) (string, int, error) { return strings.ToLower(word), 1, nil }, // Reduce phase: Sum all "1" values for the same key // Concurrency = 2 2, func(x, y int) (int, error) { return x + y, nil }, ) fmt.Println("Result:", mr) fmt.Println("Error:", err) }
Output:
func Merge ¶
func Merge[A any](ins ...<-chan A) <-chan A
Merge performs a fan-in operation on the list of input channels, returning a single output channel. The resulting channel will contain all items from all inputs, and will be closed when all inputs are fully consumed.
This is a non-blocking function that processes items from each input sequentially.
See the package documentation for more information on non-blocking functions and error handling.
Example ¶
package main import ( "fmt" "github.com/destel/rill" ) func main() { // Convert slices of numbers into streams numbers1 := rill.FromSlice([]int{1, 2, 3, 4, 5}, nil) numbers2 := rill.FromSlice([]int{6, 7, 8, 9, 10}, nil) numbers3 := rill.FromSlice([]int{11, 12}, nil) numbers := rill.Merge(numbers1, numbers2, numbers3) printStream(numbers) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) }
Output:
func OrderedCatch ¶
OrderedCatch is the ordered version of Catch.
Example ¶
The same example as for the Catch, but using ordered versions of functions.
package main import ( "errors" "fmt" "math/rand" "strconv" "time" "github.com/destel/rill" ) func main() { // Convert a slice of strings into a stream strs := rill.FromSlice([]string{"1", "2", "3", "4", "5", "not a number 6", "7", "8", "9", "10"}, nil) // Convert strings to ints // Concurrency = 3; Ordered ids := rill.OrderedMap(strs, 3, func(s string) (int, error) { randomSleep(500 * time.Millisecond) // simulate some additional work return strconv.Atoi(s) }) // Catch and ignore number parsing errors // Concurrency = 2; Ordered ids = rill.OrderedCatch(ids, 2, func(err error) error { if errors.Is(err, strconv.ErrSyntax) { return nil // Ignore this error } return err }) // No error will be printed printStream(ids) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func OrderedFilter ¶
OrderedFilter is the ordered version of Filter.
Example ¶
The same example as for the Filter, but using ordered versions of functions.
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Keep only prime numbers // Concurrency = 3; Ordered primes := rill.OrderedFilter(numbers, 3, func(x int) (bool, error) { return isPrime(x), nil }) printStream(primes) } // helper function that checks if a number is prime // and simulates some additional work using sleep func isPrime(n int) bool { randomSleep(500 * time.Millisecond) if n < 2 { return false } for i := 2; i*i <= n; i++ { if n%i == 0 { return false } } return true } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func OrderedFilterMap ¶ added in v0.3.0
OrderedFilterMap is the ordered version of FilterMap.
Example ¶
The same example as for the FilterMap, but using ordered versions of functions.
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Keep only prime numbers and square them // Concurrency = 3 squares := rill.OrderedFilterMap(numbers, 3, func(x int) (int, bool, error) { if !isPrime(x) { return 0, false, nil } return x * x, true, nil }) printStream(squares) } // helper function that checks if a number is prime // and simulates some additional work using sleep func isPrime(n int) bool { randomSleep(500 * time.Millisecond) if n < 2 { return false } for i := 2; i*i <= n; i++ { if n%i == 0 { return false } } return true } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func OrderedFlatMap ¶
OrderedFlatMap is the ordered version of FlatMap.
Example ¶
The same example as for the FlatMap, but using ordered versions of functions.
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5}, nil) // Replace each number in the input stream with three strings // Concurrency = 2; Ordered result := rill.OrderedFlatMap(numbers, 2, func(x int) <-chan rill.Try[string] { randomSleep(500 * time.Millisecond) // simulate some additional work return rill.FromSlice([]string{ fmt.Sprintf("foo%d", x), fmt.Sprintf("bar%d", x), fmt.Sprintf("baz%d", x), }, nil) }) printStream(result) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func OrderedMap ¶
OrderedMap is the ordered version of Map.
Example ¶
The same example as for the Map, but using ordered versions of functions.
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Transform each number // Concurrency = 3; Ordered squares := rill.OrderedMap(numbers, 3, func(x int) (int, error) { return square(x), nil }) printStream(squares) } // helper function that squares the number // and simulates some additional work using sleep func square(x int) int { randomSleep(500 * time.Millisecond) return x * x } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func OrderedSplit2 ¶
func OrderedSplit2[A any](in <-chan Try[A], n int, f func(A) (bool, error)) (outTrue <-chan Try[A], outFalse <-chan Try[A])
OrderedSplit2 is the ordered version of Split2.
func Reduce ¶ added in v0.2.0
func Reduce[A any](in <-chan Try[A], n int, f func(A, A) (A, error)) (result A, hasResult bool, err error)
Reduce combines all items from the input stream into a single value using a binary function f. The function f is called for pairs of items, progressively reducing the stream contents until only one value remains.
As an unordered function, Reduce can apply f to any pair of items in any order, which requires f to be:
- Associative: f(a, f(b, c)) == f(f(a, b), c)
- Commutative: f(a, b) == f(b, a)
The hasResult return flag is set to false if the stream was empty, otherwise it is set to true.
Reduce is a blocking unordered function that processes items concurrently using n goroutines. The case when n = 1 is optimized: it does not spawn additional goroutines and processes items sequentially, making the function ordered. This also removes the need for the function f to be commutative.
See the package documentation for more information on blocking unordered functions and error handling.
Example ¶
package main import ( "fmt" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Sum all numbers sum, ok, err := rill.Reduce(numbers, 3, func(a, b int) (int, error) { return a + b, nil }) fmt.Println("Result:", sum, ok) fmt.Println("Error:", err) }
Output:
func Split2 ¶
func Split2[A any](in <-chan Try[A], n int, f func(A) (bool, error)) (outTrue <-chan Try[A], outFalse <-chan Try[A])
Split2 divides the input stream into two output streams based on the predicate function f: The splitting behavior is determined by the boolean return value of f. When f returns true, the item is sent to the outTrue stream, otherwise it is sent to the outFalse stream. In case of any error, the item is sent to one of the output streams in a non-deterministic way.
This is a non-blocking unordered function that processes items concurrently using n goroutines. An ordered version of this function, OrderedSplit2, is also available.
See the package documentation for more information on non-blocking unordered functions and error handling.
func ToChans ¶
ToChans splits an input stream into two channels: one for values and one for errors. It's an inverse of FromChans. Returns two nil channels if the input is nil.
func ToSeq2 ¶ added in v0.4.0
ToSeq2 converts an input stream into an iterator of value-error pairs.
This is a blocking ordered function that processes items sequentially. It does not return on the first encountered error. Instead, it iterates over all value-error pairs, either until the input stream is fully consumed or the loop is broken by the caller. So all error handling, if needed, should be done inside the iterator (for-range loop body).
See the package documentation for more information on blocking ordered functions.
Example ¶
// Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Transform each number // Concurrency = 3 squares := rill.Map(numbers, 3, func(x int) (int, error) { return square(x), nil }) // Convert the stream into an iterator and use for-range to print the results for val, err := range rill.ToSeq2(squares) { if err != nil { fmt.Println("Error:", err) break // cleanup is done regardless of early exit } fmt.Printf("%+v\n", val) }
Output:
func ToSlice ¶
ToSlice converts an input stream into a slice.
This is a blocking ordered function that processes items sequentially. See the package documentation for more information on blocking ordered functions and error handling.
Example ¶
package main import ( "fmt" "math/rand" "time" "github.com/destel/rill" ) func main() { // Convert a slice of numbers into a stream numbers := rill.FromSlice([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nil) // Transform each number // Concurrency = 3; Ordered squares := rill.OrderedMap(numbers, 3, func(x int) (int, error) { return square(x), nil }) resultsSlice, err := rill.ToSlice(squares) fmt.Println("Result:", resultsSlice) fmt.Println("Error:", err) } // helper function that squares the number // and simulates some additional work using sleep func square(x int) int { randomSleep(500 * time.Millisecond) return x * x } func randomSleep(max time.Duration) { time.Sleep(time.Duration(rand.Intn(int(max)))) }
Output:
func Unbatch ¶
Unbatch is the inverse of Batch. It takes a stream of batches and returns a stream of individual items.
This is a non-blocking ordered function that processes items sequentially. See the package documentation for more information on non-blocking ordered functions and error handling.
Example ¶
package main import ( "fmt" "github.com/destel/rill" ) func main() { // Create a stream of batches batches := rill.FromSlice([][]int{ {1, 2, 3}, {4, 5}, {6, 7, 8, 9}, {10}, }, nil) numbers := rill.Unbatch(batches) printStream(numbers) } // printStream prints all items from a stream (one per line) and an error if any. func printStream[A any](stream <-chan rill.Try[A]) { fmt.Println("Result:") err := rill.ForEach(stream, 1, func(x A) error { fmt.Printf("%+v\n", x) return nil }) fmt.Println("Error:", err) }
Output:
Types ¶
type Try ¶
Try is a container holding a value of type A or an error
func Wrap ¶
Wrap converts a value and/or error into a Try container. It's a convenience function to avoid creating a Try container manually and benefit from type inference.
Such function signature also allows concise wrapping of functions that return a value and an error:
item := rill.Wrap(strconv.ParseInt("42"))