Documentation ¶
Overview ¶
Package types declares the data types and implements the algorithms for type-checking of Go packages. Use Config.Check to invoke the type checker for a package. Alternatively, create a new type checker with NewChecker and invoke it incrementally by calling Checker.Files.
Type-checking consists of several interdependent phases:
Name resolution maps each identifier (syntax.Name) in the program to the language object (Object) it denotes. Use Info.{Defs,Uses,Implicits} for the results of name resolution.
Constant folding computes the exact constant value (constant.Value) for every expression (syntax.Expr) that is a compile-time constant. Use Info.Types[expr].Value for the results of constant folding.
Type inference computes the type (Type) of every expression (syntax.Expr) and checks for compliance with the language specification. Use Info.Types[expr].Type for the results of type inference.
Package ssa defines a representation of the elements of Go programs (packages, types, functions, variables and constants) using a static single-assignment (SSA) form intermediate representation (IR) for the bodies of functions.
THIS INTERFACE IS EXPERIMENTAL AND IS LIKELY TO CHANGE.
For an introduction to SSA form, see http://en.wikipedia.org/wiki/Static_single_assignment_form. This page provides a broader reading list: http://www.dcs.gla.ac.uk/~jsinger/ssa.html.
The level of abstraction of the SSA form is intentionally close to the source language to facilitate construction of source analysis tools. It is not intended for machine code generation.
All looping, branching and switching constructs are replaced with unstructured control flow. Higher-level control flow constructs such as multi-way branch can be reconstructed as needed; see ssautil.Switches() for an example.
The simplest way to create the SSA representation of a package is to load typed syntax trees using golang.org/x/tools/go/packages, then invoke the ssautil.Packages helper function. See ExampleLoadPackages and ExampleWholeProgram for examples. The resulting ssa.Program contains all the packages and their members, but SSA code is not created for function bodies until a subsequent call to (*Package).Build or (*Program).Build.
The builder initially builds a naive SSA form in which all local variables are addresses of stack locations with explicit loads and stores. Registerisation of eligible locals and φ-node insertion using dominance and dataflow are then performed as a second pass called "lifting" to improve the accuracy and performance of subsequent analyses; this pass can be skipped by setting the NaiveForm builder flag.
The primary interfaces of this package are:
- Member: a named member of a Go package.
- Value: an expression that yields a value.
- Instruction: a statement that consumes values and performs computation.
- Node: a Value or Instruction (emphasizing its membership in the SSA value graph)
A computation that yields a result implements both the Value and Instruction interfaces. The following table shows for each concrete type which of these interfaces it implements.
Value? Instruction? Member? *Alloc ✔ ✔ *BinOp ✔ ✔ *Builtin ✔ *Call ✔ ✔ *ChangeInterface ✔ ✔ *ChangeType ✔ ✔ *Const ✔ *Convert ✔ ✔ *DebugRef ✔ *Defer ✔ *Extract ✔ ✔ *Field ✔ ✔ *FieldAddr ✔ ✔ *FreeVar ✔ *Function ✔ ✔ (func) *Global ✔ ✔ (var) *Go ✔ *If ✔ *Index ✔ ✔ *IndexAddr ✔ ✔ *Jump ✔ *Lookup ✔ ✔ *MakeChan ✔ ✔ *MakeClosure ✔ ✔ *MakeInterface ✔ ✔ *MakeMap ✔ ✔ *MakeSlice ✔ ✔ *MapUpdate ✔ *NamedConst ✔ (const) *Next ✔ ✔ *Panic ✔ *Parameter ✔ *Phi ✔ ✔ *Range ✔ ✔ *Return ✔ *RunDefers ✔ *Select ✔ ✔ *Send ✔ *Slice ✔ ✔ *SliceToArrayPointer ✔ ✔ *Store ✔ *Type ✔ (type) *TypeAssert ✔ ✔ *UnOp ✔ ✔
Other key types in this package include: Program, Package, Function and BasicBlock.
The program representation constructed by this package is fully resolved internally, i.e. it does not rely on the names of Values, Packages, Functions, Types or BasicBlocks for the correct interpretation of the program. Only the identities of objects and the topology of the SSA and type graphs are semantically significant. (There is one exception: Ids, used to identify field and method names, contain strings.) Avoidance of name-based operations simplifies the implementation of subsequent passes and can make them very efficient. Many objects are nonetheless named to aid in debugging, but it is not essential that the names be either accurate or unambiguous. The public API exposes a number of name-based maps for client convenience.
The ssa/ssautil package provides various utilities that depend only on the public API of this package.
TODO(adonovan): Consider the exceptional control-flow implications of defer and recover().
TODO(adonovan): write a how-to document for all the various cases of trying to determine corresponding elements across the four domains of source locations, syntax.Nodes, types.Objects, ssa.Values/Instructions.
Package typeutil defines various utilities for types, such as Map, a mapping from types.Type to interface{} values.
Example (BuildPackage) ¶
This program demonstrates how to run the SSA builder on a single package of one or more already-parsed files. Its dependencies are loaded from compiler export data. This is what you'd typically use for a compiler; it does not depend on golang.org/x/tools/go/loader.
It shows the printed representation of packages, functions, and instructions. Within the function listing, the name of each BasicBlock such as ".0.entry" is printed left-aligned, followed by the block's Instructions.
For each instruction that defines an SSA virtual register (i.e. implements Value), the type of that value is shown in the right column.
Build and run the ssadump.go program if you want a standalone tool with similar functionality. It is located at golang.org/x/tools/cmd/ssadump.
// Parse the source files. f, err := ParseString("hello.go", hello) if err != nil { fmt.Print(err) // parse error return } files := []*File{f} // Create the type-checker's package. pkg := NewPackage("hello", "") // Type-check the package, load dependencies. // Create and build the SSA program. _, hello, _, err := ssautil.BuildPackage( &Config{Importer: importer.Default()}, pkg, files, types.SanityCheckFunctions) if err != nil { fmt.Print(err) // type error in some package return } // Print out the package. hello.WriteTo(os.Stdout) // Print out the package-level functions. hello.InitFunc.WriteTo(os.Stdout) hello.Func("main").WriteTo(os.Stdout)
Output: package hello: func init func() var init$guard bool func main func() # Name: hello.init # Package: hello # Synthetic: package initializer func init(): 0: entry P:0 S:2 t0 = *init$guard bool if t0 goto 2 else 1 1: init.start P:1 S:1 *init$guard = true:bool t1 = fmt.init() () jump 2 2: init.done P:2 S:0 return # Name: hello.main # Package: hello # Location: hello.go:8:6 func main(): 0: entry P:0 S:0 t0 = new [1]any (varargs) *[1]any t1 = &t0[0:int] *any t2 = make any <- string ("Hello, World!":string) any *t1 = t2 t3 = slice t0[:] []any t4 = fmt.Println(t3...) (n int, err error) return
Example (LoadPackages) ¶
This example builds SSA code for a set of packages using the x/tools/go/packages API. This is what you would typically use for a analysis capable of operating on a single package.
// Load, parse, and type-check the initial packages. cfg := &packages.Config{Mode: packages.LoadSyntax} initial, err := packages.Load(cfg, "fmt", "net/http") if err != nil { log.Fatal(err) } // Stop if any package had errors. // This step is optional; without it, the next step // will create SSA for only a subset of packages. if packages.PrintErrors(initial) > 0 { log.Fatalf("packages contain errors") } // Create SSA packages for all well-typed packages. prog, pkgs := ssautil.Packages(initial, types.PrintPackages) _ = prog // Build SSA code for the well-typed initial packages. for _, p := range pkgs { if p != nil { p.Build(prog) } }
Output:
Example (LoadWholeProgram) ¶
This example builds SSA code for a set of packages plus all their dependencies, using the x/tools/go/packages API. This is what you'd typically use for a whole-program analysis.
// Load, parse, and type-check the whole program. cfg := packages.Config{Mode: packages.LoadAllSyntax} initial, err := packages.Load(&cfg, "fmt", "net/http") if err != nil { log.Fatal(err) } // Create SSA packages for well-typed packages and their dependencies. prog, pkgs := ssautil.AllPackages(initial, types.PrintPackages) _ = pkgs // Build SSA code for the whole program. prog.Build()
Output:
Index ¶
- Constants
- Variables
- func AssertableTo(V *Interface, T Type) bool
- func AssignableTo(V, T Type) bool
- func CheckExpr(pkg *Package, pos Pos, expr Expr, info *Info) (err error)
- func Comparable(T Type) bool
- func ConvertibleTo(V, T Type) bool
- func DefPredeclaredTestFuncs()
- func Id(pkg *Package, name string) string
- func Identical(x, y Type) bool
- func IdenticalIgnoreTags(x, y Type) bool
- func Implements(V Type, T *Interface) bool
- func IsInterface(t Type) bool
- func ObjectString(obj Object, qf Qualifier) string
- func SelectionString(s *Selection, qf Qualifier) string
- func TypeString(typ Type, qf Qualifier) string
- func WriteFunction(buf *bytes.Buffer, f *Function)
- func WritePackage(buf *bytes.Buffer, p *SSAPackage)
- func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier)
- func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier)
- type Alloc
- type ArgumentError
- type Array
- type Basic
- type BasicBlock
- type BasicInfo
- type BasicKind
- type BinOp
- type BuilderMode
- type Builtin
- type Call
- type CallCommon
- type CallInstruction
- type Chan
- type ChangeInterface
- type ChangeType
- type Checker
- type Config
- type Const
- type Context
- type Convert
- type DebugRef
- type Extract
- type FieldAddr
- type FreeVar
- type Func
- func (obj *Func) Exported() bool
- func (obj *Func) FullName() string
- func (obj *Func) Id() string
- func (obj *Func) Name() string
- func (obj *Func) Parent() *Scope
- func (obj *Func) Pkg() *Package
- func (obj *Func) Pos() Pos
- func (obj *Func) Scope() *Scope
- func (obj *Func) String() string
- func (obj *Func) Type() Type
- type Function
- func (f *Function) DomPreorder() []*BasicBlock
- func (v *Function) Name() string
- func (v *Function) Object() Object
- func (v *Function) Operands(rands []*Value) []*Value
- func (v *Function) Parent() *Function
- func (v *Function) Pos() Pos
- func (v *Function) Referrers() *[]Instruction
- func (f *Function) RelString(from *Package) string
- func (v *Function) String() string
- func (v *Function) Type() Type
- func (f *Function) WriteTo(w io.Writer) (int64, error)
- type Global
- func (v *Global) Name() string
- func (v *Global) Object() Object
- func (v *Global) Operands(rands []*Value) []*Value
- func (v *Global) Parent() *Function
- func (v *Global) Pos() Pos
- func (v *Global) Referrers() *[]Instruction
- func (v *Global) RelString(from *Package) string
- func (v *Global) String() string
- func (v *Global) Type() Type
- type Hasher
- type If
- type Importer
- type Index
- type IndexAddr
- type Info
- type Initializer
- type Instance
- type Instruction
- type Interface
- func (t *Interface) EmbeddedType(i int) Type
- func (t *Interface) Empty() bool
- func (t *Interface) ExplicitMethod(i int) *Func
- func (t *Interface) IsComparable() bool
- func (t *Interface) IsImplicit() bool
- func (t *Interface) IsMethodSet() bool
- func (t *Interface) MarkImplicit()
- func (t *Interface) Method(i int) *Func
- func (t *Interface) NumEmbeddeds() int
- func (t *Interface) NumExplicitMethods() int
- func (t *Interface) NumMethods() int
- func (t *Interface) String() string
- func (t *Interface) Underlying() Type
- type Jump
- type Label
- type Lookup
- type MakeChan
- type MakeClosure
- type MakeInterface
- type MakeMap
- type MakeSlice
- type Map
- type MapUpdate
- type Member
- type MethodSet
- type MethodSetCache
- type Named
- func (t *Named) AddMethod(m *Func)
- func (t *Named) Method(i int) *Func
- func (t *Named) NumMethods() int
- func (t *Named) Obj() *TypeName
- func (t *Named) Origin() *Named
- func (t *Named) SetTypeParams(tparams []*TypeParam)
- func (t *Named) SetUnderlying(underlying Type)
- func (t *Named) String() string
- func (t *Named) TypeArgs() *TypeList
- func (t *Named) TypeParams() *TypeParamList
- func (t *Named) Underlying() Type
- type Next
- type Nil
- type Object
- type Package
- func (pkg *Package) Complete() bool
- func (pkg *Package) Imports() []*Package
- func (pkg *Package) MarkComplete()
- func (pkg *Package) Name() string
- func (pkg *Package) Path() string
- func (pkg *Package) Scope() *Scope
- func (pkg *Package) SetImports(list []*Package)
- func (pkg *Package) SetName(name string)
- func (pkg *Package) String() string
- type Panic
- type Parameter
- func (v *Parameter) Name() string
- func (v *Parameter) Object() Object
- func (v *Parameter) Operands(rands []*Value) []*Value
- func (v *Parameter) Parent() *Function
- func (v *Parameter) Pos() Pos
- func (v *Parameter) Referrers() *[]Instruction
- func (v *Parameter) String() string
- func (v *Parameter) Type() Type
- type Phi
- type PkgName
- func (obj *PkgName) Exported() bool
- func (obj *PkgName) Id() string
- func (obj *PkgName) Imported() *Package
- func (obj *PkgName) Name() string
- func (obj *PkgName) Parent() *Scope
- func (obj *PkgName) Pkg() *Package
- func (obj *PkgName) Pos() Pos
- func (obj *PkgName) String() string
- func (obj *PkgName) Type() Type
- type Pointer
- type Program
- func (prog *Program) AllPackages() []*SSAPackage
- func (prog *Program) Build()
- func (prog *Program) CreatePackage(pkg *Package, files []*File, info *Info, importable bool) *SSAPackage
- func (prog *Program) ImportedPackage(path string) *SSAPackage
- func (prog *Program) LookupMethod(T Type, pkg *Package, name string) *Function
- func (prog *Program) MethodValue(sel *Selection) *Function
- func (prog *Program) NewFunction(name string, sig *Signature, provenance string) *Function
- func (prog *Program) Package(obj *Package) *SSAPackage
- func (prog *Program) RuntimeTypes() []Type
- type Qualifier
- type Range
- type Return
- type RunDefers
- type SSABuiltin
- func (v *SSABuiltin) Name() string
- func (v *SSABuiltin) Object() Object
- func (v *SSABuiltin) Operands(rands []*Value) []*Value
- func (v *SSABuiltin) Parent() *Function
- func (v *SSABuiltin) Pos() Pos
- func (v *SSABuiltin) Referrers() *[]Instruction
- func (v *SSABuiltin) String() string
- func (v *SSABuiltin) Type() Type
- type SSAConst
- func (c *SSAConst) Complex128() complex128
- func (c *SSAConst) Float64() float64
- func (c *SSAConst) Int64() int64
- func (c *SSAConst) IsNil() bool
- func (c *SSAConst) Name() string
- func (v *SSAConst) Operands(rands []*Value) []*Value
- func (c *SSAConst) Parent() *Function
- func (c *SSAConst) Pos() Pos
- func (c *SSAConst) Referrers() *[]Instruction
- func (c *SSAConst) RelString(from *Package) string
- func (c *SSAConst) String() string
- func (c *SSAConst) Type() Type
- func (c *SSAConst) Uint64() uint64
- type SSADefer
- func (v *SSADefer) Block() *BasicBlock
- func (s *SSADefer) Common() *CallCommon
- func (s *SSADefer) Operands(rands []*Value) []*Value
- func (v *SSADefer) Parent() *Function
- func (s *SSADefer) Pos() Pos
- func (v *SSADefer) Referrers() *[]Instruction
- func (s *SSADefer) String() string
- func (s *SSADefer) Value() *Call
- type SSAField
- type SSAGo
- type SSANode
- type SSAPackage
- type SSASlice
- type Scope
- func (s *Scope) Child(i int) *Scope
- func (s *Scope) Contains(pos Pos) bool
- func (s *Scope) End() Pos
- func (s *Scope) Innermost(pos Pos) *Scope
- func (s *Scope) Insert(obj Object) Object
- func (s *Scope) InsertLazy(name string, resolve func() Object) bool
- func (s *Scope) Len() int
- func (s *Scope) Lookup(name string) Object
- func (s *Scope) LookupParent(name string, pos Pos) (*Scope, Object)
- func (s *Scope) Names() []string
- func (s *Scope) NumChildren() int
- func (s *Scope) Parent() *Scope
- func (s *Scope) Pos() Pos
- func (s *Scope) Squash(err func(obj, alt Object))
- func (s *Scope) String() string
- func (s *Scope) WriteTo(w io.Writer, n int, recurse bool)
- type Select
- type SelectState
- type Selection
- func (s *Selection) Explicit() int
- func (s *Selection) Implicits() []int
- func (s *Selection) Index() []int
- func (s *Selection) Indirect() bool
- func (s *Selection) Kind() SelectionKind
- func (s *Selection) Obj() Object
- func (s *Selection) Recv() Type
- func (s *Selection) String() string
- func (s *Selection) Type() Type
- type SelectionKind
- type Send
- type Signature
- func (s *Signature) Params() *Tuple
- func (s *Signature) Recv() *Var
- func (s *Signature) RecvTypeParams() *TypeParamList
- func (s *Signature) Results() *Tuple
- func (s *Signature) SetTypeParams(tparams []*TypeParam)
- func (s *Signature) String() string
- func (s *Signature) TypeParams() *TypeParamList
- func (s *Signature) Underlying() Type
- func (s *Signature) Variadic() bool
- type Sizes
- type Slice
- type SliceToArrayPointer
- type StdSizes
- type Store
- type Struct
- type Term
- type Tuple
- type Type
- type TypeAndValue
- func (tv TypeAndValue) Addressable() bool
- func (tv TypeAndValue) Assignable() bool
- func (tv TypeAndValue) HasOk() bool
- func (tv TypeAndValue) IsBuiltin() bool
- func (tv TypeAndValue) IsNil() bool
- func (tv TypeAndValue) IsType() bool
- func (tv TypeAndValue) IsValue() bool
- func (tv TypeAndValue) IsVoid() bool
- type TypeAssert
- type TypeError
- type TypeList
- type TypeMap
- func (m *TypeMap) At(key Type) interface{}
- func (m *TypeMap) Delete(key Type) bool
- func (m *TypeMap) Iterate(f func(key Type, value interface{}))
- func (m *TypeMap) Keys() []Type
- func (m *TypeMap) KeysString() string
- func (m *TypeMap) Len() int
- func (m *TypeMap) Set(key Type, value interface{}) (prev interface{})
- func (m *TypeMap) SetHasher(hasher Hasher)
- func (m *TypeMap) String() string
- type TypeName
- func (obj *TypeName) Exported() bool
- func (obj *TypeName) Id() string
- func (obj *TypeName) IsAlias() bool
- func (obj *TypeName) Name() string
- func (obj *TypeName) Parent() *Scope
- func (obj *TypeName) Pkg() *Package
- func (obj *TypeName) Pos() Pos
- func (obj *TypeName) String() string
- func (obj *TypeName) Type() Type
- type TypeParam
- type TypeParamList
- type UnOp
- type Union
- type Value
- type Var
- func (obj *Var) Anonymous() bool
- func (obj *Var) Embedded() bool
- func (obj *Var) Exported() bool
- func (obj *Var) Id() string
- func (obj *Var) IsField() bool
- func (obj *Var) Name() string
- func (obj *Var) Parent() *Scope
- func (obj *Var) Pkg() *Package
- func (obj *Var) Pos() Pos
- func (obj *Var) String() string
- func (obj *Var) Type() Type
Examples ¶
Constants ¶
const BuilderModeDoc = `` /* 504-byte string literal not displayed */
Variables ¶
var Typ = [...]*Basic{ Invalid: {Invalid, 0, "invalid type"}, Bool: {Bool, IsBoolean, "bool"}, Int: {Int, IsInteger, "int"}, Int8: {Int8, IsInteger, "int8"}, Int16: {Int16, IsInteger, "int16"}, Int32: {Int32, IsInteger, "int32"}, Int64: {Int64, IsInteger, "int64"}, Uint: {Uint, IsInteger | IsUnsigned, "uint"}, Uint8: {Uint8, IsInteger | IsUnsigned, "uint8"}, Uint16: {Uint16, IsInteger | IsUnsigned, "uint16"}, Uint32: {Uint32, IsInteger | IsUnsigned, "uint32"}, Uint64: {Uint64, IsInteger | IsUnsigned, "uint64"}, Uintptr: {Uintptr, IsInteger | IsUnsigned, "uintptr"}, Float32: {Float32, IsFloat, "float32"}, Float64: {Float64, IsFloat, "float64"}, Complex64: {Complex64, IsComplex, "complex64"}, Complex128: {Complex128, IsComplex, "complex128"}, String: {String, IsString, "string"}, UnsafePointer: {UnsafePointer, 0, "Pointer"}, UntypedBool: {UntypedBool, IsBoolean | IsUntyped, "untyped bool"}, UntypedInt: {UntypedInt, IsInteger | IsUntyped, "untyped int"}, UntypedRune: {UntypedRune, IsInteger | IsUntyped, "untyped rune"}, UntypedFloat: {UntypedFloat, IsFloat | IsUntyped, "untyped float"}, UntypedComplex: {UntypedComplex, IsComplex | IsUntyped, "untyped complex"}, UntypedString: {UntypedString, IsString | IsUntyped, "untyped string"}, UntypedNil: {UntypedNil, IsUntyped, "untyped nil"}, }
Typ contains the predeclared *Basic types indexed by their corresponding BasicKind.
The *Basic type for Typ[Byte] will have the name "uint8". Use Universe.Lookup("byte").Type() to obtain the specific alias basic type named "byte" (and analogous for "rune").
Functions ¶
func AssertableTo ¶
AssertableTo reports whether a value of type V can be asserted to have type T.
The behavior of AssertableTo is undefined in two cases:
- if V is a generalized interface; i.e., an interface that may only be used as a type constraint in Go code
- if T is an uninstantiated generic type
func AssignableTo ¶
AssignableTo reports whether a value of type V is assignable to a variable of type T.
The behavior of AssignableTo is undefined if V or T is an uninstantiated generic type.
func CheckExpr ¶
CheckExpr type checks the expression expr as if it had appeared at position pos of package pkg. Type information about the expression is recorded in info. The expression may be an identifier denoting an uninstantiated generic function or type.
If pkg == nil, the Universe scope is used and the provided position pos is ignored. If pkg != nil, and pos is invalid, the package scope is used. Otherwise, pos must belong to the package.
An error is returned if pos is not within the package or if the node cannot be type-checked.
Note: Eval and CheckExpr should not be used instead of running Check to compute types and values, but in addition to Check, as these functions ignore the context in which an expression is used (e.g., an assignment). Thus, top-level untyped constants will return an untyped type rather then the respective context-specific type.
func Comparable ¶
Comparable reports whether values of type T are comparable.
func ConvertibleTo ¶
ConvertibleTo reports whether a value of type V is convertible to a value of type T.
The behavior of ConvertibleTo is undefined if V or T is an uninstantiated generic type.
func DefPredeclaredTestFuncs ¶
func DefPredeclaredTestFuncs()
DefPredeclaredTestFuncs defines the assert and trace built-ins. These built-ins are intended for debugging and testing of this package only.
func Id ¶
Id returns name if it is exported, otherwise it returns the name qualified with the package path.
func Identical ¶
Identical reports whether x and y are identical types. Receivers of Signature types are ignored.
func IdenticalIgnoreTags ¶
IdenticalIgnoreTags reports whether x and y are identical types if tags are ignored. Receivers of Signature types are ignored.
func Implements ¶
Implements reports whether type V implements interface T.
The behavior of Implements is undefined if V is an uninstantiated generic type.
func IsInterface ¶
IsInterface reports whether t is an interface type.
func ObjectString ¶
ObjectString returns the string form of obj. The Qualifier controls the printing of package-level objects, and may be nil.
func SelectionString ¶
SelectionString returns the string form of s. The Qualifier controls the printing of package-level objects, and may be nil.
Examples:
"field (T) f int" "method (T) f(X) Y" "method expr (T) f(X) Y"
func TypeString ¶
TypeString returns the string representation of typ. The Qualifier controls the printing of package-level objects, and may be nil.
func WriteFunction ¶
WriteFunction writes to buf a human-readable "disassembly" of f.
func WritePackage ¶
func WritePackage(buf *bytes.Buffer, p *SSAPackage)
WritePackage writes to buf a human-readable summary of p.
func WriteSignature ¶
WriteSignature writes the representation of the signature sig to buf, without a leading "func" keyword. The Qualifier controls the printing of package-level objects, and may be nil.
Types ¶
type Alloc ¶
The Alloc instruction reserves space for a variable of the given type, zero-initializes it, and yields its address.
Alloc values are always addresses, and have pointer types, so the type of the allocated variable is actually Type().Underlying().(*types.Pointer).Elem().
If Heap is false, Alloc allocates space in the function's activation record (frame); we refer to an Alloc(Heap=false) as a "local" alloc. Each local Alloc returns the same address each time it is executed within the same activation; the space is re-initialized to zero.
If Heap is true, Alloc allocates space in the heap; we refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc returns a different address each time it is executed.
When Alloc is applied to a channel, map or slice type, it returns the address of an uninitialized (nil) reference of that kind; store the result of MakeSlice, MakeMap or MakeChan in that location to instantiate these types.
Pos() returns the syntax.CompositeLit.Lbrace for a composite literal, or the syntax.CallExpr.Rparen for a call to new() or for a call that allocates a varargs slice.
Example printed form:
t0 = local int t1 = new int
func (*Alloc) Referrers ¶
func (v *Alloc) Referrers() *[]Instruction
type ArgumentError ¶
An ArgumentError holds an error associated with an argument index.
func (*ArgumentError) Error ¶
func (e *ArgumentError) Error() string
func (*ArgumentError) Unwrap ¶
func (e *ArgumentError) Unwrap() error
type Array ¶
type Array struct {
// contains filtered or unexported fields
}
An Array represents an array type.
func NewArray ¶
NewArray returns a new array type for the given element type and length. A negative length indicates an unknown length.
func (*Array) Len ¶
Len returns the length of array a. A negative result indicates an unknown length.
func (*Array) Underlying ¶
type Basic ¶
type Basic struct {
// contains filtered or unexported fields
}
A Basic represents a basic type.
func (*Basic) Underlying ¶
type BasicBlock ¶
type BasicBlock struct { Index int // index of this block within Parent().Blocks Comment string // optional label; no semantic significance Instrs []Instruction // instructions in order Preds, Succs []*BasicBlock // predecessors and successors // contains filtered or unexported fields }
BasicBlock represents an SSA basic block.
The final element of Instrs is always an explicit transfer of control (If, Jump, Return, or Panic).
A block may contain no Instructions only if it is unreachable, i.e., Preds is nil. Empty blocks are typically pruned.
BasicBlocks and their Preds/Succs relation form a (possibly cyclic) graph independent of the SSA Value graph: the control-flow graph or CFG. It is illegal for multiple edges to exist between the same pair of blocks.
Each BasicBlock is also a node in the dominator tree of the CFG. The tree may be navigated using Idom()/Dominees() and queried using Dominates().
The order of Preds and Succs is significant (to Phi and If instructions, respectively).
func (*BasicBlock) Dominates ¶
func (b *BasicBlock) Dominates(c *BasicBlock) bool
Dominates reports whether b dominates c.
func (*BasicBlock) Dominees ¶
func (b *BasicBlock) Dominees() []*BasicBlock
Dominees returns the list of blocks that b immediately dominates: its children in the dominator tree.
func (*BasicBlock) Idom ¶
func (b *BasicBlock) Idom() *BasicBlock
Idom returns the block that immediately dominates b: its parent in the dominator tree, if any. Neither the entry node (b.Index==0) nor recover node (b==b.Parent().Recover()) have a parent.
func (*BasicBlock) Parent ¶
func (b *BasicBlock) Parent() *Function
Parent returns the function that contains block b.
func (*BasicBlock) String ¶
func (b *BasicBlock) String() string
String returns a human-readable label of this block. It is not guaranteed unique within the function.
type BasicInfo ¶
type BasicInfo int
BasicInfo is a set of flags describing properties of a basic type.
type BasicKind ¶
type BasicKind int
BasicKind describes the kind of basic type.
const ( Invalid BasicKind = iota // type is invalid // predeclared types Bool Int Int8 Int16 Int32 Int64 Uint Uint8 Uint16 Uint32 Uint64 Uintptr Float32 Float64 Complex64 Complex128 String UnsafePointer // types for untyped values UntypedBool UntypedInt UntypedRune UntypedFloat UntypedComplex UntypedString UntypedNil // aliases Byte = Uint8 Rune = Int32 )
type BinOp ¶
type BinOp struct { // One of: // ADD SUB MUL QUO REM + - * / % // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^ // EQL NEQ LSS LEQ GTR GEQ == != < <= < >= Op Operator X, Y Value // contains filtered or unexported fields }
The BinOp instruction yields the result of binary operation X Op Y.
Pos() returns the syntax.BinaryExpr.OpPos, if explicit in the source.
Example printed form:
t1 = t0 + 1:int
func (*BinOp) Referrers ¶
func (v *BinOp) Referrers() *[]Instruction
type BuilderMode ¶
type BuilderMode uint
BuilderMode is a bitmask of options for diagnostics and checking.
*BuilderMode satisfies the flag.Value interface. Example:
var mode = ssa.BuilderMode(0) func init() { flag.Var(&mode, "build", ssa.BuilderModeDoc) }
const ( PrintPackages BuilderMode = 1 << iota // Print package inventory to stdout PrintFunctions // Print function SSA code to stdout LogSource // Log source locations as SSA builder progresses SanityCheckFunctions // Perform sanity checking of function bodies NaiveForm // Build naïve SSA form: don't replace local loads/stores with registers BuildSerially // Build packages serially, not in parallel. GlobalDebug // Enable debug info for all packages BareInits // Build init functions without guards or calls to dependent inits )
func (*BuilderMode) Set ¶
func (m *BuilderMode) Set(s string) error
Set parses the flag characters in s and updates *m.
func (BuilderMode) String ¶
func (m BuilderMode) String() string
type Builtin ¶
type Builtin struct {
// contains filtered or unexported fields
}
A Builtin represents a built-in function. Builtins don't have a valid type.
func (*Builtin) Exported ¶
func (obj *Builtin) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*Builtin) Name ¶
func (obj *Builtin) Name() string
Name returns the object's (package-local, unqualified) name.
func (*Builtin) Parent ¶
func (obj *Builtin) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*Builtin) Pkg ¶
func (obj *Builtin) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
type Call ¶
type Call struct { Call CallCommon // contains filtered or unexported fields }
The Call instruction represents a function or method call.
The Call instruction yields the function result if there is exactly one. Otherwise it returns a tuple, the components of which are accessed via Extract.
See CallCommon for generic function call documentation.
Pos() returns the syntax.CallExpr.Lparen, if explicit in the source.
Example printed form:
t2 = println(t0, t1) t4 = t3() t7 = invoke t5.Println(...t6)
func (*Call) Common ¶
func (s *Call) Common() *CallCommon
func (*Call) Referrers ¶
func (v *Call) Referrers() *[]Instruction
type CallCommon ¶
type CallCommon struct { Value Value // receiver (invoke mode) or func value (call mode) Method *Func // abstract method (invoke mode) Args []Value // actual parameters (in static method call, includes receiver) // contains filtered or unexported fields }
CallCommon is contained by Go, Defer and Call to hold the common parts of a function or method call.
Each CallCommon exists in one of two modes, function call and interface method invocation, or "call" and "invoke" for short.
1. "call" mode: when Method is nil (!IsInvoke), a CallCommon represents an ordinary function call of the value in Value, which may be a *Builtin, a *Function or any other value of kind 'func'.
Value may be one of:
(a) a *Function, indicating a statically dispatched call to a package-level function, an anonymous function, or a method of a named type. (b) a *MakeClosure, indicating an immediately applied function literal with free variables. (c) a *Builtin, indicating a statically dispatched call to a built-in function. (d) any other value, indicating a dynamically dispatched function call.
StaticCallee returns the identity of the callee in cases (a) and (b), nil otherwise.
Args contains the arguments to the call. If Value is a method, Args[0] contains the receiver parameter.
Example printed form:
t2 = println(t0, t1) go t3() defer t5(...t6)
2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon represents a dynamically dispatched call to an interface method. In this mode, Value is the interface value and Method is the interface's abstract method. Note: an abstract method may be shared by multiple interfaces due to embedding; Value.Type() provides the specific interface used for this call.
Value is implicitly supplied to the concrete method implementation as the receiver parameter; in other words, Args[0] holds not the receiver but the first true argument.
Example printed form:
t1 = invoke t0.String() go invoke t3.Run(t2) defer invoke t4.Handle(...t5)
For all calls to variadic functions (Signature().Variadic()), the last element of Args is a slice.
func (*CallCommon) Description ¶
func (c *CallCommon) Description() string
Description returns a description of the mode of this call suitable for a user interface, e.g., "static method call".
func (*CallCommon) IsInvoke ¶
func (c *CallCommon) IsInvoke() bool
IsInvoke returns true if this call has "invoke" (not "call") mode.
func (*CallCommon) Operands ¶
func (c *CallCommon) Operands(rands []*Value) []*Value
func (*CallCommon) Pos ¶
func (c *CallCommon) Pos() Pos
func (*CallCommon) Signature ¶
func (c *CallCommon) Signature() *Signature
Signature returns the signature of the called function.
For an "invoke"-mode call, the signature of the interface method is returned.
In either "call" or "invoke" mode, if the callee is a method, its receiver is represented by sig.Recv, not sig.Params().At(0).
func (*CallCommon) StaticCallee ¶
func (c *CallCommon) StaticCallee() *Function
StaticCallee returns the callee if this is a trivially static "call"-mode call to a function.
func (*CallCommon) String ¶
func (c *CallCommon) String() string
type CallInstruction ¶
type CallInstruction interface { Instruction Common() *CallCommon // returns the common parts of the call Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer) }
The CallInstruction interface, implemented by *Go, *Defer and *Call, exposes the common parts of function-calling instructions, yet provides a way back to the Value defined by *Call alone.
type Chan ¶
type Chan struct {
// contains filtered or unexported fields
}
A Chan represents a channel type.
func (*Chan) Underlying ¶
type ChangeInterface ¶
type ChangeInterface struct { X Value // contains filtered or unexported fields }
ChangeInterface constructs a value of one interface type from a value of another interface type known to be assignable to it. This operation cannot fail.
Pos() returns the syntax.CallExpr.Lparen if the instruction arose from an explicit T(e) conversion; the syntax.AssertExpr.Lparen if the instruction arose from an explicit e.(T) operation; or syntax.NoPos otherwise.
Example printed form:
t1 = change interface interface{} <- I (t0)
func (*ChangeInterface) Operands ¶
func (v *ChangeInterface) Operands(rands []*Value) []*Value
func (*ChangeInterface) Referrers ¶
func (v *ChangeInterface) Referrers() *[]Instruction
func (*ChangeInterface) String ¶
func (v *ChangeInterface) String() string
type ChangeType ¶
type ChangeType struct { X Value // contains filtered or unexported fields }
The ChangeType instruction applies to X a value-preserving type change to Type().
Type changes are permitted:
- between a named type and its underlying type.
- between two named types of the same underlying type.
- between (possibly named) pointers to identical base types.
- from a bidirectional channel to a read- or write-channel, optionally adding/removing a name.
This operation cannot fail dynamically.
Pos() returns the syntax.CallExpr.Lparen, if the instruction arose from an explicit conversion in the source.
Example printed form:
t1 = changetype *int <- IntPtr (t0)
func (*ChangeType) Operands ¶
func (v *ChangeType) Operands(rands []*Value) []*Value
func (*ChangeType) Referrers ¶
func (v *ChangeType) Referrers() *[]Instruction
func (*ChangeType) String ¶
func (v *ChangeType) String() string
type Checker ¶
type Checker struct { *Info // contains filtered or unexported fields }
A Checker maintains the state of the type checker. It must be created with NewChecker.
func NewChecker ¶
NewChecker returns a new Checker instance for a given package. Package files may be added incrementally via checker.Files.
type Config ¶
type Config struct { // Context is the context used for resolving global identifiers. If nil, the // type checker will initialize this field with a newly created context. Context *Context // Prog is the SSA program to use for creating SSA packages. // If nil, then SSA packages are not created. Prog *Program // GoVersion describes the accepted Go language version. The string // must follow the format "go%d.%d" (e.g. "go1.12") or ist must be // empty; an empty string indicates the latest language version. // If the format is invalid, invoking the type checker will cause a // panic. GoVersion string // If IgnoreFuncBodies is set, function bodies are not // type-checked. IgnoreFuncBodies bool // If FakeImportC is set, `import "C"` (for packages requiring Cgo) // declares an empty "C" package and errors are omitted for qualified // identifiers referring to package C (which won't find an object). // This feature is intended for the standard library cmd/api tool. // // Caution: Effects may be unpredictable due to follow-on errors. // Do not use casually! FakeImportC bool // If IgnoreLabels is set, correct label use is not checked. // TODO(gri) Consolidate label checking and remove this flag. IgnoreLabels bool // If CompilerErrorMessages is set, errors are reported using // cmd/compile error strings to match $GOROOT/test errors. // TODO(gri) Consolidate error messages and remove this flag. CompilerErrorMessages bool // If UsesCgo is set, the type checker expects the // _cgo_gotypes.go file generated by running cmd/cgo to be // provided as a package source file. Qualified identifiers // referring to package C will be resolved to cgo-provided // declarations within _cgo_gotypes.go. // // It is an error to set both FakeImportC and UsesCgo. UsesCgo bool // If Trace is set, a debug trace is printed to stdout. Trace bool // If Error != nil, it is called with each error found // during type checking; err has dynamic type Error. // Secondary errors (for instance, to enumerate all types // involved in an invalid recursive type declaration) have // error strings that start with a '\t' character. // If Error == nil, type-checking stops with the first // error found. Error func(err error) // An importer is used to import packages referred to from // import declarations. // If the installed importer implements ImporterFrom, the type // checker calls ImportFrom instead of Import. // The type checker reports an error if an importer is needed // but none was installed. Importer Importer // If Sizes != nil, it provides the sizing functions for package unsafe. // Otherwise SizesFor("gc", "amd64") is used instead. Sizes Sizes // If DisableUnusedImportCheck is set, packages are not checked // for unused imports. DisableUnusedImportCheck bool }
A Config specifies the configuration for type checking. The zero value for Config is a ready-to-use default configuration.
func (*Config) Check ¶
Check type-checks a package and returns the resulting package object and the first error if any. Additionally, if info != nil, Check populates each of the non-nil maps in the Info struct.
The package is marked as complete if no errors occurred, otherwise it is incomplete. See Config.Error for controlling behavior in the presence of errors.
The package is specified by a list of *syntax.Files and corresponding file set, and the package path the package is identified with. The clean path must not be empty or dot (".").
type Const ¶
type Const struct {
// contains filtered or unexported fields
}
A Const represents a declared constant.
func NewConst ¶
NewConst returns a new constant with value val. The remaining arguments set the attributes found with all Objects.
func (*Const) Exported ¶
func (obj *Const) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*Const) Name ¶
func (obj *Const) Name() string
Name returns the object's (package-local, unqualified) name.
func (*Const) Parent ¶
func (obj *Const) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*Const) Pkg ¶
func (obj *Const) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
type Context ¶
type Context struct {
// contains filtered or unexported fields
}
An Context is an opaque type checking context. It may be used to share identical type instances across type-checked packages or calls to Instantiate.
It is safe for concurrent use.
type Convert ¶
type Convert struct { X Value // contains filtered or unexported fields }
The Convert instruction yields the conversion of value X to type Type(). One or both of those types is basic (but possibly named).
A conversion may change the value and representation of its operand. Conversions are permitted:
- between real numeric types.
- between complex numeric types.
- between string and []byte or []rune.
- between pointers and unsafe.Pointer.
- between unsafe.Pointer and uintptr.
- from (Unicode) integer to (UTF-8) string.
A conversion may imply a type name change also.
This operation cannot fail dynamically.
Conversions of untyped string/number/bool constants to a specific representation are eliminated during SSA construction.
Pos() returns the syntax.CallExpr.Lparen, if the instruction arose from an explicit conversion in the source.
Example printed form:
t1 = convert []byte <- string (t0)
func (*Convert) Referrers ¶
func (v *Convert) Referrers() *[]Instruction
type DebugRef ¶
type DebugRef struct { Expr Expr // the referring expression (never *syntax.ParenExpr) IsAddr bool // Expr is addressable and X is the address it denotes X Value // the value or address of Expr // contains filtered or unexported fields }
A DebugRef instruction maps a source-level expression Expr to the SSA value X that represents the value (!IsAddr) or address (IsAddr) of that expression.
DebugRef is a pseudo-instruction: it has no dynamic effect.
Pos() returns Expr.Pos(), the start position of the source-level expression. This is not the same as the "designated" token as documented at Value.Pos(). e.g. CallExpr.Pos() does not return the position of the ("designated") Lparen token.
If Expr is an *syntax.Name denoting a var or func, Object() returns the object; though this information can be obtained from the type checker, including it here greatly facilitates debugging. For non-Ident expressions, Object() returns nil.
DebugRefs are generated only for functions built with debugging enabled; see Package.SetDebugMode() and the GlobalDebug builder mode flag.
DebugRefs are not emitted for syntax.Idents referring to constants or predeclared identifiers, since they are trivial and numerous. Nor are they emitted for syntax.ParenExprs.
(By representing these as instructions, rather than out-of-band, consistency is maintained during transformation passes by the ordinary SSA renaming machinery.)
Example printed form:
; *syntax.CallExpr @ 102:9 is t5 ; var x float64 @ 109:72 is x ; address of *syntax.CompositeLit @ 216:10 is t0
func (*DebugRef) Block ¶
func (v *DebugRef) Block() *BasicBlock
func (*DebugRef) Referrers ¶
func (v *DebugRef) Referrers() *[]Instruction
type Extract ¶
The Extract instruction yields component Index of Tuple.
This is used to access the results of instructions with multiple return values, such as Call, TypeAssert, Next, UnOp(ARROW) and IndexExpr(Map).
Example printed form:
t1 = extract t0 #1
func (*Extract) Referrers ¶
func (v *Extract) Referrers() *[]Instruction
type FieldAddr ¶
type FieldAddr struct { X Value // *struct Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field) // contains filtered or unexported fields }
The FieldAddr instruction yields the address of Field of *struct X.
The field is identified by its index within the field list of the struct type of X.
Dynamically, this instruction panics if X evaluates to a nil pointer.
Type() returns a (possibly named) *types.Pointer.
Pos() returns the position of the syntax.SelectorExpr.Sel for the field, if explicit in the source.
Example printed form:
t1 = &t0.name [#1]
func (*FieldAddr) Referrers ¶
func (v *FieldAddr) Referrers() *[]Instruction
type FreeVar ¶
type FreeVar struct {
// contains filtered or unexported fields
}
A FreeVar represents a free variable of the function to which it belongs.
FreeVars are used to implement anonymous functions, whose free variables are lexically captured in a closure formed by MakeClosure. The value of such a free var is an Alloc or another FreeVar and is considered a potentially escaping heap address, with pointer type.
FreeVars are also used to implement bound method closures. Such a free var represents the receiver value and may be of any type that has concrete methods.
Pos() returns the position of the value that was captured, which belongs to an enclosing function.
func (*FreeVar) Referrers ¶
func (v *FreeVar) Referrers() *[]Instruction
type Func ¶
type Func struct {
// contains filtered or unexported fields
}
A Func represents a declared function, concrete method, or abstract (interface) method. Its Type() is always a *Signature. An abstract method may belong to many interfaces due to embedding.
func MissingMethod ¶
MissingMethod returns (nil, false) if V implements T, otherwise it returns a missing method required by T and whether it is missing or just has the wrong type.
For non-interface types V, or if static is set, V implements T if all methods of T are present in V. Otherwise (V is an interface and static is not set), MissingMethod only checks that methods of T which are also present in V have matching types (e.g., for a type assertion x.(T) where x is of interface type V).
func NewFunc ¶
NewFunc returns a new function with the given signature, representing the function's type.
func NewFuncLit ¶
NewFuncLit returns a new function representing a function literal.
func StaticCallee ¶
StaticCallee returns the target (function or method) of a static function call, if any. It returns nil for calls to builtins.
func (*Func) Exported ¶
func (obj *Func) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*Func) FullName ¶
FullName returns the package- or receiver-type-qualified name of function or method obj.
func (*Func) Name ¶
func (obj *Func) Name() string
Name returns the object's (package-local, unqualified) name.
func (*Func) Parent ¶
func (obj *Func) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*Func) Pkg ¶
func (obj *Func) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
func (*Func) Pos ¶
func (obj *Func) Pos() Pos
Pos returns the declaration position of the object's identifier.
type Function ¶
type Function struct { Signature *Signature Synthetic string // provenance of synthetic function; "" for true source functions Pkg *SSAPackage // enclosing package; nil for shared funcs (wrappers and error.Error) Params []*Parameter // function parameters; for methods, includes receiver FreeVars []*FreeVar // free variables whose values must be supplied by closure Locals []*Alloc // local variables of this function Blocks []*BasicBlock // basic blocks of the function; nil => external Recover *BasicBlock // optional; control transfers here after recovered panic AnonFuncs []*Function // anonymous functions directly beneath this one // contains filtered or unexported fields }
Function represents the parameters, results, and code of a function or method.
If Blocks is nil, this indicates an external function for which no Go source code is available. In this case, FreeVars and Locals are nil too. Clients performing whole-program analysis must handle external functions specially.
Blocks contains the function's control-flow graph (CFG). Blocks[0] is the function entry point; block order is not otherwise semantically significant, though it may affect the readability of the disassembly. To iterate over the blocks in dominance order, use DomPreorder().
Recover is an optional second entry point to which control resumes after a recovered panic. The Recover block may contain only a return statement, preceded by a load of the function's named return parameters, if any.
A nested function (Parent()!=nil) that refers to one or more lexically enclosing local variables ("free variables") has FreeVars. Such functions cannot be called directly but require a value created by MakeClosure which, via its Bindings, supplies values for these parameters.
If the function is a method (Signature.Recv() != nil) then the first element of Params is the receiver parameter.
A Go package may declare many functions called "init". For each one, Object().Name() returns "init" but Name() returns "init#1", etc, in declaration order.
Pos() returns the declaring syntax.FuncLit.Type.Func or the position of the syntax.FuncDecl.Name, if the function was explicit in the source. Synthetic wrappers, for which Synthetic != "", may share the same position as the function they wrap. Syntax.Pos() always returns the position of the declaring "func" token.
Type() returns the function's Signature.
func (*Function) DomPreorder ¶
func (f *Function) DomPreorder() []*BasicBlock
DomPreorder returns a new slice containing the blocks of f in dominator tree preorder.
func (*Function) Referrers ¶
func (v *Function) Referrers() *[]Instruction
func (*Function) RelString ¶
RelString returns the full name of this function, qualified by package name, receiver type, etc.
The specific formatting rules are not guaranteed and may change.
Examples:
"math.IsNaN" // a package-level function "(*bytes.Buffer).Bytes" // a declared method or a wrapper "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0) "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure) "main.main$1" // an anonymous function in main "main.init#1" // a declared init function "main.init" // the synthesized package initializer
When these functions are referred to from within the same package (i.e. from == f.Pkg.Object), they are rendered without the package path. For example: "IsNaN", "(*Buffer).Bytes", etc.
All non-synthetic functions have distinct package-qualified names. (But two methods may have the same name "(T).f" if one is a synthetic wrapper promoting a non-exported method "f" from another package; in that case, the strings are equal but the identifiers "f" are distinct.)
type Global ¶
type Global struct {
// contains filtered or unexported fields
}
A Global is a named Value holding the address of a package-level variable.
Pos() returns the position of the syntax.ValueSpec.Names[*] identifier.
func (*Global) Referrers ¶
func (v *Global) Referrers() *[]Instruction
type Hasher ¶
type Hasher struct {
// contains filtered or unexported fields
}
A Hasher maps each type to its hash value. For efficiency, a hasher uses memoization; thus its memory footprint grows monotonically over time. Hashers are not thread-safe. Hashers have reference semantics. Call MakeHasher to create a Hasher.
type If ¶
type If struct { Cond Value // contains filtered or unexported fields }
The If instruction transfers control to one of the two successors of its owning block, depending on the boolean Cond: the first if true, the second if false.
An If instruction must be the last instruction of its containing BasicBlock.
Pos() returns NoPos.
Example printed form:
if t0 goto done else body
func (*If) Block ¶
func (v *If) Block() *BasicBlock
func (*If) Referrers ¶
func (v *If) Referrers() *[]Instruction
type Importer ¶
type Importer interface { // Import returns the imported package for the given import // path when imported by a package file located in srcDir. // If the import failed, besides returning an error, ImportFrom // is encouraged to cache and return a package anyway, if one // was created. This will reduce package inconsistencies and // follow-on type checker errors due to the missing package. // Two calls to ImportFrom with the same path and dir must // return the same package. Import(path, srcDir string) (*Package, error) }
An Importer resolves import paths to Packages.
type Index ¶
type Index struct { X Value // array Index Value // integer index // contains filtered or unexported fields }
The Index instruction yields element Index of array X.
Pos() returns the syntax.IndexExpr.Lbrack for the index operation, if explicit in the source.
Example printed form:
t2 = t0[t1]
func (*Index) Referrers ¶
func (v *Index) Referrers() *[]Instruction
type IndexAddr ¶
type IndexAddr struct { X Value // slice or *array, Index Value // integer index // contains filtered or unexported fields }
The IndexAddr instruction yields the address of the element at index Index of collection X. Index is an integer expression.
The elements of maps and strings are not addressable; use Lookup or MapUpdate instead.
Dynamically, this instruction panics if X evaluates to a nil *array pointer.
Type() returns a (possibly named) *types.Pointer.
Pos() returns the syntax.IndexExpr.Lbrack for the index operation, if explicit in the source.
Example printed form:
t2 = &t0[t1]
func (*IndexAddr) Referrers ¶
func (v *IndexAddr) Referrers() *[]Instruction
type Info ¶
type Info struct { // Types maps expressions to their types, and for constant // expressions, also their values. Invalid expressions are // omitted. // // For (possibly parenthesized) identifiers denoting built-in // functions, the recorded signatures are call-site specific: // if the call result is not a constant, the recorded type is // an argument-specific signature. Otherwise, the recorded type // is invalid. // // The Types map does not record the type of every identifier, // only those that appear where an arbitrary expression is // permitted. For instance, the identifier f in a selector // expression x.f is found only in the Selections map, the // identifier z in a variable declaration 'var z int' is found // only in the Defs map, and identifiers denoting packages in // qualified identifiers are collected in the Uses map. Types map[Expr]TypeAndValue // Instances maps identifiers denoting generic types or functions to their // type arguments and instantiated type. // // For example, Instances will map the identifier for 'T' in the type // instantiation T[int, string] to the type arguments [int, string] and // resulting instantiated *Named type. Given a generic function // func F[A any](A), Instances will map the identifier for 'F' in the call // expression F(int(1)) to the inferred type arguments [int], and resulting // instantiated *Signature. // // Invariant: Instantiating Uses[id].Type() with Instances[id].TypeArgs // results in an equivalent of Instances[id].Type. Instances map[*Name]Instance // Defs maps identifiers to the objects they define (including // package names, dots "." of dot-imports, and blank "_" identifiers). // For identifiers that do not denote objects (e.g., the package name // in package clauses, or symbolic variables t in t := x.(type) of // type switch headers), the corresponding objects are nil. // // For an embedded field, Defs returns the field *Var it defines. // // Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos() Defs map[*Name]Object // Uses maps identifiers to the objects they denote. // // For an embedded field, Uses returns the *TypeName it denotes. // // Invariant: Uses[id].Pos() != id.Pos() Uses map[*Name]Object // Implicits maps nodes to their implicitly declared objects, if any. // The following node and object types may appear: // // node declared object // // *syntax.ImportDecl *PkgName for imports without renames // *syntax.CaseClause type-specific *Var for each type switch case clause (incl. default) // *syntax.Field anonymous parameter *Var (incl. unnamed results) // *syntax.FuncLit anonymous *Func // Implicits map[Node]Object // Selections maps selector expressions (excluding qualified identifiers) // to their corresponding selections. Selections map[*SelectorExpr]*Selection // Scopes maps syntax.Nodes to the scopes they define. Package scopes are not // associated with a specific node but with all files belonging to a package. // Thus, the package scope can be found in the type-checked Package object. // Scopes nest, with the Universe scope being the outermost scope, enclosing // the package scope, which contains (one or more) files scopes, which enclose // function scopes which in turn enclose statement and function literal scopes. // Note that even though package-level functions are declared in the package // scope, the function scopes are embedded in the file scope of the file // containing the function declaration. // // The following node types may appear in Scopes: // // *syntax.File // *syntax.FuncType // *syntax.TypeDecl // *syntax.BlockStmt // *syntax.IfStmt // *syntax.SwitchStmt // *syntax.CaseClause // *syntax.CommClause // *syntax.ForStmt // Scopes map[Node]*Scope // InitOrder is the list of package-level initializers in the order in which // they must be executed. Initializers referring to variables related by an // initialization dependency appear in topological order, the others appear // in source order. Variables without an initialization expression do not // appear in this list. InitOrder []*Initializer }
Info holds result type information for a type-checked package. Only the information for which a map is provided is collected. If the package has type errors, the collected information may be incomplete.
Example ¶
ExampleInfo prints various facts recorded by the type checker in a types.Info struct: definitions of and references to each named object, and the type, value, and mode of every expression in the package.
// Parse a single source file. const input = ` package fib type S string var a, b, c = len(b), S(c), "hello" func fib(x int) int { if x < 2 { return x } return fib(x-1) - fib(x-2) }` f, err := parseSrc("fib.go", input) if err != nil { log.Fatal(err) } // Type-check the package. // We create an empty map for each kind of input // we're interested in, and Check populates them. info := types.Info{ Types: make(map[Expr]types.TypeAndValue), Defs: make(map[*Name]types.Object), Uses: make(map[*Name]types.Object), } var conf types.Config pkg, err := conf.Check("fib", []*File{f}, &info) if err != nil { log.Fatal(err) } // Print package-level variables in initialization order. fmt.Printf("InitOrder: %v\n\n", info.InitOrder) // For each named object, print the line and // column of its definition and each of its uses. fmt.Println("Defs and Uses of each named object:") usesByObj := make(map[types.Object][]string) for id, obj := range info.Uses { posn := id.Pos() lineCol := fmt.Sprintf("%d:%d", posn.Line(), posn.Col()) usesByObj[obj] = append(usesByObj[obj], lineCol) } var items []string for obj, uses := range usesByObj { sort.Strings(uses) item := fmt.Sprintf("%s:\n defined at %s\n used at %s", types.ObjectString(obj, types.RelativeTo(pkg)), obj.Pos(), strings.Join(uses, ", ")) items = append(items, item) } sort.Strings(items) // sort by line:col, in effect fmt.Println(strings.Join(items, "\n")) fmt.Println() // TODO(gri) Enable once positions are updated/verified // fmt.Println("Types and Values of each expression:") // items = nil // for expr, tv := range info.Types { // var buf bytes.Buffer // posn := expr.Pos() // tvstr := tv.Type.String() // if tv.Value != nil { // tvstr += " = " + tv.Value.String() // } // // line:col | expr | mode : type = value // fmt.Fprintf(&buf, "%2d:%2d | %-19s | %-7s : %s", // posn.Line(), posn.Col(), types.ExprString(expr), // mode(tv), tvstr) // items = append(items, buf.String()) // } // sort.Strings(items) // fmt.Println(strings.Join(items, "\n"))
Output: InitOrder: [c = "hello" b = S(c) a = len(b)] Defs and Uses of each named object: builtin len: defined at <unknown position> used at 6:15 func fib(x int) int: defined at fib.go:8:6 used at 12:20, 12:9 type S string: defined at fib.go:4:6 used at 6:23 type int: defined at <unknown position> used at 8:12, 8:17 type string: defined at <unknown position> used at 4:8 var b S: defined at fib.go:6:8 used at 6:19 var c string: defined at fib.go:6:11 used at 6:25 var x int: defined at fib.go:8:10 used at 10:10, 12:13, 12:24, 9:5
type Initializer ¶
type Initializer struct { Lhs []*Var // var Lhs = Rhs Rhs Expr }
An Initializer describes a package-level variable, or a list of variables in case of a multi-valued initialization expression, and the corresponding initialization expression.
func (*Initializer) String ¶
func (init *Initializer) String() string
type Instance ¶
Instance reports the type arguments and instantiated type for type and function instantiations. For type instantiations, Type will be of dynamic type *Named. For function instantiations, Type will be of dynamic type *Signature.
type Instruction ¶
type Instruction interface { // String returns the disassembled form of this value. // // Examples of Instructions that are Values: // "x + y" (BinOp) // "len([])" (Call) // Note that the name of the Value is not printed. // // Examples of Instructions that are not Values: // "return x" (Return) // "*y = x" (Store) // // (The separation Value.Name() from Value.String() is useful // for some analyses which distinguish the operation from the // value it defines, e.g., 'y = local int' is both an allocation // of memory 'local int' and a definition of a pointer y.) String() string // Parent returns the function to which this instruction // belongs. Parent() *Function // Block returns the basic block to which this instruction // belongs. Block() *BasicBlock // Operands returns the operands of this instruction: the // set of Values it references. // // Specifically, it appends their addresses to rands, a // user-provided slice, and returns the resulting slice, // permitting avoidance of memory allocation. // // The operands are appended in undefined order, but the order // is consistent for a given Instruction; the addresses are // always non-nil but may point to a nil Value. Clients may // store through the pointers, e.g. to effect a value // renaming. // // Value.Referrers is a subset of the inverse of this // relation. (Referrers are not tracked for all types of // Values.) Operands(rands []*Value) []*Value // Pos returns the location of the AST token most closely // associated with the operation that gave rise to this // instruction, or syntax.NoPos if it was not explicit in the // source. // // For each syntax.Node type, a particular token is designated as // the closest location for the expression, e.g. the Go token // for an *syntax.GoStmt. This permits a compact but approximate // mapping from Instructions to source positions for use in // diagnostic messages, for example. // // (Do not use this position to determine which Instruction // corresponds to an syntax.Expr; see the notes for Value.Pos. // This position may be used to determine which non-Value // Instruction corresponds to some syntax.Stmts, but not all: If // and Jump instructions have no Pos(), for example.) Pos() Pos // contains filtered or unexported methods }
An Instruction is an SSA instruction that computes a new Value or has some effect.
An Instruction that defines a value (e.g. BinOp) also implements the Value interface; an Instruction that only has an effect (e.g. Store) does not.
type Interface ¶
type Interface struct {
// contains filtered or unexported fields
}
An Interface represents an interface type.
func NewInterfaceType ¶
NewInterfaceType returns a new interface for the given methods and embedded types. NewInterfaceType takes ownership of the provided methods and may modify their types by setting missing receivers.
func (*Interface) EmbeddedType ¶
EmbeddedType returns the i'th embedded type of interface t for 0 <= i < t.NumEmbeddeds().
func (*Interface) ExplicitMethod ¶
ExplicitMethod returns the i'th explicitly declared method of interface t for 0 <= i < t.NumExplicitMethods(). The methods are ordered by their unique Id.
func (*Interface) IsComparable ¶
IsComparable reports whether each type in interface t's type set is comparable.
func (*Interface) IsImplicit ¶
IsImplicit reports whether the interface t is a wrapper for a type set literal.
func (*Interface) IsMethodSet ¶
IsMethodSet reports whether the interface t is fully described by its method set.
func (*Interface) MarkImplicit ¶
func (t *Interface) MarkImplicit()
MarkImplicit marks the interface t as implicit, meaning this interface corresponds to a constraint literal such as ~T or A|B without explicit interface embedding. MarkImplicit should be called before any concurrent use of implicit interfaces.
func (*Interface) Method ¶
Method returns the i'th method of interface t for 0 <= i < t.NumMethods(). The methods are ordered by their unique Id.
func (*Interface) NumEmbeddeds ¶
NumEmbeddeds returns the number of embedded types in interface t.
func (*Interface) NumExplicitMethods ¶
NumExplicitMethods returns the number of explicitly declared methods of interface t.
func (*Interface) NumMethods ¶
NumMethods returns the total number of methods of interface t.
func (*Interface) Underlying ¶
type Jump ¶
type Jump struct {
// contains filtered or unexported fields
}
The Jump instruction transfers control to the sole successor of its owning block.
A Jump must be the last instruction of its containing BasicBlock.
Pos() returns NoPos.
Example printed form:
jump done
func (*Jump) Block ¶
func (v *Jump) Block() *BasicBlock
func (*Jump) Referrers ¶
func (v *Jump) Referrers() *[]Instruction
type Label ¶
type Label struct {
// contains filtered or unexported fields
}
A Label represents a declared label. Labels don't have a type.
func (*Label) Exported ¶
func (obj *Label) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*Label) Name ¶
func (obj *Label) Name() string
Name returns the object's (package-local, unqualified) name.
func (*Label) Parent ¶
func (obj *Label) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*Label) Pkg ¶
func (obj *Label) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
type Lookup ¶
type Lookup struct { X Value // string or map Index Value // integer or key-typed index CommaOk bool // return a value,ok pair // contains filtered or unexported fields }
The Lookup instruction yields element Index of collection X, a map or string. Index is an integer expression if X is a string or the appropriate key type if X is a map.
If CommaOk, the result is a 2-tuple of the value above and a boolean indicating the result of a map membership test for the key. The components of the tuple are accessed using Extract.
Pos() returns the syntax.IndexExpr.Lbrack, if explicit in the source.
Example printed form:
t2 = t0[t1] t5 = t3[t4],ok
func (*Lookup) Referrers ¶
func (v *Lookup) Referrers() *[]Instruction
type MakeChan ¶
type MakeChan struct { Size Value // int; size of buffer; zero => synchronous. // contains filtered or unexported fields }
The MakeChan instruction creates a new channel object and yields a value of kind chan.
Type() returns a (possibly named) *types.Chan.
Pos() returns the syntax.CallExpr.Lparen for the make(chan) that created it.
Example printed form:
t0 = make chan int 0 t0 = make IntChan 0
func (*MakeChan) Referrers ¶
func (v *MakeChan) Referrers() *[]Instruction
type MakeClosure ¶
type MakeClosure struct { Fn Value // always a *Function Bindings []Value // values for each free variable in Fn.FreeVars // contains filtered or unexported fields }
The MakeClosure instruction yields a closure value whose code is Fn and whose free variables' values are supplied by Bindings.
Type() returns a (possibly named) *types.Signature.
Pos() returns the syntax.FuncLit.Type.Func for a function literal closure or the syntax.SelectorExpr.Sel for a bound method closure.
Example printed form:
t0 = make closure anon@1.2 [x y z] t1 = make closure bound$(main.I).add [i]
func (*MakeClosure) Operands ¶
func (v *MakeClosure) Operands(rands []*Value) []*Value
func (*MakeClosure) Referrers ¶
func (v *MakeClosure) Referrers() *[]Instruction
func (*MakeClosure) String ¶
func (v *MakeClosure) String() string
type MakeInterface ¶
type MakeInterface struct { X Value // contains filtered or unexported fields }
MakeInterface constructs an instance of an interface type from a value of a concrete type.
Use Program.MethodSets.MethodSet(X.Type()) to find the method-set of X, and Program.MethodValue(m) to find the implementation of a method.
To construct the zero value of an interface type T, use:
NewConst(constant.MakeNil(), T, pos)
Pos() returns the syntax.CallExpr.Lparen, if the instruction arose from an explicit conversion in the source.
Example printed form:
t1 = make interface{} <- int (42:int) t2 = make Stringer <- t0
func (*MakeInterface) Operands ¶
func (v *MakeInterface) Operands(rands []*Value) []*Value
func (*MakeInterface) Referrers ¶
func (v *MakeInterface) Referrers() *[]Instruction
func (*MakeInterface) String ¶
func (v *MakeInterface) String() string
type MakeMap ¶
type MakeMap struct { Reserve Value // initial space reservation; nil => default // contains filtered or unexported fields }
The MakeMap instruction creates a new hash-table-based map object and yields a value of kind map.
Type() returns a (possibly named) *types.Map.
Pos() returns the syntax.CallExpr.Lparen, if created by make(map), or the syntax.CompositeLit.Lbrack if created by a literal.
Example printed form:
t1 = make map[string]int t0 t1 = make StringIntMap t0
func (*MakeMap) Referrers ¶
func (v *MakeMap) Referrers() *[]Instruction
type MakeSlice ¶
The MakeSlice instruction yields a slice of length Len backed by a newly allocated array of length Cap.
Both Len and Cap must be non-nil Values of integer type.
(Alloc(types.Array) followed by Slice will not suffice because Alloc can only create arrays of constant length.)
Type() returns a (possibly named) *types.Slice.
Pos() returns the syntax.CallExpr.Lparen for the make([]T) that created it.
Example printed form:
t1 = make []string 1:int t0 t1 = make StringSlice 1:int t0
func (*MakeSlice) Referrers ¶
func (v *MakeSlice) Referrers() *[]Instruction
type Map ¶
type Map struct {
// contains filtered or unexported fields
}
A Map represents a map type.
Example ¶
const source = `package P var X []string var Y []string const p, q = 1.0, 2.0 func f(offset int32) (value byte, ok bool) func g(rune) (uint8, bool) ` // Parse and type-check the package. f, err := ParseString("P.go", source) if err != nil { panic(err) } pkg, err := new(Config).Check("P", []*File{f}, nil) if err != nil { panic(err) } scope := pkg.Scope() // Group names of package-level objects by their type. var namesByType TypeMap // value is []string for _, name := range scope.Names() { T := scope.Lookup(name).Type() names, _ := namesByType.At(T).([]string) names = append(names, name) namesByType.Set(T, names) } // Format, sort, and print the map entries. var lines []string namesByType.Iterate(func(T Type, names interface{}) { lines = append(lines, fmt.Sprintf("%s %s", names, T)) }) sort.Strings(lines) for _, line := range lines { fmt.Println(line) }
Output: [X Y] []string [f g] func(offset int32) (value byte, ok bool) [p q] untyped float
func (*Map) Underlying ¶
type MapUpdate ¶
The MapUpdate instruction updates the association of Map[Key] to Value.
Pos() returns the syntax.KeyValueExpr.Colon or syntax.IndexExpr.Lbrack, if explicit in the source.
Example printed form:
t0[t1] = t2
func (*MapUpdate) Block ¶
func (v *MapUpdate) Block() *BasicBlock
func (*MapUpdate) Referrers ¶
func (v *MapUpdate) Referrers() *[]Instruction
type Member ¶
type Member interface { Name() string // declared name of the package member String() string // package-qualified name of the package member RelString(*Package) string // like String, but relative refs are unqualified Object() Object // typechecker's object for this member, if any Pos() Pos // position of member's declaration, if known Type() Type // type of the package member }
A Member is a member of a Go package, implemented by *NamedConst, *Global, *Function, or *Type; they are created by package-level const, var, func and type declarations respectively.
type MethodSet ¶
type MethodSet struct {
// contains filtered or unexported fields
}
A MethodSet is an ordered set of concrete or abstract (interface) methods; a method is a MethodVal selection, and they are ordered by ascending m.Obj().Id(). The zero value for a MethodSet is a ready-to-use empty method set.
func NewMethodSet ¶
NewMethodSet returns the method set for the given type T. It always returns a non-nil method set, even if it is empty.
type MethodSetCache ¶
type MethodSetCache struct {
// contains filtered or unexported fields
}
A MethodSetCache records the method set of each type T for which MethodSet(T) is called so that repeat queries are fast. The zero value is a ready-to-use cache instance.
func (*MethodSetCache) MethodSet ¶
func (cache *MethodSetCache) MethodSet(T Type) *MethodSet
MethodSet returns the method set of type T. It is thread-safe.
If cache is nil, this function is equivalent to types.NewMethodSet(T). Utility functions can thus expose an optional *MethodSetCache parameter to clients that care about performance.
type Named ¶
type Named struct {
// contains filtered or unexported fields
}
A Named represents a named (defined) type.
func NewNamed ¶
NewNamed returns a new named type for the given type name, underlying type, and associated methods. If the given type name obj doesn't have a type yet, its type is set to the returned named type. The underlying type must not be a *Named.
func (*Named) AddMethod ¶
AddMethod adds method m unless it is already in the method list. t must not have type arguments.
func (*Named) NumMethods ¶
NumMethods returns the number of explicit methods defined for t.
For an ordinary or instantiated type t, the receiver base type of these methods will be the named type t. For an uninstantiated generic type t, each method receiver will be instantiated with its receiver type parameters.
func (*Named) Obj ¶
Obj returns the type name for the declaration defining the named type t. For instantiated types, this is same as the type name of the origin type.
func (*Named) Origin ¶
Origin returns the generic type from which the named type t is instantiated. If t is not an instantiated type, the result is t.
func (*Named) SetTypeParams ¶
SetTypeParams sets the type parameters of the named type t. t must not have type arguments.
func (*Named) SetUnderlying ¶
SetUnderlying sets the underlying type and marks t as complete. t must not have type arguments.
func (*Named) TypeParams ¶
func (t *Named) TypeParams() *TypeParamList
TypeParams returns the type parameters of the named type t, or nil. The result is non-nil for an (originally) generic type even if it is instantiated.
func (*Named) Underlying ¶
type Next ¶
type Next struct { Iter Value // contains filtered or unexported fields }
The Next instruction reads and advances the (map or string) iterator Iter and returns a 3-tuple value (ok, k, v). If the iterator is not exhausted, ok is true and k and v are the next elements of the domain and range, respectively. Otherwise ok is false and k and v are undefined.
Components of the tuple are accessed using Extract.
The IsString field distinguishes iterators over strings from those over maps, as the Type() alone is insufficient: consider map[int]rune.
Type() returns a *types.Tuple for the triple (ok, k, v). The types of k and/or v may be types.Invalid.
Example printed form:
t1 = next t0
func (*Next) Referrers ¶
func (v *Next) Referrers() *[]Instruction
type Nil ¶
type Nil struct {
// contains filtered or unexported fields
}
Nil represents the predeclared value nil.
func (*Nil) Exported ¶
func (obj *Nil) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*Nil) Name ¶
func (obj *Nil) Name() string
Name returns the object's (package-local, unqualified) name.
func (*Nil) Parent ¶
func (obj *Nil) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*Nil) Pkg ¶
func (obj *Nil) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
type Object ¶
type Object interface { Parent() *Scope // scope in which this object is declared; nil for methods and struct fields Pos() Pos // position of object identifier in declaration Pkg() *Package // package to which this object belongs; nil for labels and objects in the Universe scope Name() string // package local object name Type() Type // object type Exported() bool // reports whether the name starts with a capital letter Id() string // object name if exported, qualified name if not exported (see func Id) // String returns a human-readable string of the object. String() string // contains filtered or unexported methods }
An Object describes a named language entity such as a package, constant, type, variable, function (incl. methods), or label. All objects implement the Object interface.
func Callee ¶
Callee returns the named target of a function call, if any: a function, method, builtin, or variable.
func LookupFieldOrMethod ¶
func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool)
LookupFieldOrMethod looks up a field or method with given package and name in T and returns the corresponding *Var or *Func, an index sequence, and a bool indicating if there were any pointer indirections on the path to the field or method. If addressable is set, T is the type of an addressable variable (only matters for method lookups). T must not be nil.
The last index entry is the field or method index in the (possibly embedded) type where the entry was found, either:
- the list of declared methods of a named type; or
- the list of all methods (method set) of an interface type; or
- the list of fields of a struct type.
The earlier index entries are the indices of the embedded struct fields traversed to get to the found entry, starting at depth 0.
If no entry is found, a nil object is returned. In this case, the returned index and indirect values have the following meaning:
If index != nil, the index sequence points to an ambiguous entry (the same name appeared more than once at the same embedding level).
If indirect is set, a method with a pointer receiver type was found but there was no pointer on the path from the actual receiver type to the method's formal receiver base type, nor was the receiver addressable.
type Package ¶
type Package struct {
// contains filtered or unexported fields
}
A Package describes a Go package.
var Unsafe *Package
The Unsafe package is the package returned by an importer for the import path "unsafe".
func Dependencies ¶
Dependencies returns all dependencies of the specified packages.
Dependent packages appear in topological order: if package P imports package Q, Q appears earlier than P in the result. The algorithm follows import statements in the order they appear in the source code, so the result is a total order.
func NewPackage ¶
NewPackage returns a new Package for the given package path and name. The package is not complete and contains no explicit imports.
func (*Package) Complete ¶
A package is complete if its scope contains (at least) all exported objects; otherwise it is incomplete.
func (*Package) Imports ¶
Imports returns the list of packages directly imported by pkg; the list is in source order.
If pkg was loaded from export data, Imports includes packages that provide package-level objects referenced by pkg. This may be more or less than the set of packages directly imported by pkg's source code.
func (*Package) MarkComplete ¶
func (pkg *Package) MarkComplete()
MarkComplete marks a package as complete.
func (*Package) Scope ¶
Scope returns the (complete or incomplete) package scope holding the objects declared at package level (TypeNames, Consts, Vars, and Funcs). For a nil pkg receiver, Scope returns the Universe scope.
func (*Package) SetImports ¶
SetImports sets the list of explicitly imported packages to list. It is the caller's responsibility to make sure list elements are unique.
type Panic ¶
type Panic struct { X Value // an interface{} // contains filtered or unexported fields }
The Panic instruction initiates a panic with value X.
A Panic instruction must be the last instruction of its containing BasicBlock, which must have no successors.
NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; they are treated as calls to a built-in function.
Pos() returns the syntax.CallExpr.Lparen if this panic was explicit in the source.
Example printed form:
panic t0
func (*Panic) Block ¶
func (v *Panic) Block() *BasicBlock
func (*Panic) Referrers ¶
func (v *Panic) Referrers() *[]Instruction
type Parameter ¶
type Parameter struct {
// contains filtered or unexported fields
}
A Parameter represents an input parameter of a function.
func (*Parameter) Referrers ¶
func (v *Parameter) Referrers() *[]Instruction
type Phi ¶
type Phi struct { Comment string // a hint as to its purpose Edges []Value // Edges[i] is value for Block().Preds[i] // contains filtered or unexported fields }
The Phi instruction represents an SSA φ-node, which combines values that differ across incoming control-flow edges and yields a new value. Within a block, all φ-nodes must appear before all non-φ nodes.
Pos() returns the position of the && or || for short-circuit control-flow joins, or that of the *Alloc for φ-nodes inserted during SSA renaming.
Example printed form:
t2 = phi [0: t0, 1: t1]
func (*Phi) Referrers ¶
func (v *Phi) Referrers() *[]Instruction
type PkgName ¶
type PkgName struct {
// contains filtered or unexported fields
}
A PkgName represents an imported Go package. PkgNames don't have a type.
func NewPkgName ¶
NewPkgName returns a new PkgName object representing an imported package. The remaining arguments set the attributes found with all Objects.
func (*PkgName) Exported ¶
func (obj *PkgName) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*PkgName) Imported ¶
Imported returns the package that was imported. It is distinct from Pkg(), which is the package containing the import statement.
func (*PkgName) Name ¶
func (obj *PkgName) Name() string
Name returns the object's (package-local, unqualified) name.
func (*PkgName) Parent ¶
func (obj *PkgName) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*PkgName) Pkg ¶
func (obj *PkgName) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
type Pointer ¶
type Pointer struct {
// contains filtered or unexported fields
}
A Pointer represents a pointer type.
func NewPointer ¶
NewPointer returns a new pointer type for the given element (base) type.
func (*Pointer) Underlying ¶
type Program ¶
type Program struct { MethodSets MethodSetCache // cache of type-checker's method-sets // contains filtered or unexported fields }
A Program is a partial or complete Go program converted to SSA form.
func NewProgram ¶
func NewProgram(mode BuilderMode) *Program
NewProgram returns a new SSA Program.
mode controls diagnostics and checking during SSA construction.
func (*Program) AllPackages ¶
func (prog *Program) AllPackages() []*SSAPackage
AllPackages returns a new slice containing all packages in the program prog in unspecified order.
func (*Program) Build ¶
func (prog *Program) Build()
Build calls Package.Build for each package in prog. Building occurs in parallel unless the BuildSerially mode flag was set.
Build is intended for whole-program analysis; a typical compiler need only build a single package.
Build is idempotent and thread-safe.
func (*Program) CreatePackage ¶
func (prog *Program) CreatePackage(pkg *Package, files []*File, info *Info, importable bool) *SSAPackage
CreatePackage constructs and returns an SSA Package from the specified type-checked, error-free file ASTs, and populates its Members mapping.
importable determines whether this package should be returned by a subsequent call to ImportedPackage(pkg.Path()).
The real work of building SSA form for each function is not done until a subsequent call to Package.Build().
func (*Program) ImportedPackage ¶
func (prog *Program) ImportedPackage(path string) *SSAPackage
ImportedPackage returns the importable Package whose PkgPath is path, or nil if no such Package has been created.
A parameter to CreatePackage determines whether a package should be considered importable. For example, no import declaration can resolve to the ad-hoc main package created by 'go build foo.go'.
TODO(adonovan): rethink this function and the "importable" concept; most packages are importable. This function assumes that all types.Package.Path values are unique within the ssa.Program, which is false---yet this function remains very convenient. Clients should use (*Program).Package instead where possible. SSA doesn't really need a string-keyed map of packages.
func (*Program) LookupMethod ¶
LookupMethod returns the implementation of the method of type T identified by (pkg, name). It returns nil if the method exists but is abstract, and panics if T has no such method.
func (*Program) MethodValue ¶
MethodValue returns the Function implementing method sel, building wrapper methods on demand. It returns nil if sel denotes an abstract (interface) method.
Precondition: sel.Kind() == MethodVal.
Thread-safe.
EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
func (*Program) NewFunction ¶
NewFunction returns a new synthetic Function instance belonging to prog, with its name and signature fields set as specified.
The caller is responsible for initializing the remaining fields of the function object, e.g. Pkg, Params, Blocks.
It is practically impossible for clients to construct well-formed SSA functions/packages/programs directly, so we assume this is the job of the Builder alone. NewFunction exists to provide clients a little flexibility. For example, analysis tools may wish to construct fake Functions for the root of the callgraph, a fake "reflect" package, etc.
TODO(adonovan): think harder about the API here.
func (*Program) Package ¶
func (prog *Program) Package(obj *Package) *SSAPackage
Package returns the SSA Package corresponding to the specified type-checker package object. It returns nil if no such SSA package has been created.
func (*Program) RuntimeTypes ¶
RuntimeTypes returns a new unordered slice containing all concrete types in the program for which a complete (non-empty) method set is required at run-time.
Thread-safe.
EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
type Qualifier ¶
A Qualifier controls how named package-level objects are printed in calls to TypeString, ObjectString, and SelectionString.
These three formatting routines call the Qualifier for each package-level object O, and if the Qualifier returns a non-empty string p, the object is printed in the form p.O. If it returns an empty string, only the object name O is printed.
Using a nil Qualifier is equivalent to using (*Package).Path: the object is qualified by the import path, e.g., "encoding/json.Marshal".
func RelativeTo ¶
RelativeTo returns a Qualifier that fully qualifies members of all packages other than pkg.
type Range ¶
type Range struct { X Value // string or map // contains filtered or unexported fields }
The Range instruction yields an iterator over the domain and range of X, which must be a string or map.
Elements are accessed via Next.
Type() returns an opaque and degenerate "rangeIter" type.
Pos() returns the syntax.RangeStmt.For.
Example printed form:
t0 = range "hello":string
func (*Range) Referrers ¶
func (v *Range) Referrers() *[]Instruction
type Return ¶
type Return struct { Results []Value // contains filtered or unexported fields }
The Return instruction returns values and control back to the calling function.
len(Results) is always equal to the number of results in the function's signature.
If len(Results) > 1, Return returns a tuple value with the specified components which the caller must access using Extract instructions.
There is no instruction to return a ready-made tuple like those returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or a tail-call to a function with multiple result parameters.
Return must be the last instruction of its containing BasicBlock. Such a block has no successors.
Pos() returns the syntax.ReturnStmt.Return, if explicit in the source.
Example printed form:
return return nil:I, 2:int
func (*Return) Block ¶
func (v *Return) Block() *BasicBlock
func (*Return) Referrers ¶
func (v *Return) Referrers() *[]Instruction
type RunDefers ¶
type RunDefers struct {
// contains filtered or unexported fields
}
The RunDefers instruction pops and invokes the entire stack of procedure calls pushed by Defer instructions in this function.
It is legal to encounter multiple 'rundefers' instructions in a single control-flow path through a function; this is useful in the combined init() function, for example.
Pos() returns NoPos.
Example printed form:
rundefers
func (*RunDefers) Block ¶
func (v *RunDefers) Block() *BasicBlock
func (*RunDefers) Referrers ¶
func (v *RunDefers) Referrers() *[]Instruction
type SSABuiltin ¶
type SSABuiltin struct {
// contains filtered or unexported fields
}
A SSABuiltin represents a specific use of a built-in function, e.g. len.
Builtins are immutable values. Builtins do not have addresses. Builtins can only appear in CallCommon.Value.
Name() indicates the function: one of the built-in functions from the Go spec (excluding "make" and "new") or one of these ssa-defined intrinsics:
// wrapnilchk returns ptr if non-nil, panics otherwise. // (For use in indirection wrappers.) func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
Object() returns a *types.SSABuiltin for built-ins defined by the spec, nil for others.
Type() returns a *types.Signature representing the effective signature of the built-in for this call.
func (*SSABuiltin) Name ¶
func (v *SSABuiltin) Name() string
func (*SSABuiltin) Object ¶
func (v *SSABuiltin) Object() Object
func (*SSABuiltin) Operands ¶
func (v *SSABuiltin) Operands(rands []*Value) []*Value
Non-Instruction Values:
func (*SSABuiltin) Parent ¶
func (v *SSABuiltin) Parent() *Function
func (*SSABuiltin) Pos ¶
func (v *SSABuiltin) Pos() Pos
func (*SSABuiltin) Referrers ¶
func (v *SSABuiltin) Referrers() *[]Instruction
func (*SSABuiltin) String ¶
func (v *SSABuiltin) String() string
func (*SSABuiltin) Type ¶
func (v *SSABuiltin) Type() Type
type SSAConst ¶
A SSAConst represents the value of a constant expression.
The underlying type of a constant may be any boolean, numeric, or string type. In addition, a SSAConst may represent the nil value of any reference type---interface, map, channel, pointer, slice, or function---but not "untyped nil".
All source-level constant expressions are represented by a SSAConst of the same type and value.
Value holds the value of the constant, independent of its Type(), using go/constant representation, or nil for a typed nil value.
Pos() returns syntax.NoPos.
Example printed form:
42:int "hello":untyped string 3+4i:MyComplex
func NewSSAConst ¶
NewSSAConst returns a new constant of the specified value and type. val must be valid according to the specification of Const.Value.
func (*SSAConst) Complex128 ¶
func (c *SSAConst) Complex128() complex128
Complex128 returns the complex value of this constant truncated to fit a complex128.
func (*SSAConst) Float64 ¶
Float64 returns the numeric value of this constant truncated to fit a float64.
func (*SSAConst) Int64 ¶
Int64 returns the numeric value of this constant truncated to fit a signed 64-bit integer.
func (*SSAConst) IsNil ¶
IsNil returns true if this constant represents a typed or untyped nil value.
func (*SSAConst) Referrers ¶
func (c *SSAConst) Referrers() *[]Instruction
type SSADefer ¶
type SSADefer struct { Call CallCommon // contains filtered or unexported fields }
The SSADefer instruction pushes the specified call onto a stack of functions to be called by a RunDefers instruction or by a panic.
See CallCommon for generic function call documentation.
Pos() returns the syntax.DeferStmt.SSADefer.
Example printed form:
defer println(t0, t1) defer t3() defer invoke t5.Println(...t6)
func (*SSADefer) Block ¶
func (v *SSADefer) Block() *BasicBlock
func (*SSADefer) Common ¶
func (s *SSADefer) Common() *CallCommon
func (*SSADefer) Referrers ¶
func (v *SSADefer) Referrers() *[]Instruction
type SSAField ¶
type SSAField struct { X Value // struct Field int // index into X.Type().(*types.Struct).Fields // contains filtered or unexported fields }
The SSAField instruction yields the SSAField of struct X.
The field is identified by its index within the field list of the struct type of X; by using numeric indices we avoid ambiguity of package-local identifiers and permit compact representations.
Pos() returns the position of the syntax.SelectorExpr.Sel for the field, if explicit in the source.
Example printed form:
t1 = t0.name [#1]
func (*SSAField) Referrers ¶
func (v *SSAField) Referrers() *[]Instruction
type SSAGo ¶
type SSAGo struct { Call CallCommon // contains filtered or unexported fields }
The SSAGo instruction creates a new goroutine and calls the specified function within it.
See CallCommon for generic function call documentation.
Pos() returns the syntax.GoStmt.SSAGo.
Example printed form:
go println(t0, t1) go t3() go invoke t5.Println(...t6)
func (*SSAGo) Block ¶
func (v *SSAGo) Block() *BasicBlock
func (*SSAGo) Common ¶
func (s *SSAGo) Common() *CallCommon
func (*SSAGo) Referrers ¶
func (v *SSAGo) Referrers() *[]Instruction
type SSANode ¶
type SSANode interface { // Common methods: String() string Pos() Pos Parent() *Function // Partial methods: Operands(rands []*Value) []*Value // nil for non-Instructions Referrers() *[]Instruction // nil for non-Values }
A SSANode is a node in the SSA value graph. Every concrete type that implements SSANode is also either a Value, an Instruction, or both.
SSANode contains the methods common to Value and Instruction, plus the Operands and Referrers methods generalized to return nil for non-Instructions and non-Values, respectively.
SSANode is provided to simplify SSA graph algorithms. Clients should use the more specific and informative Value or Instruction interfaces where appropriate.
type SSAPackage ¶
type SSAPackage struct { Pkg *Package // the corresponding github.com/despiteallobjections/amigo/types.Package // all package members keyed by name (incl. init and init#%d) Members map[string]Member InitFunc *Function // the package's synthetic init function InitGuard *Global // the package's synthetic initializer guard // contains filtered or unexported fields }
A SSAPackage is a single analyzed Go package containing Members for all package-level functions, variables, constants and types it declares. These may be accessed directly via Members, or via the type-specific accessor methods Func, Type, Var and Const.
Members also contains entries for "init" (the synthetic package initializer) and "init#%d", the nth declared init function, and unspecified other things too.
func (*SSAPackage) Build ¶
func (p *SSAPackage) Build(prog *Program)
Build builds SSA code for all functions and vars in package p.
Precondition: CreatePackage must have been called for all of p's direct imports (and hence its direct imports must have been error-free).
Build is idempotent and thread-safe.
func (*SSAPackage) Func ¶
func (p *SSAPackage) Func(name string) (f *Function)
Func returns the package-level function of the specified name, or nil if not found.
func (*SSAPackage) String ¶
func (p *SSAPackage) String() string
type SSASlice ¶
type SSASlice struct { X Value // slice, string, or *array Low, High, Max Value // each may be nil // contains filtered or unexported fields }
The SSASlice instruction yields a slice of an existing string, slice or *array X between optional integer bounds Low and High.
Dynamically, this instruction panics if X evaluates to a nil *array pointer.
Type() returns string if the type of X was string, otherwise a *types.SSASlice with the same element type as X.
Pos() returns the syntax.SliceExpr.Lbrack if created by a x[:] slice operation, the syntax.CompositeLit.Lbrace if created by a literal, or NoPos if not explicit in the source (e.g. a variadic argument slice).
Example printed form:
t1 = slice t0[1:]
func (*SSASlice) Referrers ¶
func (v *SSASlice) Referrers() *[]Instruction
type Scope ¶
type Scope struct {
// contains filtered or unexported fields
}
A Scope maintains a set of objects and links to its containing (parent) and contained (children) scopes. Objects may be inserted and looked up by name. The zero value for Scope is a ready-to-use empty scope.
Example ¶
ExampleScope prints the tree of Scopes of a package created from a set of parsed files.
// Parse the source files for a package. var files []*File for _, file := range []struct{ name, input string }{ {"main.go", ` package main import "fmt" func main() { freezing := FToC(-18) fmt.Println(freezing, Boiling) } `}, {"celsius.go", ` package main import "fmt" type Celsius float64 func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) } func FToC(f float64) Celsius { return Celsius(f - 32 / 9 * 5) } const Boiling Celsius = 100 func Unused() { {}; {{ var x int; _ = x }} } // make sure empty block scopes get printed `}, } { f, err := parseSrc(file.name, file.input) if err != nil { log.Fatal(err) } files = append(files, f) } // Type-check a package consisting of these files. // Type information for the imported "fmt" package // comes from $GOROOT/pkg/$GOOS_$GOOARCH/fmt.a. conf := types.Config{Importer: defaultImporter()} pkg, err := conf.Check("temperature", files, nil) if err != nil { log.Fatal(err) } // Print the tree of scopes. // For determinism, we redact addresses. var buf bytes.Buffer pkg.Scope().WriteTo(&buf, 0, true) rx := regexp.MustCompile(` 0x[a-fA-F0-9]*`) fmt.Println(rx.ReplaceAllString(buf.String(), ""))
Output: package "temperature" scope { . const temperature.Boiling temperature.Celsius . type temperature.Celsius float64 . func temperature.FToC(f float64) temperature.Celsius . func temperature.Unused() . func temperature.main() . main.go scope { . . package fmt . . function scope { . . . var freezing temperature.Celsius . . } . } . celsius.go scope { . . package fmt . . function scope { . . . var c temperature.Celsius . . } . . function scope { . . . var f float64 . . } . . function scope { . . . block scope { . . . } . . . block scope { . . . . block scope { . . . . . var x int . . . . } . . . } . . } . } }
var Universe *Scope
The Universe scope contains all predeclared objects of Go. It is the outermost scope of any chain of nested scopes.
func NewScope ¶
NewScope returns a new, empty scope contained in the given parent scope, if any. The comment is for debugging only.
func (*Scope) Contains ¶
Contains reports whether pos is within the scope's extent. The result is guaranteed to be valid only if the type-checked AST has complete position information.
func (*Scope) Innermost ¶
Innermost returns the innermost (child) scope containing pos. If pos is not within any scope, the result is nil. The result is also nil for the Universe scope. The result is guaranteed to be valid only if the type-checked AST has complete position information.
func (*Scope) Insert ¶
Insert attempts to insert an object obj into scope s. If s already contains an alternative object alt with the same name, Insert leaves s unchanged and returns alt. Otherwise it inserts obj, sets the object's parent scope if not already set, and returns nil.
func (*Scope) InsertLazy ¶
InsertLazy is like Insert, but allows deferring construction of the inserted object until it's accessed with Lookup. The Object returned by resolve must have the same name as given to InsertLazy. If s already contains an alternative object with the same name, InsertLazy leaves s unchanged and returns false. Otherwise it records the binding and returns true. The object's parent scope will be set to s after resolve is called.
func (*Scope) Lookup ¶
Lookup returns the object in scope s with the given name if such an object exists; otherwise the result is nil.
func (*Scope) LookupParent ¶
LookupParent follows the parent chain of scopes starting with s until it finds a scope where Lookup(name) returns a non-nil object, and then returns that scope and object. If a valid position pos is provided, only objects that were declared at or before pos are considered. If no such scope and object exists, the result is (nil, nil).
Note that obj.Parent() may be different from the returned scope if the object was inserted into the scope and already had a parent at that time (see Insert). This can only happen for dot-imported objects whose scope is the scope of the package that exported them.
func (*Scope) NumChildren ¶
NumChildren returns the number of scopes nested in s.
func (*Scope) Pos ¶
func (s *Scope) Pos() Pos
Pos and End describe the scope's source code extent [pos, end). The results are guaranteed to be valid only if the type-checked AST has complete position information. The extent is undefined for Universe and package scopes.
func (*Scope) Squash ¶
Squash merges s with its parent scope p by adding all objects of s to p, adding all children of s to the children of p, and removing s from p's children. The function f is called for each object obj in s which has an object alt in p. s should be discarded after having been squashed.
type Select ¶
type Select struct { States []*SelectState Blocking bool // contains filtered or unexported fields }
The Select instruction tests whether (or blocks until) one of the specified sent or received states is entered.
Let n be the number of States for which Dir==RECV and T_i (0<=i<n) be the element type of each such state's Chan. Select returns an n+2-tuple
(index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
The tuple's components, described below, must be accessed via the Extract instruction.
If Blocking, select waits until exactly one state holds, i.e. a channel becomes ready for the designated operation of sending or receiving; select chooses one among the ready states pseudorandomly, performs the send or receive operation, and sets 'index' to the index of the chosen channel.
If !Blocking, select doesn't block if no states hold; instead it returns immediately with index equal to -1.
If the chosen channel was used for a receive, the r_i component is set to the received value, where i is the index of that state among all n receive states; otherwise r_i has the zero value of type T_i. Note that the receive index i is not the same as the state index index.
The second component of the triple, recvOk, is a boolean whose value is true iff the selected operation was a receive and the receive successfully yielded a value.
Pos() returns the syntax.SelectStmt.Select.
Example printed form:
t3 = select nonblocking [<-t0, t1<-t2] t4 = select blocking []
func (*Select) Referrers ¶
func (v *Select) Referrers() *[]Instruction
type SelectState ¶
type SelectState struct { Dir ChanDir // direction of case (SendOnly or RecvOnly) Chan Value // channel to use (for send or receive) Send Value // value to send (for send) Pos Pos // position of token.ARROW DebugNode Node // syntax.SendStmt or syntax.UnaryExpr(<-) [debug mode] }
SelectState is a helper for Select. It represents one goal state and its corresponding communication.
type Selection ¶
type Selection struct {
// contains filtered or unexported fields
}
A Selection describes a selector expression x.f. For the declarations:
type T struct{ x int; E } type E struct{} func (e E) m() {} var p *T
the following relations exist:
Selector Kind Recv Obj Type Index Indirect p.x FieldVal T x int {0} true p.m MethodVal *T m func() {1, 0} true T.m MethodExpr T m func(T) {1, 0} false
func IntuitiveMethodSet ¶
func IntuitiveMethodSet(T Type, msets *MethodSetCache) []*Selection
IntuitiveMethodSet returns the intuitive method set of a type T, which is the set of methods you can call on an addressable value of that type.
The result always contains MethodSet(T), and is exactly MethodSet(T) for interface types and for pointer-to-concrete types. For all other concrete types T, the result additionally contains each method belonging to *T if there is no identically named method on T itself.
This corresponds to user intuition about method sets; this function is intended only for user interfaces.
The order of the result is as for types.MethodSet(T).
func (*Selection) Index ¶
Index describes the path from x to f in x.f. The last index entry is the field or method index of the type declaring f; either:
- the list of declared methods of a named type; or
- the list of methods of an interface type; or
- the list of fields of a struct type.
The earlier index entries are the indices of the embedded fields implicitly traversed to get from (the type of) x to f, starting at embedding depth 0.
func (*Selection) Indirect ¶
Indirect reports whether any pointer indirection was required to get from x to f in x.f.
type SelectionKind ¶
type SelectionKind int
SelectionKind describes the kind of a selector expression x.f (excluding qualified identifiers).
const ( FieldVal SelectionKind = iota // x.f is a struct field selector MethodVal // x.f is a method selector MethodExpr // x.f is a method expression )
type Send ¶
type Send struct {
Chan, X Value
// contains filtered or unexported fields
}
The Send instruction sends X on channel Chan.
Pos() returns the syntax.SendStmt.Arrow, if explicit in the source.
Example printed form:
send t0 <- t1
func (*Send) Block ¶
func (v *Send) Block() *BasicBlock
func (*Send) Referrers ¶
func (v *Send) Referrers() *[]Instruction
type Signature ¶
type Signature struct {
// contains filtered or unexported fields
}
A Signature represents a (non-builtin) function or method type. The receiver is ignored when comparing signatures for identity.
func AsSignature ¶
If t is a signature, AsSignature returns that type, otherwise it returns nil.
func NewSignatureType ¶
func NewSignatureType(recv *Var, recvTypeParams, typeParams []*TypeParam, params, results *Tuple, variadic bool) *Signature
NewSignatureType creates a new function type for the given receiver, receiver type parameters, type parameters, parameters, and results. If variadic is set, params must hold at least one parameter and the last parameter must be of unnamed slice type. If recv is non-nil, typeParams must be empty. If recvTypeParams is non-empty, recv must be non-nil.
func (*Signature) Recv ¶
Recv returns the receiver of signature s (if a method), or nil if a function. It is ignored when comparing signatures for identity.
For an abstract method, Recv returns the enclosing interface either as a *Named or an *Interface. Due to embedding, an interface may contain methods whose receiver type is a different interface.
func (*Signature) RecvTypeParams ¶
func (s *Signature) RecvTypeParams() *TypeParamList
RecvTypeParams returns the receiver type parameters of signature s, or nil.
func (*Signature) SetTypeParams ¶
SetTypeParams sets the type parameters of signature s.
func (*Signature) TypeParams ¶
func (s *Signature) TypeParams() *TypeParamList
TypeParams returns the type parameters of signature s, or nil.
func (*Signature) Underlying ¶
type Sizes ¶
type Sizes interface { // Alignof returns the alignment of a variable of type T. // Alignof must implement the alignment guarantees required by the spec. Alignof(T Type) int64 // Offsetsof returns the offsets of the given struct fields, in bytes. // Offsetsof must implement the offset guarantees required by the spec. Offsetsof(fields []*Var) []int64 // Sizeof returns the size of a variable of type T. // Sizeof must implement the size guarantees required by the spec. Sizeof(T Type) int64 }
Sizes defines the sizing functions for package unsafe.
func SizesFor ¶
SizesFor returns the Sizes used by a compiler for an architecture. The result is nil if a compiler/architecture pair is not known.
Supported architectures for compiler "gc": "386", "arm", "arm64", "amd64", "amd64p32", "mips", "mipsle", "mips64", "mips64le", "ppc64", "ppc64le", "riscv64", "s390x", "sparc64", "wasm".
type Slice ¶
type Slice struct {
// contains filtered or unexported fields
}
A Slice represents a slice type.
func (*Slice) Underlying ¶
type SliceToArrayPointer ¶
type SliceToArrayPointer struct { X Value // contains filtered or unexported fields }
The SliceToArrayPointer instruction yields the conversion of slice X to array pointer.
Pos() returns the syntax.CallExpr.Lparen, if the instruction arose from an explicit conversion in the source.
Example printed form:
t1 = slice to array pointer *[4]byte <- []byte (t0)
func (*SliceToArrayPointer) Operands ¶
func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value
func (*SliceToArrayPointer) Referrers ¶
func (v *SliceToArrayPointer) Referrers() *[]Instruction
func (*SliceToArrayPointer) String ¶
func (v *SliceToArrayPointer) String() string
type StdSizes ¶
type StdSizes struct { WordSize int64 // word size in bytes - must be >= 4 (32bits) MaxAlign int64 // maximum alignment in bytes - must be >= 1 }
StdSizes is a convenience type for creating commonly used Sizes. It makes the following simplifying assumptions:
- The size of explicitly sized basic types (int16, etc.) is the specified size.
- The size of strings and interfaces is 2*WordSize.
- The size of slices is 3*WordSize.
- The size of an array of n elements corresponds to the size of a struct of n consecutive fields of the array's element type.
- The size of a struct is the offset of the last field plus that field's size. As with all element types, if the struct is used in an array its size must first be aligned to a multiple of the struct's alignment.
- All other types have size WordSize.
- Arrays and structs are aligned per spec definition; all other types are naturally aligned with a maximum alignment MaxAlign.
*StdSizes implements Sizes.
type Store ¶
The Store instruction stores Val at address Addr. Stores can be of arbitrary types.
Pos() returns the position of the source-level construct most closely associated with the memory store operation. Since implicit memory stores are numerous and varied and depend upon implementation choices, the details are not specified.
Example printed form:
*x = y
func (*Store) Block ¶
func (v *Store) Block() *BasicBlock
func (*Store) Referrers ¶
func (v *Store) Referrers() *[]Instruction
type Struct ¶
type Struct struct {
// contains filtered or unexported fields
}
A Struct represents a struct type.
func NewStruct ¶
NewStruct returns a new struct with the given fields and corresponding field tags. If a field with index i has a tag, tags[i] must be that tag, but len(tags) may be only as long as required to hold the tag with the largest index i. Consequently, if no field has a tag, tags may be nil.
func (*Struct) NumFields ¶
NumFields returns the number of fields in the struct (including blank and embedded fields).
func (*Struct) Underlying ¶
type Tuple ¶
type Tuple struct {
// contains filtered or unexported fields
}
A Tuple represents an ordered list of variables; a nil *Tuple is a valid (empty) tuple. Tuples are used as components of signatures and to represent the type of multiple assignments; they are not first class types of Go.
func (*Tuple) Underlying ¶
type Type ¶
type Type interface { // Underlying returns the underlying type of a type. Underlying() Type // String returns a string representation of a type. String() string }
A Type represents a type of Go. All types implement the Type interface.
func CoreType ¶
If typ is a type parameter, CoreType returns the single underlying type of all types in the corresponding type constraint if it exists, or nil otherwise. If the type set contains only unrestricted and restricted channel types (with identical element types), the single underlying type is the restricted channel type if the restrictions are always the same. If typ is not a type parameter, CoreType returns the underlying type.
func Default ¶
Default returns the default "typed" type for an "untyped" type; it returns the incoming type for all other types. The default type for untyped nil is untyped nil.
func Instantiate ¶
Instantiate instantiates the type orig with the given type arguments targs. orig must be a *Named or a *Signature type. If there is no error, the resulting Type is an instantiated type of the same kind (either a *Named or a *Signature). Methods attached to a *Named type are also instantiated, and associated with a new *Func that has the same position as the original method, but nil function scope.
If ctxt is non-nil, it may be used to de-duplicate the instance against previous instances with the same identity. As a special case, generic *Signature origin types are only considered identical if they are pointer equivalent, so that instantiating distinct (but possibly identical) signatures will yield different instances.
If validate is set, Instantiate verifies that the number of type arguments and parameters match, and that the type arguments satisfy their corresponding type constraints. If verification fails, the resulting error may wrap an *ArgumentError indicating which type argument did not satisfy its corresponding type parameter constraint, and why.
If validate is not set, Instantiate does not verify the type argument count or whether the type arguments satisfy their constraints. Instantiate is guaranteed to not return an error, but may panic. Specifically, for *Signature types, Instantiate will panic immediately if the type argument count is incorrect; for *Named types, a panic may occur later inside the *Named API.
type TypeAndValue ¶
type TypeAndValue struct { Type Type Value constant.Value // contains filtered or unexported fields }
TypeAndValue reports the type and value (for constants) of the corresponding expression.
func Eval ¶
func Eval(pkg *Package, pos Pos, expr string) (_ TypeAndValue, err error)
Eval returns the type and, if constant, the value for the expression expr, evaluated at position pos of package pkg, which must have been derived from type-checking an AST with complete position information relative to the provided file set.
The meaning of the parameters fset, pkg, and pos is the same as in CheckExpr. An error is returned if expr cannot be parsed successfully, or the resulting expr AST cannot be type-checked.
func (TypeAndValue) Addressable ¶
func (tv TypeAndValue) Addressable() bool
Addressable reports whether the corresponding expression is addressable (https://golang.org/ref/spec#Address_operators).
func (TypeAndValue) Assignable ¶
func (tv TypeAndValue) Assignable() bool
Assignable reports whether the corresponding expression is assignable to (provided a value of the right type).
func (TypeAndValue) HasOk ¶
func (tv TypeAndValue) HasOk() bool
HasOk reports whether the corresponding expression may be used on the rhs of a comma-ok assignment.
func (TypeAndValue) IsBuiltin ¶
func (tv TypeAndValue) IsBuiltin() bool
IsBuiltin reports whether the corresponding expression denotes a (possibly parenthesized) built-in function.
func (TypeAndValue) IsNil ¶
func (tv TypeAndValue) IsNil() bool
IsNil reports whether the corresponding expression denotes the predeclared value nil. Depending on context, it may have been given a type different from UntypedNil.
func (TypeAndValue) IsType ¶
func (tv TypeAndValue) IsType() bool
IsType reports whether the corresponding expression specifies a type.
func (TypeAndValue) IsValue ¶
func (tv TypeAndValue) IsValue() bool
IsValue reports whether the corresponding expression is a value. Builtins are not considered values. Constant values have a non- nil Value.
func (TypeAndValue) IsVoid ¶
func (tv TypeAndValue) IsVoid() bool
IsVoid reports whether the corresponding expression is a function call without results.
type TypeAssert ¶
type TypeAssert struct { X Value AssertedType Type CommaOk bool // contains filtered or unexported fields }
The TypeAssert instruction tests whether interface value X has type AssertedType.
If !CommaOk, on success it returns v, the result of the conversion (defined below); on failure it panics.
If CommaOk: on success it returns a pair (v, true) where v is the result of the conversion; on failure it returns (z, false) where z is AssertedType's zero value. The components of the pair must be accessed using the Extract instruction.
If AssertedType is a concrete type, TypeAssert checks whether the dynamic type in interface X is equal to it, and if so, the result of the conversion is a copy of the value in the interface.
If AssertedType is an interface, TypeAssert checks whether the dynamic type of the interface is assignable to it, and if so, the result of the conversion is a copy of the interface value X. If AssertedType is a superinterface of X.Type(), the operation will fail iff the operand is nil. (Contrast with ChangeInterface, which performs no nil-check.)
Type() reflects the actual type of the result, possibly a 2-types.Tuple; AssertedType is the asserted type.
Pos() returns the syntax.CallExpr.Lparen if the instruction arose from an explicit T(e) conversion; the syntax.AssertExpr.Lparen if the instruction arose from an explicit e.(T) operation; or the syntax.CaseClause.Case if the instruction arose from a case of a type-switch statement.
Example printed form:
t1 = typeassert t0.(int) t3 = typeassert,ok t2.(T)
func (*TypeAssert) Operands ¶
func (v *TypeAssert) Operands(rands []*Value) []*Value
func (*TypeAssert) Referrers ¶
func (v *TypeAssert) Referrers() *[]Instruction
func (*TypeAssert) String ¶
func (v *TypeAssert) String() string
type TypeError ¶
type TypeError struct { Pos Pos // error position Msg string // default error message, user-friendly Full string // full error message, for debugging (may contain internal details) Soft bool // if set, error is "soft" }
An TypeError describes a type-checking error; it implements the error interface. A "soft" error is an error that still permits a valid interpretation of a package (such as "unused variable"); "hard" errors may lead to unpredictable behavior if ignored.
type TypeList ¶
type TypeList struct {
// contains filtered or unexported fields
}
TypeList holds a list of types.
type TypeMap ¶
type TypeMap struct {
// contains filtered or unexported fields
}
TypeMap is a hash-table-based mapping from types (types.Type) to arbitrary interface{} values. The concrete types that implement the Type interface are pointers. Since they are not canonicalized, == cannot be used to check for equivalence, and thus we cannot simply use a Go map.
Just as with map[K]V, a nil *TypeMap is a valid empty map.
Not thread-safe.
func (*TypeMap) At ¶
At returns the map entry for the given key. The result is nil if the entry is not present.
func (*TypeMap) Delete ¶
Delete removes the entry with the given key, if any. It returns true if the entry was found.
func (*TypeMap) Iterate ¶
Iterate calls function f on each entry in the map in unspecified order.
If f should mutate the map, Iterate provides the same guarantees as Go maps: if f deletes a map entry that Iterate has not yet reached, f will not be invoked for it, but if f inserts a map entry that Iterate has not yet reached, whether or not f will be invoked for it is unspecified.
func (*TypeMap) Keys ¶
Keys returns a new slice containing the set of map keys. The order is unspecified.
func (*TypeMap) KeysString ¶
KeysString returns a string representation of the map's key set. Order is unspecified.
func (*TypeMap) Set ¶
Set sets the map entry for key to val, and returns the previous entry, if any.
func (*TypeMap) SetHasher ¶
SetHasher sets the hasher used by Map.
All Hashers are functionally equivalent but contain internal state used to cache the results of hashing previously seen types.
A single Hasher created by MakeHasher() may be shared among many Maps. This is recommended if the instances have many keys in common, as it will amortize the cost of hash computation.
A Hasher may grow without bound as new types are seen. Even when a type is deleted from the map, the Hasher never shrinks, since other types in the map may reference the deleted type indirectly.
Hashers are not thread-safe, and read-only operations such as Map.Lookup require updates to the hasher, so a full Mutex lock (not a read-lock) is require around all Map operations if a shared hasher is accessed from multiple threads.
If SetHasher is not called, the Map will create a private hasher at the first call to Insert.
type TypeName ¶
type TypeName struct {
// contains filtered or unexported fields
}
A TypeName represents a name for a (defined or alias) type.
func NewTypeName ¶
NewTypeName returns a new type name denoting the given typ. The remaining arguments set the attributes found with all Objects.
The typ argument may be a defined (Named) type or an alias type. It may also be nil such that the returned TypeName can be used as argument for NewNamed, which will set the TypeName's type as a side- effect.
func NewTypeNameLazy ¶
func NewTypeNameLazy(pos Pos, pkg *Package, name string, load func(named *Named) (tparams []*TypeParam, underlying Type, methods []*Func)) *TypeName
NewTypeNameLazy returns a new defined type like NewTypeName, but it lazily calls resolve to finish constructing the Named object.
func (*TypeName) Exported ¶
func (obj *TypeName) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*TypeName) Id ¶
func (obj *TypeName) Id() string
Id is a wrapper for Id(obj.Pkg(), obj.Name()).
func (*TypeName) Name ¶
func (obj *TypeName) Name() string
Name returns the object's (package-local, unqualified) name.
func (*TypeName) Parent ¶
func (obj *TypeName) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*TypeName) Pkg ¶
func (obj *TypeName) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
type TypeParam ¶
type TypeParam struct {
// contains filtered or unexported fields
}
A TypeParam represents a type parameter type.
func NewTypeParam ¶
NewTypeParam returns a new TypeParam. Type parameters may be set on a Named or Signature type by calling SetTypeParams. Setting a type parameter on more than one type will result in a panic.
The constraint argument can be nil, and set later via SetConstraint. If the constraint is non-nil, it must be fully defined.
func (*TypeParam) Constraint ¶
Constraint returns the type constraint specified for t.
func (*TypeParam) Index ¶
Index returns the index of the type param within its param list, or -1 if the type parameter has not yet been bound to a type.
func (*TypeParam) SetConstraint ¶
SetConstraint sets the type constraint for t.
It must be called by users of NewTypeParam after the bound's underlying is fully defined, and before using the type parameter in any way other than to form other types. Once SetConstraint returns the receiver, t is safe for concurrent use.
func (*TypeParam) Underlying ¶
type TypeParamList ¶
type TypeParamList struct {
// contains filtered or unexported fields
}
TypeParamList holds a list of type parameters.
func (*TypeParamList) At ¶
func (l *TypeParamList) At(i int) *TypeParam
At returns the i'th type parameter in the list.
func (*TypeParamList) Len ¶
func (l *TypeParamList) Len() int
Len returns the number of type parameters in the list. It is safe to call on a nil receiver.
type UnOp ¶
type UnOp struct { Op Operator // One of: NOT SUB ARROW MUL XOR ! - <- * ^ X Value CommaOk bool // contains filtered or unexported fields }
The UnOp instruction yields the result of Op X. ARROW is channel receive. MUL is pointer indirection (load). XOR is bitwise complement. SUB is negation. NOT is logical negation.
If CommaOk and Op=ARROW, the result is a 2-tuple of the value above and a boolean indicating the success of the receive. The components of the tuple are accessed using Extract.
Pos() returns the syntax.UnaryExpr.OpPos, if explicit in the source. For receive operations (ARROW) implicit in ranging over a channel, Pos() returns the syntax.RangeStmt.For. For implicit memory loads (STAR), Pos() returns the position of the most closely associated source-level construct; the details are not specified.
Example printed form:
t0 = *x t2 = <-t1,ok
func (*UnOp) Referrers ¶
func (v *UnOp) Referrers() *[]Instruction
type Union ¶
type Union struct {
// contains filtered or unexported fields
}
A Union represents a union of terms embedded in an interface.
func NewUnion ¶
NewUnion returns a new Union type with the given terms. It is an error to create an empty union; they are syntactically not possible.
func (*Union) Underlying ¶
type Value ¶
type Value interface { // Name returns the name of this value, and determines how // this Value appears when used as an operand of an // Instruction. // // This is the same as the source name for Parameters, // Builtins, Functions, FreeVars, Globals. // For constants, it is a representation of the constant's value // and type. For all other Values this is the name of the // virtual register defined by the instruction. // // The name of an SSA Value is not semantically significant, // and may not even be unique within a function. Name() string // If this value is an Instruction, String returns its // disassembled form; otherwise it returns unspecified // human-readable information about the Value, such as its // kind, name and type. String() string // Type returns the type of this value. Many instructions // (e.g. IndexAddr) change their behaviour depending on the // types of their operands. Type() Type // Parent returns the function to which this Value belongs. // It returns nil for named Functions, Builtin, Const and Global. Parent() *Function // Referrers returns the list of instructions that have this // value as one of their operands; it may contain duplicates // if an instruction has a repeated operand. // // Referrers actually returns a pointer through which the // caller may perform mutations to the object's state. // // Referrers is currently only defined if Parent()!=nil, // i.e. for the function-local values FreeVar, Parameter, // Functions (iff anonymous) and all value-defining instructions. // It returns nil for named Functions, Builtin, Const and Global. // // Instruction.Operands contains the inverse of this relation. Referrers() *[]Instruction // Pos returns the location of the AST token most closely // associated with the operation that gave rise to this value, // or syntax.NoPos if it was not explicit in the source. // // For each syntax.Node type, a particular token is designated as // the closest location for the expression, e.g. the Lparen // for an *syntax.CallExpr. This permits a compact but // approximate mapping from Values to source positions for use // in diagnostic messages, for example. // // (Do not use this position to determine which Value // corresponds to an syntax.Expr; use Function.ValueForExpr // instead. NB: it requires that the function was built with // debug information.) Pos() Pos }
A Value is an SSA value that can be referenced by an instruction.
type Var ¶
type Var struct {
// contains filtered or unexported fields
}
A Variable represents a declared variable (including function parameters and results, and struct fields).
func NewField ¶
NewField returns a new variable representing a struct field. For embedded fields, the name is the unqualified type name / under which the field is accessible.
func NewVar ¶
NewVar returns a new variable. The arguments set the attributes found with all Objects.
func (*Var) Anonymous ¶
Anonymous reports whether the variable is an embedded field. Same as Embedded; only present for backward-compatibility.
func (*Var) Exported ¶
func (obj *Var) Exported() bool
Exported reports whether the object is exported (starts with a capital letter). It doesn't take into account whether the object is in a local (function) scope or not.
func (*Var) Name ¶
func (obj *Var) Name() string
Name returns the object's (package-local, unqualified) name.
func (*Var) Parent ¶
func (obj *Var) Parent() *Scope
Parent returns the scope in which the object is declared. The result is nil for methods and struct fields.
func (*Var) Pkg ¶
func (obj *Var) Pkg() *Package
Pkg returns the package to which the object belongs. The result is nil for labels and objects in the Universe scope.
Source Files ¶
- anybuffer.go
- api.go
- array.go
- assignments.go
- basic.go
- blockopt.go
- builder.go
- builtins.go
- call.go
- callee.go
- chan.go
- check.go
- compilersupport.go
- const.go
- context.go
- conversions.go
- create.go
- decl.go
- doc.go
- dom.go
- emit.go
- errors.go
- eval.go
- expr.go
- func.go
- gccgosizes.go
- imports.go
- index.go
- infer.go
- initorder.go
- instantiate.go
- interface.go
- labels.go
- lift.go
- lookup.go
- lvalue.go
- map.go
- methodlist.go
- methods.go
- methodset.go
- methodsetcache.go
- mode.go
- mono.go
- named.go
- object.go
- objset.go
- operand.go
- package.go
- pointer.go
- predicates.go
- print.go
- reader.go
- resolver.go
- return.go
- sanity.go
- scope.go
- selection.go
- signature.go
- sizes.go
- slice.go
- source.go
- ssa.go
- stmt.go
- struct.go
- subst.go
- termlist.go
- tuple.go
- type.go
- typelists.go
- typemap.go
- typeparam.go
- typeset.go
- typestring.go
- typeterm.go
- typexpr.go
- ui.go
- unify.go
- union.go
- universe.go
- util.go
- validtype.go
- version.go
- wrappers.go
- writer.go