bitcurves

package
v1.0.4017 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 30, 2024 License: Apache-2.0 Imports: 5 Imported by: 0

Documentation

Overview

Package bitelliptic implements several Koblitz elliptic curves over prime fields.

Package bitelliptic implements several Koblitz elliptic curves over prime fields.

Index

Constants

This section is empty.

Variables

View Source
var (
	OIDNamedCurveSecp160k1 = asn1.ObjectIdentifier{1, 3, 132, 0, 9}
	OIDNamedCurveSecp192k1 = asn1.ObjectIdentifier{1, 3, 132, 0, 31}
	OIDNamedCurveSecp224k1 = asn1.ObjectIdentifier{1, 3, 132, 0, 32}
	OIDNamedCurveSecp256k1 = asn1.ObjectIdentifier{1, 3, 132, 0, 10}
)

Functions

This section is empty.

Types

type BitCurve

type BitCurve struct {
	Name    string
	P       *big.Int // the order of the underlying field
	N       *big.Int // the order of the base point
	B       *big.Int // the constant of the BitCurve equation
	Gx, Gy  *big.Int // (x,y) of the base point
	BitSize int      // the size of the underlying field
}

A BitCurve represents a Koblitz Curve with a=0. See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html

func S160

func S160() *BitCurve

S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)

func S192

func S192() *BitCurve

S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)

func S224

func S224() *BitCurve

S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)

func S256

func S256() *BitCurve

S256 returns a BitCurve which implements bitcurves (see SEC 2 section 2.7.1)

func (*BitCurve) Add

func (bitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int)

Add returns the sum of (x1,y1) and (x2,y2)

func (*BitCurve) Double

func (bitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int)

Double returns 2*(x,y)

func (*BitCurve) GenerateKey

func (bitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error)

TODO: double check if it is okay GenerateKey returns a public/private key pair. The private key is generated using the given reader, which must return random data.

func (*BitCurve) IsOnCurve

func (bitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool

IsOnCurve returns true if the given (x,y) lies on the BitCurve.

func (*BitCurve) Marshal

func (bitCurve *BitCurve) Marshal(x, y *big.Int) []byte

Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62.

func (*BitCurve) Params

func (bitCurve *BitCurve) Params() (cp *elliptic.CurveParams)

Params returns the parameters of the given BitCurve (see BitCurve struct)

func (*BitCurve) ScalarBaseMult

func (bitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int)

ScalarBaseMult returns k*G, where G is the base point of the group and k is an integer in big-endian form.

func (*BitCurve) ScalarMult

func (bitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int)

ScalarMult returns k*(Bx,By) where k is a number in big-endian form.

func (*BitCurve) Unmarshal

func (bitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int)

Unmarshal converts a point, serialised by Marshal, into an x, y pair. On error, x = nil.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL