parquet-go v1.4.3
parquet-go is a pure-go implementation of reading and writing the parquet format file.
- Support Read/Write Nested/Flat Parquet File
- Simple to use
- High performance
Install
Add the parquet-go library to your $GOPATH/src and install dependencies:
go get github.com/xitongsys/parquet-go
cd $GOPATH/src/github.com/xitongsys/parquet-go/
dep ensure
Look at examples in example/
.
cd $GOPATH/src/github.com/xitongsys/parquet-go/example
go run local_flat.go
Type
There are two types in Parquet: Primitive Type and Logical Type. Logical types are stored as primitive types. The following list is the currently implemented data types:
Parquet Type |
Primitive Type |
Go Type |
BOOLEAN |
BOOLEAN |
bool |
INT32 |
INT32 |
int32 |
INT64 |
INT64 |
int64 |
INT96 |
INT96 |
string |
FLOAT |
FLOAT |
float32 |
DOUBLE |
DOUBLE |
float64 |
BYTE_ARRAY |
BYTE_ARRAY |
string |
FIXED_LEN_BYTE_ARRAY |
FIXED_LEN_BYTE_ARRAY |
string |
UTF8 |
BYTE_ARRAY |
string |
INT_8 |
INT32 |
int32 |
INT_16 |
INT32 |
int32 |
INT_32 |
INT32 |
int32 |
INT_64 |
INT64 |
int64 |
UINT_8 |
INT32 |
uint32 |
UINT_16 |
INT32 |
uint32 |
UINT_32 |
INT32 |
uint32 |
UINT_64 |
INT64 |
uint64 |
DATE |
INT32 |
int32 |
TIME_MILLIS |
INT32 |
int32 |
TIME_MICROS |
INT64 |
int64 |
TIMESTAMP_MILLIS |
INT64 |
int64 |
TIMESTAMP_MICROS |
INT64 |
int64 |
INTERVAL |
FIXED_LEN_BYTE_ARRAY |
string |
DECIMAL |
INT32,INT64,FIXED_LEN_BYTE_ARRAY,BYTE_ARRAY |
int32,int64,string,string |
LIST |
|
slice |
MAP |
|
map |
Tips
- Although DECIMAL can be stored as INT32,INT64,FIXED_LEN_BYTE_ARRAY,BYTE_ARRAY, Currently I suggest to use FIXED_LEN_BYTE_ARRAY.
Encoding
PLAIN:
All types
PLAIN_DICTIONARY:
All types
DELTA_BINARY_PACKED:
INT32, INT64, INT_8, INT_16, INT_32, INT_64, UINT_8, UINT_16, UINT_32, UINT_64, TIME_MILLIS, TIME_MICROS, TIMESTAMP_MILLIS, TIMESTAMP_MICROS
DELTA_BYTE_ARRAY:
BYTE_ARRAY, UTF8
DELTA_LENGTH_BYTE_ARRAY:
BYTE_ARRAY, UTF8
Tips
- Some platforms don't support all kinds of encodings. If you are not sure, just use PLAIN and PLAIN_DICTIONARY.
- If the fields have many different values, please don't use PLAIN_DICTIONARY encoding. Because it will record all the different values in a map which will use a lot of memory.
Repetition Type
There are three repetition types in Parquet: REQUIRED, OPTIONAL, REPEATED.
Repetition Type |
Example |
Description |
REQUIRED |
V1 int32 `parquet:"name=v1, type=INT32"` |
No extra description |
OPTIONAL |
V1 *int32 `parquet:"name=v1, type=INT32"` |
Declare as pointer |
REPEATED |
V1 []int32 `parquet:"name=v1, type=INT32, repetitontype=REPEATED"` |
Add 'repetitiontype=REPEATED' in tags |
Tips
- The difference between a List and a REPEATED variable is the 'repetitiontype' in tags. Although both of them are stored as slice in go, they are different in parquet. You can find the detail of List in parquet at here. I suggest just use a List.
- For LIST and MAP, some existed parquet files use some nonstandard formats(see here). For standard format, parquet-go will convert them to go slice and go map. For nonstandard formats, parquet-go will convert them to corresponding structs.
Example of Type and Encoding
Bool bool `parquet:"name=bool, type=BOOLEAN"`
Int32 int32 `parquet:"name=int32, type=INT32"`
Int64 int64 `parquet:"name=int64, type=INT64"`
Int96 string `parquet:"name=int96, type=INT96"`
Float float32 `parquet:"name=float, type=FLOAT"`
Double float64 `parquet:"name=double, type=DOUBLE"`
ByteArray string `parquet:"name=bytearray, type=BYTE_ARRAY"`
FixedLenByteArray string `parquet:"name=FixedLenByteArray, type=FIXED_LEN_BYTE_ARRAY, length=10"`
Utf8 string `parquet:"name=utf8, type=UTF8, encoding=PLAIN_DICTIONARY"`
Int_8 int32 `parquet:"name=int_8, type=INT_8"`
Int_16 int32 `parquet:"name=int_16, type=INT_16"`
Int_32 int32 `parquet:"name=int_32, type=INT_32"`
Int_64 int64 `parquet:"name=int_64, type=INT_64"`
Uint_8 uint32 `parquet:"name=uint_8, type=UINT_8"`
Uint_16 uint32 `parquet:"name=uint_16, type=UINT_16"`
Uint_32 uint32 `parquet:"name=uint_32, type=UINT_32"`
Uint_64 uint64 `parquet:"name=uint_64, type=UINT_64"`
Date int32 `parquet:"name=date, type=DATE"`
TimeMillis int32 `parquet:"name=timemillis, type=TIME_MILLIS"`
TimeMicros int64 `parquet:"name=timemicros, type=TIME_MICROS"`
TimestampMillis int64 `parquet:"name=timestampmillis, type=TIMESTAMP_MILLIS"`
TimestampMicros int64 `parquet:"name=timestampmicros, type=TIMESTAMP_MICROS"`
Interval string `parquet:"name=interval, type=INTERVAL"`
Decimal1 int32 `parquet:"name=decimal1, type=DECIMAL, scale=2, precision=9, basetype=INT32"`
Decimal2 int64 `parquet:"name=decimal2, type=DECIMAL, scale=2, precision=18, basetype=INT64"`
Decimal3 string `parquet:"name=decimal3, type=DECIMAL, scale=2, precision=10, basetype=FIXED_LEN_BYTE_ARRAY, length=12"`
Decimal4 string `parquet:"name=decimal4, type=DECIMAL, scale=2, precision=20, basetype=BYTE_ARRAY"`
Map map[string]int32 `parquet:"name=map, type=MAP, keytype=UTF8, valuetype=INT32"`
List []string `parquet:"name=list, type=LIST, valuetype=UTF8"`
Repeated []int32 `parquet:"name=repeated, type=INT32, repetitiontype=REPEATED"`
Compression Type
Type |
Support |
CompressionCodec_UNCOMPRESSED |
YES |
CompressionCodec_SNAPPY |
YES |
CompressionCodec_GZIP |
YES |
CompressionCodec_LZO |
NO |
CompressionCodec_BROTLI |
NO |
CompressionCodec_LZ4 |
NO |
CompressionCodec_ZSTD |
YES |
ParquetFile
Read/Write a parquet file need a ParquetFile interface implemented
type ParquetFile interface {
io.Seeker
io.Reader
io.Writer
io.Closer
Open(name string) (ParquetFile, error)
Create(name string) (ParquetFile, error)
}
Using this interface, parquet-go can read/write parquet file on different platforms. All the file sources are at parquet-go-source. Now it supports(local/hdfs/s3/gcs/memory).
Writer
Three Writers are supported: ParquetWriter, JSONWriter, CSVWriter.
Reader
Two Readers are supported: ParquetReader, ColumnReader
-
ParquetReader is used to read predefined Golang structs
Example of ParquetReader
-
ColumnReader is used to read raw column data. The read function return 3 slices([value], [RepetitionLevel], [DefinitionLevel]) of the records.
Example of ColumnReader
Tips
- If the parquet file is very big (even the size of parquet file is small, the uncompressed size may be very large), please don't read all rows at one time, which may induce the OOM. You can read a small portion of the data at a time like a stream-oriented file.
Schema
There are three methods to define the schema: go struct tags, Json, CSV metadata. Only items in schema will be written and others will be ignored.
Tag
type Student struct {
Name string `parquet:"name=name, type=UTF8, encoding=PLAIN_DICTIONARY"`
Age int32 `parquet:"name=age, type=INT32"`
Id int64 `parquet:"name=id, type=INT64"`
Weight float32 `parquet:"name=weight, type=FLOAT"`
Sex bool `parquet:"name=sex, type=BOOLEAN"`
Day int32 `parquet:"name=day, type=DATE"`
}
Example of tags
JSON
JSON schema can be used to define some complicated schema, which can't be defined by tag.
type Student struct {
Name string
Age int32
Id int64
Weight float32
Sex bool
Classes []string
Scores map[string][]float32
Friends []struct {
Name string
Id int64
}
Teachers []struct {
Name string
Id int64
}
}
var jsonSchema string = `
{
"Tag": "name=parquet-go-root, repetitiontype=REQUIRED",
"Fields": [
{"Tag": "name=name, inname=Name, type=UTF8, repetitiontype=REQUIRED"},
{"Tag": "name=age, inname=Age, type=INT32, repetitiontype=REQUIRED"},
{"Tag": "name=id, inname=Id, type=INT64, repetitiontype=REQUIRED"},
{"Tag": "name=weight, inname=Weight, type=FLOAT, repetitiontype=REQUIRED"},
{"Tag": "name=sex, inname=Sex, type=BOOLEAN, repetitiontype=REQUIRED"},
{"Tag": "name=classes, inname=Classes, type=LIST, repetitiontype=REQUIRED",
"Fields": [{"Tag": "name=element, type=UTF8, repetitiontype=REQUIRED"}]
},
{
"Tag": "name=scores, inname=Scores, type=MAP, repetitiontype=REQUIRED",
"Fields": [
{"Tag": "name=key, type=UTF8, repetitiontype=REQUIRED"},
{"Tag": "name=value, type=LIST, repetitiontype=REQUIRED",
"Fields": [{"Tag": "name=element, type=FLOAT, repetitiontype=REQUIRED"}]
}
]
},
{
"Tag": "name=friends, inname=Friends, type=LIST, repetitiontype=REQUIRED",
"Fields": [
{"Tag": "name=element, repetitiontype=REQUIRED",
"Fields": [
{"Tag": "name=name, inname=Name, type=UTF8, repetitiontype=REQUIRED"},
{"Tag": "name=id, inname=Id, type=INT64, repetitiontype=REQUIRED"}
]}
]
},
{
"Tag": "name=teachers, inname=Teachers, repetitiontype=REPEATED",
"Fields": [
{"Tag": "name=name, inname=Name, type=UTF8, repetitiontype=REQUIRED"},
{"Tag": "name=id, inname=Id, type=INT64, repetitiontype=REQUIRED"}
]
}
]
}
`
Example of JSON schema
md := []string{
"name=Name, type=UTF8, encoding=PLAIN_DICTIONARY",
"name=Age, type=INT32",
"name=Id, type=INT64",
"name=Weight, type=FLOAT",
"name=Sex, type=BOOLEAN",
}
Example of CSV metadata
Parallel
Read/Write initial functions have a parallel parameters np which is the number of goroutines in reading/writing.
func NewParquetReader(pFile ParquetFile.ParquetFile, obj interface{}, np int64) (*ParquetReader, error)
func NewParquetWriter(pFile ParquetFile.ParquetFile, obj interface{}, np int64) (*ParquetWriter, error)
func NewJSONWriter(jsonSchema string, pfile ParquetFile.ParquetFile, np int64) (*JSONWriter, error)
func NewCSVWriter(md []string, pfile ParquetFile.ParquetFile, np int64) (*CSVWriter, error)
Examples
- parquet-tools: Command line tools that aid in the inspection of Parquet files
Please start to use it and give feedback or start it! Help is needed and anything is welcome.