gononlin

module
v0.4.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 24, 2024 License: MPL-2.0

README

Build Status

Package for solving non-linear systems of equations. The package implements Jacobian-Free Newton Krylov method, where the Jacobian is approximated via finite differences. However, since the Krylov space methods only require the action of the Jacboian on a search direction v, the full Jacobian matrix is never explicitly stored, which makes the technique very memory efficient.

Example

import (
	"fmt"
	"math"

	"github.com/davidkleiven/gononlin/nonlin"
)

func ExampleNewtonKrylov() {
	// This example shows how one can use NewtonKrylov to solve the
	// system of equations
	// (x-1)^2*(x - y) = 0
	// (x-2)^3*cos(2*x/y) = 0

	problem := nonlin.Problem{
		F: func(out, x []float64) {
			out[0] = math.Pow(x[0]-1.0, 2.0) * (x[0] - x[1])
			out[1] = math.Pow(x[1]-2.0, 3.0) * math.Cos(2.0*x[0]/x[1])
		},
	}

	solver := nonlin.NewtonKrylov{
		// Maximum number of Newton iterations
		Maxiter: 1000,

		// Stepsize used to appriximate jacobian with finite differences
		StepSize: 1e-2,

		// Tolerance for the solution
		Tol: 1e-7,
	}

	x0 := []float64{0.0, 3.0}
	res := solver.Solve(problem, x0)
	fmt.Printf("Root: (x, y) = (%.2f, %.2f)\n", res.X[0], res.X[1])
	fmt.Printf("Function value: (%.2f, %.2f)\n", res.F[0], res.F[1])

	// Output:
	//
	// Root: (x, y) = (1.00, 2.00)
	// Function value: (-0.00, 0.00)
}

Acknowledgements

  • Gonum is used to solve the linear system of equations arising in the NewtonKrylov method

Directories

Path Synopsis
examples
burger
main shows how one can use NewtonKrylov to solve the Burgers equation using implicit euler method
main shows how one can use NewtonKrylov to solve the Burgers equation using implicit euler method

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL